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abstract. This paper presents a new explanation of how prefer-

ring the simplest theory compatible with experience assists one in

finding the true answer to a scientific question when the answers are

theories or models. Inquiry is portrayed as an unending game be-

tween science and nature in which the scientist aims to converge to

the true theory on the basis of accumulating information. Simplicity

is a topological invariant reflecting sequences of theory choices that

nature can force an arbitrary, convergent scientist to produce. It is

demonstrated that among the methods that converge to the truth in

an empirical problem, the ones that do so with a minimum number of

reversals of opinion prior to convergence are exactly the ones that pre-

fer simple theories. The approach explains not only simplicity tastes

in model selection, but aspects of theory testing and the unwillingness

of natural science to break symmetries without a reason.

1 Introduction

In natural science, one typically faces a situation in which several (or even
infinitely many) available theories are compatible with experience. Standard

*I would like to thank Seth Casana, John Taylor, Joseph Ramsey, Richard Scheines,
Oliver Schulte, Pieter Adriaans, Teddy Seidenfeld, and Balazs Gyenis for discussions and
comments. Special thanks are due to the organizers of the Fifth International Conference
on Foundations of the Formal Sciences for such an interesting interdisciplinary conference
devoted to infinite game theory. The centrality of determinacy to the main results of this
paper reflects the influence of some of the excellent presentations by other authors in this
volume.
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practice is to choose the simplest theory among them and to cite “Ockham’s
razor” as the excuse (Figure 1). “Simplicity” is understood in a variety
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Figure 1. Ockham to the rescue.

of ways in different contexts. For example, simpler theories are supposed
to posit fewer entities or causes (Ockham’s original formulation), to have
fewer adjustable parameters, to be more “unified” and “elegant”, to posit
more uniformity or symmetry in nature, to provide stronger explanations,
or to be more strongly cross-tested by the available data. But in what
sense is Ockham’s razor truly an excuse? For if you already know that
the simplest theory compatible with experience is true, you don’t need any
help from Ockham (Figure 2). And if you don’t, then the true theory
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Figure 2. A Platonic Dilemma: Case I.

might be complex, so it is unclear how Ockham helps you find it (Figure
3). Indeed, how could a fixed bias toward simplicity indicate the possibly
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Figure 3. A Platonic Dilemma: Case II.

complex truth any better than a broken thermometer that always reads
“zero” can indicate the temperature? You don’t have to be a card-carrying
skeptic to wonder what the tacit connection between simplicity and truth-
finding could possibly be.

This essay explains the connection between simplicity and truth by mod-
elling inquiry as an unending process, in which the scientist’s aim is to
converge to the truth in a way that minimizes, in a worst-case sense, rever-
sals of opinion prior to convergence to the truth. Scientific methods may
then be analyzed formally as strategies in an infinite game of perfect in-
formation, which brings to the subject powerful mathematical tools such
as Donald Martin’s Borel determinacy theorem [Mar175]. The proposed,
long-run, strategic perspective on inquiry may appear abstract and remote
from the day-to-day nuances of concrete scientific practice. Nonetheless, it
is very general and singles out Ockham’s razor as the best possible strategy
to follow at every stage of inquiry, so its import for short-run practice is
both sharp and concrete. Furthermore, the following review of standard
attempts to link simplicity with theoretical truth in the short run reveals
that they are all either irrelevant or based upon wishful thinking or circular
arguments. A relevant, non-circular, long-run explanation may be better
than no explanation at all.

2 Some Traditional Explanations of Ockham’s Razor

Gottfried W. Leibniz explained the elusive connection between simplicity
and truth by means of a direct appeal to the grace of God (Figure 4; [Lei14,
§§ 55–59]) Since God is omnipotent and infinitely kind (to scientists, at
least), it follows that the actual world is the most elegant (i.e., simple)
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Figure 4. Gottfried W. Leibniz’ Theological Explanation.

universe that could possibly produce such a rich array of effects. Hence,
simplicity doesn’t track the truth the way a thermometer tracks tempera-
ture; truth, by the grace of God, tracks simplicity. This explanation merely
underscores the desperate nature of the question.

Immanuel Kant confronted the issue in his Kritik der Urtheilskraft.1 Ac-
cording to Kant, the faculty of judgment must prescribe or presuppose that
the diverse laws of nature may be unified under a small set of causes if na-
ture is to be intelligible at all. But theories that involve a few extra causes
are also intelligible, so intelligibility falls far short of explaining why one
should prefer theories with fewer causes or entities over those that involve
more.

Some latter-day philosophers have emphasized that simple theories have
various “virtues”, most notably, that simpler or more unified theories are
more thoroughly tested or confirmed by a given evidence set (e.g., [Pop68,
p. 251–281], [Gly80], or [Fri183, p. 236–250]). For if a theory has many free
parameters (ways of being true), then new evidence simply “sets” the pa-
rameters and there is no risk of the theory, itself, being refuted altogether.
But a simple theory does carry the risk of being refuted. It seems only fair
to pin a medal of valor on the simple theory for surviving its self-imposed
ordeal. The question, however, is truth, not valor, and the true theory might
not be simple, in which case it wouldn’t be valorous. To assume otherwise
amounts to wishful thinking — the epistemic sin of concluding that the truth
is as pleasing (intelligible, severely testable, explanatory, unified, uniform,
symmetrical) as you would like it to be. Rudolf Carnap sought uniformity
of nature in logic itself [Car050, p. 562–567]. This “logic” amounts, however,
to nothing more than the imposition of greater prior probabilities on more

1Cf. the Akademie-Ausgabe [NatWin08, p. 185].
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uniform worlds, where uniformity is judged with respect to an arbitrarily
selected collection of predicates. The argument goes like this (Figure 5).
Suppose there are but two predicates, “green” and “blue” and that every-
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Figure 5. Rudolf Carnap’s “Logical” Explanation.

thing is either green or blue. Suppose there are two observable objects, a
and b. Two worlds are isomorphic just in case a one-to-one substitution of
names takes you from one world to the other in a way that preserves the
basic predicates in your language. Hence the uniform world in which a and
b are both green is in its own isomorphism class, as is the uniform world
in which a and b are both blue. The two non-uniform worlds in which a
and b have different colors can each be reached from the other by a one-
to-one, color-preserving substitution of names, so they end up in the same
isomorphism class. Now Carnap invokes the principle of indifference to put
equal probabilities of one third on each of these three automorphism classes
and invokes it again to split the one third probability on the non-uniform
class over the two non-uniform worlds. The resulting probability distribu-
tion is then biased so that uniform worlds get probability one third and
non-uniform worlds get probability one sixth. So uniform worlds are more
probable than non-uniform worlds (by a factor of two in this tiny example,
but the advantage increases as observable individuals are added).

Nelson Goodman objected that whatever is logical ought to be preserved
under translation and that Carnap’s uniformity bias based on linguistic
syntax isn’t [Goo83, p. 59–83]. For uniformly green and uniformly blue
experience are uniform. But one can translate green and blue into “grue”
and “bleen”, where “grue” means “green if a and blue if b” and “bleen”
means “blue if a and green if b” (Figure 6). Then in the grue/bleen language,
the worlds that used to be non-uniform are now uniformly grue or uniformly
bleen, respectively and the worlds that used to be uniform are non-uniform,
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Figure 6. Nelson Goodman’s “Grue” Argument.

for “green” means “grue if a and bleen if b” and “blue” means “bleen if
a and grue if b”. Since logical inferences are based entirely on syntax and
syntactically the situation between green/blue and grue/bleen is entirely
symmetrical, uniformity cannot be a feature of logical syntax. The moral is
that Carnap’s story makes uniformity of nature a mere matter of description.
But a guide to truth could not be a mere matter of description, since truth
doesn’t depend upon how it is described.

3 Statistical Explanations

So much for philosophy. Surely, the growing army of contemporary statis-
ticians, machine learning researchers, and industrial “data miners” must
have a better explanation based on rigorous, mathematical reasoning. Let’s
check. A major player in the scientific methodology business today is
Bayesian methodology. The basic idea is to allow personal biases to enter
into statistical inferences, where personal bias is represented as a “prior”
probability measure over possibilities. The prior probability of hypothesis
H is then combined with experience Et available at t via Bayes’ theorem to
produce an updated probability of H at t′, which represents your updated
opinion concerning H:

Pt+1(H) = Pt(H | Et) =
Pt(H) · Pt(Et | H)

Pt(Et).

It is clear from the formula that your prior opinion Pt(H) is a factor in your
posterior opinion Pt+1(H), so that the simplest theory compatible with the
new data ends up being most probable in the updated probabilities. Ock-
ham’s razor is just a systematic bias toward simpler theories. So to explain
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I assume simplicity!

So I assume simplicity!

Figure 7. The Circular Bayesian Explanation.

its efficacy by appealing to a prior bias toward simplicity is patently circu-
lar (Figure 7).

Bayesians also have a more subtle story. Yes, it begs the question simply
to impose a prior bias toward simple theories, so let’s be “fair” and impose
equal prior probabilities on competing theories, be they simple or complex.
Now suppose, for concreteness, that we have just two theories, simple theory
S and complex theory C(θ) with free parameter θ which (again for concrete-
ness) can be set to any value from 1 to k (Figure 8). Suppose, further, that
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Figure 8. The Miracle Explanation.

S consistently entails Et, as does C(1), but that for all other parameter
values i, C(i) is refuted by Et. Thus, Pt(Et | S) = Pt(Et | C(1)) = 1
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but for all i distinct from 1, Pt(Et | C(i)) = 0. Suppose, again, that
you have no prior idea which parameter value of C(i) would be the case if
C(θ) were true (that’s what it means for the parameter to be “free”). So
Pt(θ | C(i)) is uniform.2 Turning the crank on Bayes’ theorem, one obtains
Pt(S | Et)/Pt(C | Et) = k. So even though the complex theory could save
the data just as well as the simple one, the simple theory that does so with-
out any ad hoc fiddling ends up being “confirmed” much more sharply by
the same data Et (e.g., [Ros83, p. 74–75]). Surely that explains how severe
testability is a mark of truth, for doesn’t the more testable theory end up
more probable after a fair contest?

One must exercise caution when Bayesians speak of fairness, however, for
probabilistic “fairness” between “blue” and “non-blue” implies a marked
bias toward “blue” in a choice among “blue, yellow, red”. That is all the
more true in the present case: “fairness” between S and C induces a strong
bias for S with respect to C(1), . . . , C(k). One could just as well insist upon
“fairness” at the level of parameter settings rather than at the level of the-
ories (Figure 9). In that case, one would have to impose equal probabilities

C(1)

simple

Now that’s fair.   

complex

C(2)

C(3)

fairness to worlds

3/4 1/4

1/4

1/4

1/4

S

Figure 9. The Miracle Reversed.

of 1/(k + 1) over the k + 1 possibilities {S,C(1), . . . , C(k)}. Now C(0) and,
hence, C, will remain forever at least as a probable as S in light of evidence

2This is a discrete version of the typical restrictions on prior probability in Bayesian
model selection (cf. [Was04, p. 220–221]). If the parameters are continuous, each parame-
ter setting receives zero prior probability, but the result is the same because the likelihood
of the more complex theory must be integrated over a higher-dimensional space than that
of the simpler theory.
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agreeing with S. Classical statisticians explain Ockham’s razor in terms of
“overfitting” (cf. [Was04, p. 218–225] for a textbook review). “Overfitting”
occurs when you want to estimate a sampling distribution by setting the free
parameters in some statistical model. In that case, the expected squared
predictive error of the estimated model will be higher if the model employed
is too complex (e.g., [For1Sob94]). This is a kind of objective, short-run con-
nection between simplicity and truth-finding, but it doesn’t really address
the question at hand, which is how Ockham’s razor helps you find the true
theory, which is quite another matter from which theory or model to use to
estimate the underlying sampling distribution. The quickest way to see why
is this: suppose that God were to tell you that the true model has fifty free
parameters. On a small sample, the overfitting argument would still urge
you to use a much smaller model for estimation and prediction purposes
(Figure 10). So the argument couldn’t be concerned with finding the true
theory.

Behold
the Truth,
little human!

Thanks, God,
but this simplistic
model will  still
predict better.

C(θ1, . . . , θ50) 

S(θ1) 

Figure 10. The “Overfitting” Explanation.

More subtly, the sense of approximate error employed in the overfitting
literature is wrong for theory selection. Getting “close” to the underlying
sampling distribution might not get you “close” to the form of the true
model, since distributions arbitrarily close to the true distribution could be
generated by models arbitrarily far from the true model.3 Thus, distance
from the theoretical truth is typically discontinuous with distance from the
true sampling distribution, so minimizing the latter distance may fail to get
you close in the former, as in the case of God informing you that the true
model is very complex. Another point about overfitting is that even to the

3This is particularly true when the features of the model have counterfactual im-
port beyond prediction of the actual sampling distribution, as in causal inference
[GlySch1Spi00, p. 47–53].
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extent that it does explain the role of simplicity in statistical prediction, it is
tied, essentially, to inference problems in which the data are stochastically
generated, leaving one to wonder why simplicity should have any role in
deterministic inference problems, where it still feels like a good idea.

Finally, there are theorems of the sort that some method equipped with
a prior bias toward simplicity is guaranteed to converge in some sense to
the true model as experience (or sample size) increases (e.g., [LohZhe95]).
That would indeed link Ockham’s razor with truth-finding if it could be
shown that other possible biases don’t converge to the truth. But they do.
The logic of convergence results is not that Ockham’s advice points at or
indicates the truth, but that it is “washed out” or “swamped”, eventually,
by accumulating experience, even if the advice is so misleading as to throw
you off the track for a long time (Figure 11). But alternative biases would

Fssssss!

How is this flat tire helping
me to get home?

Because you
can fix it eventually.

Figure 11. The Convergence Explanation.

also be washed out by experience eventually4 so that’s hardly a ringing
endorsement of Ockham’s razor. What is required is an argument that
Ockham’s razor is, in some sense, the best possible bias for finding the true
theory.

4 Post Mortem

To recapitulate, the standard explanations of the mysterious relationship
between simplicity and theoretical truth are either circular, wishful, or ir-
relevant. Still, they provide useful information about how the relationship
can’t be explained. For indication of the truth is too strong a connection
to establish without begging the question at the outset, as Leibniz and the
Bayesians do. On the other hand, mere convergence in the limit is too weak

4Cf. [Hal74, p. 212, Theorem A]. Also, see the critical discussion of Bayesian conver-
gence theorems in [Kel96, p. 302–330].
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to single out simplicity as the right bias. The crux of the puzzle, then, is to
come up with a notion of “helping to find the truth” that is strong enough
to single out simplicity as the right bias to have but that is not so strong
as to demand a question-begging appeal to Ockham’s razor at the outset
in order to establish it. Thus, the appropriate notion of “help” must be
stronger than convergence in the limit and weaker than indication in the
short run.

The account developed below steers between these two extremes by con-
sidering a refined concept of convergence, namely, convergence with a mini-
mum number of reversals of opinion prior to arrival at the goal (Figure 12).
This is stronger than mere convergence in the limit, which says nothing

Simple Complex

indication
too strong

convergence
too weak

straightest convergence
just right?

Simple Complex Simple Complex

Figure 12. Three Kinds of “Help”.

about minimizing reversals of opinion along the path to the truth, and is
weaker than indication, which allows for no reversals of opinion whatever.
It will be demonstrated that an ongoing bias toward simplicity minimizes
kinks in your course to the truth in a certain precise sense. But first, I illus-
trate the general flavor of the approach by showing that something similar
happens almost every time you ask for directions.

5 Asking for Directions

Suppose you are headed home on a road trip and get lost in a small town.
In frustration, you stop to ask a local resident how to get home (Figure 13).
Before you can even say where you are headed, he gives you the usual sort
of advice: directions to the nearby freeway entrance ramp, which happens
to be a few blocks back toward where you just came from. Now suppose
that, in a fit of hubris, you disregard the resident’s advice in favor of some
intuitive feeling that your home is straight ahead (Figure 14). That ends
up being a bad idea (Figure 15). You leave town on a small rural route that
winds its wild way over the mountains. At some point, you concede the
error of your ways and turn around to follow the resident’s directions to the
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Which way to...?

Go back two blocks.
The freeway is
on the right.

Figure 13. Asking For Directions.

How could he answer without knowing our destination?
The sun was on the right, so Pittsburgh must be straight ahead.  

Figure 14. Hubris!

freeway. The freeway then follows as straight a route home as is practicable
through mountainous terrain. As you speed your way homeward, you have
ample time to regret: if you hadn’t ignored the local resident’s advice, you
wouldn’t have added that useless, initial U-turn to your otherwise optimal
journey home. Let’s take stock of a few striking features of this mundane
tale. First, the local resident’s advice was indeed helpful, since it would have
put you on the straightest possible path home. Second, by disregarding
the advice, you incurred an extra U-turn or kink in your route. What is
particularly vexing about the initial U-turn is that it occurs even before
you properly begin your journey. It’s a sort of navigational “original sin”
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Figure 15. The U-turn Argument.

that you can never be absolved of. Third, the resident didn’t need to know
where you were going in advance in order to give you helpful advice. Any
stranger asking for directions in a small, isolated town would do best to get
on the freeway. Hence, the resident’s ability to provide useful information
without knowing where your home is doesn’t require an occult or circular
explanation. Suppose, on the other hand, that the resident could give you
a compass course home before knowing where you are headed. That would
require either a circular or an occult explanation (an Ouija board or divining
rod). Fourth, even the freeway is not perfectly straight, so the resident’s
advice provides no guarantee against future course reversals, even if it is
the best possible advice. Finally, the resident’s advice is the best possible
advice even though it points you away from your goal at the outset. If help
required that you be aimed in the right direction, then the resident would
have to give you a compass heading home, which wouldn’t be possible unless
he already knew where your goal was or had an Ouija board or divining rod.

So the typical situation in which you ask for directions home from a
distant, small town has all the fundamental features that an adequate ex-
planation of the truth-finding efficacy of Ockham’s razor must have. Per-
haps Ockham also provides fixed advice that puts you on the best possible
route to the truth without pointing you at the truth and without guarantees
against future course reversals along the way. It remains, then, to explain
what the freeway to the truth is and how Ockham’s advice leads you to it.
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6 The Freeway to the Truth

Even lexicography suggests an essential connection between freeways and
truth-finding, for both changes in course and changes in opinion are called
changes in attitude. According to this analogy, Ockham’s advice should
somehow minimize changes of opinion prior to convergence to the right
answer.5 Let’s consider how the story goes in the case of a very simple
truth-finding problem.

Suppose that there is an emitter of discrete, readily detectable particles
at arbitrary intervals and that you know that it can emit at most finitely
many particles altogether (Figure 16). The question is how many particles

Burp!

?!

Figure 16. Counting Particles (Effects).

it will ever emit. What makes the problem interesting is that an arbitrarily
long interval without new particles can easily be mistaken for total absence
of future particles. This problem has more general significance than might
be apparent at first, for think of the particles as detectable effects that
are arbitrarily hard to detect as parameters in the true theory are tuned
toward zero. For example, in curve fitting, the curvature of a quadratic
curve may be so slight that it requires a huge number of data to notice
that the curve is non-linear.6 So the theory that the curve is quadratic but

5The idea of counting mind-changes already appears in [Put65]. Since then, the idea
has been studied extensively by computer scientists interested in computational learn-
ing (cf. [Jai+99] for a review). The focus, however, is on categorizing the complexities
of problems rather than on singling out Ockham’s razor as an optimal method. Oliver
Schulte and I began looking at retraction minimization as a way to severely constrain
one’s choice of hypothesis in the short run in 1996 (cf. [Sch999a, Sch999b]). Schulte has
also applied the idea to the inference of conservation laws in particle physics [Sch901].
The ideas in this essay build upon and substantially simplify and generalize the ini-
tial approach taken in [Kel02, GlyKel04, Kel04]). While the present manuscript was in
press, the approach was developed further in [Kel07]. Some differences between the two
approaches are mentioned in subsequent footnotes.

6It is assumed that he data are increasingly precise but inexact; else three points would
settle the question [Pop68, p. 131–131]. The same point holds if the data are noisy. In
that case, tuning the parameters toward zero makes the effects statistically undetectable
at small sample sizes (cf. [GlyKel04, Kel04] for an application of the preceding ideas to
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not linear predicts the eventual detection of effects that would never appear
under the linear theory. Similarly, the curvature of a cubic curve may be
so slight that it is arbitrarily hard to distinguish from a quadratic curve.
The point generalizes to typical model selection settings regardless of the
interpretation of the parameters. So deciding among models or theories with
different free parameters is quite similar, after all, to counting particles.

The traditional formulation of “Ockham’s razor” is to not multiply enti-
ties without necessity. It is “necessary” (on pain of outright inconsistency)
to assume as many particles as you have seen, but it is not necessary to
assume more, so that if you conclude anything, you should conclude exactly
as many particles as you have seen so far (Figure 17). The most aggressive

Burp!

4
What is the least
possible number?

Figure 17. Ockham in Action.

Ockham method is the counting method that concludes that every particle
has been seen at every stage. More realistic Ockham methods refuse to
commit themselves to any answer at all until a long time has passed with
no novel effects. Ockham’s razor, itself, says nothing about how long this
“confidence-building” time should last and the following argument for Ock-
ham’s razor doesn’t imply anything about how long it should be either; it
simply requires you to adopt some Ockham method, whether the method
waits or not. That is as it should be, since even believers in short-run evi-
dential support (e.g., Rudolf Carnap and the Bayesians) allow for arbitrary
individual differences concerning the time required for confidence buildup.

Other intuitive formulations of empirical simplicity conspire with the view
that the Ockham answer should be the exact count. First, the Ockham the-
ory that there are no more particles than you have seen is the most uniform
theory compatible with experience, for it posits a uniformly particle-free
future. Second, the Ockham theory is the most testable theory compatible
with experience, for if it is false, you will see another particle and it will

stochastic problems.
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be decisively refuted. Any theory that anticipates more particles than have
been seen might be false, because there are fewer particles than anticipated,
in which case it will never be refuted decisively, since the anticipated parti-
cles might always appear later. Third, the Ockham theory is most explana-
tory, since the theory that posits extra particles fails to explain the times
at which those particle appear. The theory that there are no more particles
fails to posit extra, unexplained times of appearance. Fourth, the Ockham
theory is most symmetrical, since the particle-free future is preserved under
permutation of times, whereas a future punctuated by new particle appear-
ances would be altered by such permutations. Fifth, the Ockham theory
has the fewest free parameters, because each time of appearance of a new
particle is a free parameter in a theory that posits extra particles. So in
spite of its apparent triviality, the problem of counting things that are emit-
ted from a box does illustrate a wide range of intuitive aspects of empirical
simplicity. That isn’t so surprising in light of the analogy between particles
and empirical effects tied to free parameters.

If you follow an Ockham solution to the particle-counting problem, then
you change your mind in light of increasing data at most once per particle.
If the true count is k, then you change your mind at most k times. By way
of comparison, suppose that you have a hankering to violate Ockham’s razor
by producing a different answer (Figure 18). You might reason as follows.

5

Figure 18. Ockham Violation!

The particle emitter has overturned every successive Ockham answer in the
past (i.e., “zero”, “one”, “two”, and “three”), so you expect it will overturn
the current Ockham answer “four” as well. So by induction on Ockham’s
unbroken losing streak in the past, you anticipate failure again and guess
“five” (or some greater number of your choosing) rather than the Ockham
answer “four”. Philosophers of science call this the “negative induction from
the history of science” [Lau81]. Why side with Ockham, rather than with
the negative induction against him?
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Efficiency is future-directed. Slush funds or debts may have been ac-
cumulated in the past, but efficiency optimization in the present concerns
future costs incurred by future acts over which you have some control. So
think of inquiry as starting from scratch at each moment. Accordingly,
the subproblem entered at a given stage of inquiry consists of the restric-
tion of possibilities to those consistent with current experience and only
mind-changes incurred after entering the subproblem are counted in that
subproblem.7 Consider the subproblem entered when you first say “five”,
upon having seen only four particles. There is no deadline by which the fifth
particle you anticipate has to show up, so you may have to wait a long time
for it, even if you are right. You wait and wait (Figure 19). Your graduate

5

Figure 19. The Pressure Builds.

students exhaustively examine the particle emitter for possible malfunc-
tions. Colleagues start talking about the accumulation of “null results”
and discuss the “anomalous” failure of the anticipated marble to appear.
True, the posited particle could appear (to your everlasting fame) at any
time, so your theory isn’t strictly refuted. Nonetheless, you feel increasing
pressure to switch to the four-particle theory as the anomaly evolves into a
full-blown “crisis”. This increasing pressure comes not from the “weight of
the evidence”, as philosophers are wont to say, but from your strategic aim
to converge to the truth, regardless of what it happens to be. For if you
never change your mind from “five” to “four” and the fifth particle never
appears, you will converge for eternity to “five” when the truth is “four”.
So at some time of your choosing, you must (on pain of converging to the
wrong answer) cave in to the pressure from nature’s strategic threat and
switch back to the (Ockham) theory that the machine will produce just
four particles (Figure 20). Won’t that make for interesting gossip in the

7One might object that a sub-problem should hold past information and past the-
ory choices fixed and sum the total cost from the outset of inquiry. That approach is
developed in detail in [Kel07].
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Particle Counting Association, where you are feted as the sole defender of
the five particle theory?8

To summarize, in the subproblem entered when you first say “five”, na-
ture can force you to change your mind at least once (from “five” to “four”),
in the manner just described, without presenting a fourth particle. The
same is not true of Ockham, who enters the same subproblem saying “four”
(or nothing at all) and who never changes his mind until the next particle
appears. Thereafter, Ockham changes his mind exactly one time per extra
particle. But you can be forced by nature to change your mind at least
once per extra particle (on pain of not converging to the truth) in the same
manner already described; for a long period during which there are exactly
i particles forces you to say “i” on pain of not converging to the truth, after
which nature can present the i + 1st particle, etc. (Figure 21).

5 4Told ya!

Figure 20. The Agony of Retreat.

Hence, if a solution violates Ockham’s razor in the particle counting prob-
lem, then in the subproblem entered at the time of the violation, whatever
sequence of outputs the Ockham solution produces, the violator can be forced
by nature to produce a sequence including at least the same mind-changes
plus another one (the initial U-turn from “five” to “four”). You should have
listened to Ockham!

8I am alluding, of course, to Thomas Kuhn’s 1962 celebrated historical theory of the
structure of scientific revolutions [Kuh162]. Null experiments generate anomalies which
evolve after careful consideration into crises that ultimately result in paradigm change.
Kuhn concludes, hastily, that the change is an unlawful matter of politics that has little
to do with finding the truth. I respond that it is a necessary consequence of the logic of
efficient convergence to the truth after a violation of Ockham’s razor, as will become clear
in what follows. Many of the celebrated scientific revolutions in physics have been the
results of Ockham violations (e.g., Ptolemy vs. Copernicus, Fresnel vs. Newton, Newton
vs. Einstein, and creationism vs. Darwin). In each of these cases, a theory positing extra
free parameters (with attendant empirical effects) was chosen first and a simpler theory
was thought of later and came to replace the former, often after an accumulation of null
experiments.
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545 6 ...

54 6 ...

Burp!

initial U-turn

Figure 21. Ockham Avoids Your Initial U-turn.

The same argument works if you violate Ockham’s razor in the other
possible way, by saying “three” when four particles have been seen. For
nature can refuse to present more particles until you change your mind to
“four” on pain of never converging to the right answer if the right answer
is “four”. But in the same subproblem, Ockham would already have said
“four” if he said anything at all and, in either case, you can be forced into
an extra mind-change in each answer. So the U-turn argument also explains
the need for maintaining consistency with the data.

So there is, after all, a close analogy between particle counting and getting
on the freeway. Your initial mind change from “five” to “four” is analogous
to your initial U-turn back to the local resident’s house en route to the
highway. Thereafter, no matter what the true answer is, you can be forced to
change your mind at least once for each succssive particle, whereas Ockham
changes his mind at most once per successive particle. These mind-changes
are analogous to the unavoidable curves and bends in the freeway. So no
matter what the truth is, you start with a U-turn Ockham avoids and can
be forced into every mind-change Ockham performs thereafter. As in the
freeway example, you have botched the job before you even properly get
started. In both stories, the advice is the best possible. Nonetheless, it
does not impose a bound on future course reversals; nor does it point you
toward your goal by some occult, unexplained mechanism.

A striking feature of the explanation is that it is entirely game-theoretic.
There is no primitive notion of “support” or “confirmation” by data of the
sort that characterizes much of the philosophical literature on induction
and theory choice (Figure 22).9 Nor are there prior probabilities that foster
the illusion of “support” of general conclusions by a few observations. The

9In this respect, my approach is a generalization and justification of the “anti-
inductivism” of Karl Popper [Pop68, p. 27–30].
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“support”

Figure 22. Pulling the Rug Out.

phenomenology of “support” by evidence emerges entirely from the aim of
winning this truth-finding game against nature. Furthermore, the game is
essentially infinite. For if there were an a priori bound on the time by which
the next particle would arrive if it arrives at all, then you could simply “out-
wait” nature and avoid changing your mind altogether. So the argument
is situated squarely within the theory of infinite, zero-sum games, which is
the topic of this volume.

Here is why the reference to subproblems is essential to the U-turn argu-
ment. Suppose that you are asleep when you see the first particle and that
when you see the second particle you wake up and guess “three”, expect-
ing that you will also sleep through the third (Figure 23). Thereafter, you

...3 2

2 2 ...

subproblem

Figure 23. Ockham Still Wins in Subproblem.

always agree with Ockham. If the third particle doesn’t appear right away,
you can be forced to change your mind to “two”, but that’s only your sec-
ond retraction — Ockham wouldn’t have done better. Now that you have
“caught up” with Ockham, you match him no matter how many particles
you see in the future. But that is only because you “saved” a retraction in
the past by sleeping through the first particle. That is like hoarding a “slush
fund” to hide future mismanagement from the public. In the subproblem
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entered when you say “three”, the slush fund is emptied and you have to
demonstrate your efficiency from scratch. In that subproblem, your first
reversal of opinion back to “two” gets added to all your later mind-changes
and you never catch up, so Ockham wins. The moral: an arbitrary Ock-
ham solution beats you in the subproblem in which you violate Ockham’s
razor, but the Ockham solution does as well as you in every subproblem,
so the Ockham solution is better. In the best case for the violator, the
anticipated fifth particle might appear immediately after the violation, be-
fore the method even has a chance to become queasy about over-estimating
(Figure 24). In that case, the violator’s output sequence in the subprob-

5 ...

54 ...

Burp!

5

Looking for this?

Figure 24. Best Case Fairy to the Rescue.

lem entered at the violation begins with “five”, “five”, whereas Ockham’s
output sequence in the same subproblem begins with “four”, “five”, which
is worse. Hence, the Ockham method doesn’t weakly dominate the viola-
tor’s mind-changes in the subproblem in question. But that merely explains
why the U-turn argument, which does establish the superiority of an arbi-
trary Ockham solution over an arbitrary non-Ockham solution, is not a
weak dominance argument. The U-turn argument essentially involves a
worst-case dimension lacking in weak dominance, for nature can force the
non-Ockham solution from “five” back to “four” (on pain of convergence
to the wrong answer) by withholding particles long enough and can then
reveal another particle to make it say “five”, “four”, “five”, which is never
produced by any Ockham method and which properly extends the Ockham
sequence “four”, “five”.10 Nor, for that matter, is the U-turn argument a

10Indeed, Ockham methods are weakly dominated by methods that hang on to their
original count for an arbitrarily long period of time (Teddy Seidenfeld, personal com-
munication). That isn’t so bad, after all, because there are compelling reasons not to
under-count (e.g., the undercount couldn’t possibly be true). The crux of Ockham’s ra-
zor is to motivate not over-counting, and over-counters do not dominate the retractions
of Ockham methods in this way. More to the point, the alternative theory developed in
[Kel07] is not subject to this objection, because tardiness of retractions is also penalized,
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standard worst-case or “minimax” argument, for there is no fixed bound on
mind-changes for any solution to the counting problem (nature can force an
arbitrary solution through any number of mind-changes).

7 A General Conception of Scientific Problems

A scientific problem specifies a set Ω of possible worlds the scientist must
succeed in together with a question Q which partitions Ω into mutually
exclusive potential answers. The aim is to find the true answer for w no
matter which world w in Ω you happen to live in. If Q is a binary partition,
one thinks of a decision or test problem for one of the two cells vs. the other.
If it is a fixed range of alternatives extensionally laid out in advance, one
speaks of theory choice. If it is an infinite partition latently specified by
some criterion determining the kind of theory that would count as success,
the situation might be described as discovering the truth.

The most characteristic thing about empirical science is that you don’t
get to see w in its entirety. Instead, you get some incomplete evidence or
information about w, represented by some subset of Ω containing w. The
set of all possible information states you might find yourself in is modelled
as the collection of open sets V in a topological space over Ω. A scientific
problem is just a triple (Ω,V,Q), where (Ω,V) is a topological space and
Q partitions Ω (Figure 25). The idea is that, although the scientist never

answer to Q  true in w

w

information state in V  encountered in w

Ωworld in

Figure 25. A Scientific Problem.

gets to see the actual world w, itself, he does get to see ever smaller open
neighborhoods of w.

so the delayers do not end up ahead. The present theory has the advantage of greater
mathematical elegance, however.
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The use of topology to model information states is not a mere stipula-
tion, for information concerns verifiable effects and topology is perhaps best
understood as the mathematical theory of verifiability.11 The point is seen
most directly as follows. Identify each proposition with the set of possible
worlds or circumstances in which it would be true, so propositions may be
modelled as subsets of the set Ω of possible worlds. Say that a proposition
is verifiable if and only if there exists a method or procedure that examines
experience and that eventually illuminates a light if the proposition is true
and that never illuminates the light otherwise. For example, illuminating
the light when a particle appears yields a verification procedure for the
proposition that at least one particle will appear.

The contradiction is the empty set of worlds (it can’t possibly be true)
(Figure 26). It is verifiable by the trivial verification procedure that never

. . .

arbitrary disjunction

contradiction tautology

finite conjunction

Figure 26. Verifiable Propositions are Open Sets.

illuminates its light. Similarly, the tautologous proposition consists of the
whole set Ω of worlds and is verifiable by the trivial procedure that turns
on its light a priori. Suppose that two verifiable propositions A,B are
given. Their conjunction A∩B is verifiable by the procedure that turns on
its light if and only if the respective verification procedures for A and for
B have both turned on their lights. Finally, suppose a collection D ⊂ Ω

11Topology is also used to model partial information states in denotational semantics
[Sco182].
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of verifiable propositions is given. Their disjunction
⋃

D is verifiable by
the procedure that turns on its light just in case the procedure for some
proposition A ∈ D turns on its light (you will see that light eventually as
long as each respective procedure is only a finite distance away). Hence,
the verifiable propositions V over Ω constitute the open sets of a topological
space (Ω,V). So every theorem about open sets in a topological space is also
true of ideal empirical verifiability. One of the most characteristic features
of topology is that open sets are closed under arbitrary union but only
under finite intersection. That is also explainable in terms of verifiability.
Suppose you are given an infinite collection C of verifiable propositions.
Is there a verification procedure for

⋂
C? Not always. For the respective

verification procedures for the elements of C may all turn on their lights, but
at different times, so that there is no time by which you can be sure that
it is safe to to turn on your light for

⋂
C (Figure 27). That is an instance

Arbitrary
conjunction

on

. . .

Gotta decide sometime!

Figure 27. The Demon of Arbitrary Conjunction.

of the classical problem of induction: no matter how many lights you have
seen go on, the next light might never do so. So not only are the axioms
of topology satisfied by empirical verifiability; the characteristic asymmetry
in the axioms reflects the problem of induction.

In a given topological space (Ω,V), the problem of induction arises in a
world w ∈ Ω with respect to proposition H just in case every information
state (open proposition) true in w is compatible both with H and with ¬H
(Figure 28).12 In standard, topological parlance, the problem of induction
arises with respect to H in w just in case w is a boundary point of H. So
the demons of induction live in the boundaries of propositions one would
like to know the truth values of. In a world that is an interior point of H,
one eventually receives information verifying H (since an interior point of
H has a neighborhood contained in H). Hence, not every verified proposi-
tion is verifiable, since a verified proposition merely has non-empty interior,
whereas a verifiable proposition is open. But if a non-verifiable proposi-

12Let ¬H denote Ω\H.
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H not-H

...

Figure 28. Demons Live in Boundaries.

tion is verified, some open proposition entailing it is verified, so information
states can still be identified with open sets.

Less abstractly, recall the particle-counting problem. A possible world
determines how many particles emerge from the machine for eternity and
when each such particle emerges. Thus, one may model possible worlds as
ω-sequences of bits, where 1 in position n indicates appearance of a new
particle at stage n and 0 indicates that no new particle appears at n. Con-
sider the situation in which you have seen the finite bit string (b0, . . . , bn−1).
The corresponding information state is the set of all ω-sequences of bits that
extend the finite bit string observed so far. Call this proposition the fan
with handle (b0, . . . , bn−1), since all the worlds satisfying the fan agree up to
n and then “fan out” in all possible ways from n onward (Figure 29). Any
disjunction of verifiable events is verifiable (see above), so any union of fans
is also verifiable and, hence, open (just wait for the handle of one of the fans
to appear before turning on the light). The resulting space over arbitrary,
ω-sequences of bits is very familiar in topology, where it is known as as the
Cantor space. In the particle-counting problem, it is assumed that at most
finitely many particles will appear, so one must restrict Cantor space down
to the ω-sequences that converge to 0.

Consider the proposition that exactly two particles will be observed for
eternity. This proposition is impossible to verify (no matter what you see,
another particle may appear later). Hence, its interior is empty and every
element is a boundary point, where the problem of induction arises. In this
space, the boundary points are particularly suggestive of the problem of
induction (Figure 30). For example, consider the world (1, 1, 0, . . .) where
the dots indicate an infinite tail of zeros. No matter how far you travel
down this sequence (i.e., no matter what information you receive in this
world), there exist worlds in which more than two particles appear later
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...

observed

possible

Figure 29. A Fan of Sequential Worlds.

H

...

not-H

Figure 30. Boundary Points in Cantor Space.

than you have observed so far. So nature is in a position to drag you
down the sequence (1, 1, 0, . . .) until you cave in and say “two” and is still
free to show you another particle, as in the U-turn argument. The U-
turn argument hinges, therefor, upon the topologically invariant structure
of boundary points between answers to a question.

8 The Unending Game of Science

Each scientific problem determines an infinite, zero-sum game of perfect
information (cf. [Kec95, p. 137–148] or [Kel96, p. 121–137]) between the sci-
entist, who responds to each information state by selecting an answer (or by
refusing to choose), and the impish inductive demon, who responds to the
scientist’s current guess history with a new information state. The demon
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is not a malicious force in nature; he merely personifies the difficulty of
the challenge the scientist poses for himself by addressing a given scientific
problem.

In this truth-finding game, the demon and the scientist take turns, start-
ing with the scientist (Figure 31). Together, the demon and the scientist

A1
A2

A3 A4

E

E

A3

Figure 31. The Players.

produce a pair of ω-sequences, an information sequence produced by the de-
mon and an answer sequence produced by the scientist. Life would be too
easy for the demon if he were allowed to withhold some crucial information
for eternity, so the scientist is the victor by default if the demon fails to
present complete, true information about some world in Ω in the limit.13 In
other words, an information sequence {Ei : i ∈ ω} for the problem should be
a downward-nested sequence of open sets whose intersection is non-empty
and contained in some answer A. Then say that the information sequence
is for A.

The scientist wins the convergence game by default if the demon fails to
present an information sequence for some world in the problem and by merit
if his outputs stabilize eventually, to the answer true in some world w the
demon presents true information for. In other words, if the demon presents
a legitimate information sequence for w, there must exist a stage in the
play sequence after which the scientist’s answer is correct of w. A winning
strategy for the scientist in the convergence game is called a solution to the
underlying empirical problem. For example, the obvious counting strategy
solves the particle-counting problem. A problem is solvable just in case it
has a solution.14

13One might reply that if it is impossible for the demon to fulfil his duty, the scientist
loses since even the total experience received in the limit of inquiry doesn’t settle the
question. The game could be set up to reflect either viewpoint.

14It is interesting to inquire into the topological nature of solvability, since solvability
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9 Comparing Mind-Changes

Consider two possible sequences of answers, σ and τ . Say that σ maps
into τ (written σ ≤ τ) just in case there is an answer and order preserving
mapping (not necessarily one-to-one) from positions in σ to positions in
τ , where suspension of judgement is a wild-card in the former sequence
that matches any answer in the latter (Figure 32).15 Since the mapping

1 ? ?0 1 2?

0 0 0 ? 1? 1 1 ? 2 2 . . .

. . .

Ockham violation

Figure 32. Top Output Sequence Better Than Bottom.

preserves answers and order, it also preserves mind-changes (not counting
mere suspension as a mind-change). So when σ maps into τ , one may say
that σ is as good as τ so far as mind-changes are concerned. Say that σ
maps properly into τ (written σ < τ) if, in addition, the latter fails to map
into the former, as in Figure 32. Then σ is better than τ .

One can also say of two sets of output sequences that the former is as
good as the latter just in case each element of the former is as good as some
element of the latter (Figure 33) and is better than the latter if, in addition,
the latter is not as good as the former.16 The former set is strongly better
than the latter just in case each of the former’s elements is better than

is a topological invariant and must, therefore, be grounded in a problem’s topological
structure. For example, if the space is separable and the question is a countable partition,
then solvability is equivalent to each cell being ∆0

2 Borel (cf. [Kel96, p. 228, Corollary
9.10]). Such facts are not strictly necessary for understanding Ockham’s razor, and are
therefore omitted from this essay.

15In fact, an Ockham method’s output sequences map injectively into output sequences
the demon can force out of an arbitrary method. In [Kel07], methods are compared in
terms of Pareto-dominanace with respect to number and timing of retractions, where a
retraction occurs whenever an informative answer is dropped. The streamlined account
of costs just presented does not penalize gratuitous question marks or tardiness of retrac-
tions, since question marks are wild cards and the mappings employed are many-one.

16This is not the same as weak dominance, since the existential quantifier allows for a
worst-case pairing of output sequences by the mapping.
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Figure 33. Top Set Better Than Bottom.

Figure 34. Top Set Strongly Better Than Bottom.

some element of the latter that is not as good as any element of the former
(Figure 34).17 Extend the symbols ≤ and < to sets of output sequences
accordingly.

The set of output sequences of a solution to a problem is the set of all
output sequences σ such there exists some information sequence for some
answer along which the method produces σ. Then one can say of two meth-
ods that the former is as good, better, or strongly better than the latter
just in case their respective sets of output sequences bear the correspond-
ing relation. Finally, say that a solution is efficient in a problem just in
case it as good as any other solution in each subproblem. Again, the idea is

17The requirement that the sequence mapped to is not as good as any of the former
method’s output sequences precludes cases in which a method is strongly better than
itself. For example, if there are only two answers in the particle problem, “even” and
“odd”, then each output sequence of the obvious method that answers according to
whether the number of observed particles is even or odd is better than some other output
sequence of the same method (e.g., (E, O, E, O, . . .) < (O, E, O, E, O, . . .)).
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that inefficiency is forward-looking and should not be offset by foibles or
stockpiles of credit (slush funds) earned in the past.

By way of illustration, the counting solution is efficient in the particle-
counting problem, as is any Ockham solution to this problem (remember
that Ockham solutions can suspend belief for artibrary periods of time).
That is because the demon can force any solution through any ascending
sequence of answers and Ockham methods produce only ascending sequences
of answers. Furthermore, any non-Ockham solution is worse than any Ock-
ham solution in the subproblem entered when the violation occurs. Indeed,
it was shown that the violator is strongly worse than any Ockham solution
in that subproblem, because the demon can force the violator into any as-
cending sequence after the U-turn back to the Ockham answer. Hence, the
counting problem has the remarkable property that its efficient solutions are
exactly its Ockham solutions. That is surely a result worth pressing as far
as possible! But first, Ockham’s razor must be defined with corresponding
generality.

10 What Simplicity Isn’t

The concept of simplicity appears, at first, to be a hodge-podge of consid-
erations, including uniformity of nature, theoretical unity, symmetry, testa-
bility, explanatory power, and minimization of entities, causes, and free
parameters. But in spite of these manifold aspects, it remains possible that
simplicity is a deep, unified, concept with multiple manifestations, depend-
ing on the particular structure of the problem addressed. It is suggestive
in this regard that the trivial particle-counting problem already illustrates
all of the intuitive aspects of simplicity just mentioned and that they seem
to cluster around the nested problems of induction posed by the repeated
possibility that a new particle might appear.

It is easy, at least, to say what simplicity couldn’t be. It couldn’t be any-
thing fixed that does not depend on the structure of the problem. For it is a
commonplace in the analysis of formal procedures that different algorithmic
approaches are efficient at solving different problems. So if simplicity did
not depend, somehow, on the structure of the particular problem addressed,
Ockham’s razor couldn’t possibly be necessary for efficient convergence to
the truth in a wide range of distinct problems possessing different structures.

That is the trouble with concepts of simplicity like notational brevity
[LiVit97, p. 317–337], uniformity of worlds [Car050, p. 562–567], prior prob-
abilistic biases, and historical “entrenchment” [Goo83, p. 90–100]. Left to
themselves, none of these ideas conforms to the essential structural interplay
between a problem’s question and its underlying informational topology, so
none of them could contribute objectively to truth-finding efficiency over a
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range of different problems. All of them could be made to do so by select-
ing notation that reflects the relevant structure of the problem addressed
[Mit97, p. 174]. But then the essence of simplicity is captured by the rules
for selecting appropriate notation, rather than by brevity, uniformity, or the
like.

11 Simplicity and Ockham’s Razor Defined

The task of defining simplicity is facilitated by knowing in advance how
Ockham’s razor is justified. We can, therefore, “solve backwards” for sim-
plicity, by generalizing the features of particle counting that give rise to
the the U-turn argument. The key to the U-turn argument is the demon’s
ability to force a given sequence of mind-changes from an arbitrary solution.
In the particle-counting problem, the demon can present information from
the zero-particle world until the scientist caves in and concludes that there
will be zero particles (on pain of not converging to the true answer) (Figure
35). Then the demon can present a particle followed by no further particles

0, 1, 2, 3, ?, ?, ?, ?

If you never say 4,
you’ll miss the truth forever!

Figure 35. Demon Forcing a Sequence of Answers.

until the scientist concludes “one particle”, again on pain of not converging
to the true answer, and so forth. This can’t go on forever, though, because
the demon must present data from some world in Ω, and all such worlds
present at most finitely many particles. Hence, for each finite ascending
sequence σ of answers, the demon can force an arbitrary solution to the
particle-counting problem into an output sequence that σ maps into. But
the demon has no strategy for dragging an arbitrary solution through any
non-ascending sequence, say, (1, 0). For the obvious counting method will
wait to see the first particle before concluding “one” and, thereafter, the
demon can no longer trick it into thinking that there are no particles, since
the particle has already been presented. That is a fundamental asymmetry
in the problem.
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More generally, if σ is a finite, non-repetitive sequence of answers, then
the σ-avoidance game for a problem is won by the scientist just in case the
demon fails to present an appropriate information sequence or the scientist
wins the truth-finding game and fails to produce a sequence of conjectures
as bad as σ. The demon wins if he presents appropriate information that
makes the scientist lose the truth-finding game or that somehow lures the
scientist into producing an output sequence as bad as σ. When the demon
has a winning strategy in the σ-avoidance game, one may say that the
demon can force σ from an arbitrary solution to the problem. For example,
it was shown that the demon has a winning strategy in the (0, 1, 2, . . . , n)-
avoidance game in the particle-counting problem, since every method can
be induced to produce that output sequence (or a sequence that is at least
as bad). Then say that σ is demonic in a problem just in case the demon
can force it in the problem.

The demonic sequences in a problem reflect a deep relationship between
the question Q and the underlying topology V. The ability of the demon to
force demonic sequence (0, 1, 2, . . . , n) implies that there is a zero particle
world that is a limit point of one particle worlds each of which is a limit point
of two particle worlds and so forth. So demonic sequences represent iterated
problems of induction within the overall problem (Figure 36). According to
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Figure 36. Demonic Sequence in the Particle-Counting Problem.

intuition, simpler answers are associated with the most deeply embedded
problems of induction, for starting from 0, the demon can drag a solution
through every ascending sequence, but after presenting some particles, he
can never drag the counting solution back to 0. That suggests a natural
definition of empirical simplicity. If A is a potential answer, then say that
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the A-sequences are the demonic sequences starting with A. Say that answer
A is as simple as B just in case the set of B-sequences is as good as the set of
A-sequences and that A is simpler than B just in case the set of B-sequences
is better than the set of A-sequences. This definition agrees with intuition
in the counting problem and, hence, in parameter-freeing problems of the
usual sort, such as curve-fitting.

The proposed explication of simplicity has a striking, intuitive advantage
over the familiar idea that simplicity has something to do with dimension-
ality of an answer in a continuous parameter space. For if you were to learn
that the true parameter values are rational, then the topological dimension
of each answer would drop to zero, flattening all simplicity distinctions. But
since the rational-valued subspace of the parameter space preserves demonic
sequences, it also preserves simplicity in the proposed sense.

Now say, quite naturally, that an answer A is Ockham in a problem just
in case A has an information sequence and is as simple in the problem as
any other answer. This is a way of saying that A is the simplest answer
compatible with experience, where compatibility with experience includes
the assumption that complete evidence can be presented at all; else there
is no use debating whether simplicity helps one find the truth. Ockham’s
razor is then: never say an answer unless it is Ockham for the current
subproblem. Finally, a solution is Ockham if it solves the problem and
always heeds Ockham’s razor. “The” Ockham answer is typically unique,
but not always. If there is no Ockham answer, an Ockham method must
suspend judgment. If there is more than one, an Ockham method may
produce any one of them. It may sound odd to allow for an arbitrary choice
among Ockham answers,18 but keep in mind that two hypotheses could be
maximally simple (no other answer’s demonic sequences are worse) without
being Ockham (every other answer’s demonic sequences map in). The truly
objectionable choices turn out to be among maximally simple answers that
are not Ockham, as will be explained below.

Here is a handy re-formulation of the Ockham answer concept, where ∗
denotes concatenation. The proofs of all propositions are presented in the
Appendix.

Proposition 1 (Ockham characterization). If the problem is solvable,
A is Ockham if and only if for every demonic sequence σ for the problem,
A ∗ σ is demonic for the problem.

Proof. Suppose that A is Ockham. Let σ be an arbitrary, demonic sequence.
If σ is empty, then trivially A ∗ σ is demonic, since there is an information
sequence for some world in A and a solution must converge to A on this

18The theory presented in [Kel07] does not have this property.
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sequence. So suppose that σ = B ∗ γ. Since A is Ockham, there exists
demonic A ∗ τ such that B ∗ γ ≤ A ∗ τ , in virtue of some mapping ϕ. If
ϕ(0) = 0, then B = A, so:

A ∗ τ ≥ A ∗ γ ≥ A ∗ A ∗ γ = A ∗ (B ∗ γ) = A ∗ σ.

So since A ∗ τ is demonic, so is A ∗ σ. If ϕ(0) > 0, then since B ∗ γ ≤ A ∗ τ
and B 6= A, it follows that σ = B ∗ γ ≤ τ . Hence: A ∗ τ ≥ A ∗ σ. So since
A ∗ τ is demonic, so is A ∗ σ.

Conversely, suppose that for each demonic sequence σ, A ∗ σ is demonic.
The empty sequence () is trivially demonic, so A ∗ () = (A) is demonic,
so some δ ≥ (A) is forcible, so there is some information sequence whose
intersection is A. For suppose otherwise. Since the problem is solvable,
let a solution be given. Since there is no information sequence for A, the
solution remains a solution if its output is changed to “?” each time it
produces A. Hence, no sequence as bad as (A) is forcible. Contradiction.
Finally, let B be an answer and let B ∗σ be demonic. Then by assumption,
A ∗ B ∗ σ is demonic. So the A sequences are as bad as the B sequences.
Thus, in light of the italicized claim, A is Ockham. q.e.d.

12 Efficiency, Games and Determinacy

Lifting the U-turn argument to the general version of Ockham’s razor just
defined requires a short digression into the nature of efficient solutions. A
method is as good as a set of sequences just in case the method’s set of
output sequences is as good as the given set, and similarly for the other
ordering relations defined above. Then it is immediate that the demonic
sequences are as good as an arbitrary, efficient solution to the subproblem,
since each solution can be forced to produce each demonic sequence. It
is far less trivial whether an efficient solution must be as good as the set
of demonic sequences. This is where Ockham’s razor interfaces with recent
developments in descriptive set theory (cf. [Kec95, p. 137–146] for a succinct
development of the following material).

Say that a game is determined just in case one player or the other has a
winning strategy and that a scientific problem is forcing-determinate just in
case for each finite answer sequence σ, the σ-avoidance game is determined.
Forcing-determinacy turns out to be a surprisingly mild restriction. Say that
a problem is typical just in case the set Q of possible answers is countable
and the set of possible information streams for worlds in Ω is Borel. Then
the following proposition is an easy consequence of Donald Martin’s Borel
determinacy theorem.19

19Cf. [Mar175].
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Proposition 2. Typical, solvable problems are forcing-determinate.

Proof. Let (Ω,V,Q) be a solvable problem, let ε be an ω-sequence of open
sets, let γ be an ω-sequence of answers and let σ be a finite sequence of
answers. The pair (ε, γ) wins for the demon in the σ-avoidance game in
(Ω,V,Q) if and only if (i) ε is an information sequence for some answer in
Q and either (ii) there exists answer A in Q such that ε is for A and γ
does not converge to A or (iii) γ is as bad as σ. Condition (i) is Borel by
assumption. Condition (iii) is open and, hence, Borel. In light of condition
(i) and the fact that the problem has a solution M , condition (ii) reduces
to: there exists an A in Q such that M converges to A along ε and γ does
not converge to A. Convergence is Borel and Q is countable, so the overall
winning condition for the demon is Borel. Apply Martin’s (1975) Borel
determinacy theorem, which states that all such games with Borel winning
conditions are determined. q.e.d.

The following results all concern solutions and, hence, are vacuously true
if the problem in question is unsolvable. Therefore:

Proposition 3. Each of the following propositions remains true if “forcing-
determinate” is replaced with “typical”.

Proof. Immediate. q.e.d.

Now it is easy to show that:

Proposition 4 (Efficiency Characterization). Let the problem be for-
cing-determinate. An arbitrary solution is efficient if and only if it is as
good as the set of demonic sequences in each subproblem.

Proof. Let an efficient solution M to a forcing-determinate problem be
given. Then in each subproblem, M is as good as an arbitrary solution.
Let σ be a finite output sequence of M in a given subproblem. So every
solution to the subproblem produces an output sequence as bad as σ, so the
scientist has no winning strategy in the σ-avoidance game. So by forcing-
determinacy, the demon has a winning strategy, so σ is demonic. So an
efficient method is as good as the demonic sequences in each subproblem.
Conversely, suppose that M is as good as the set of demonic sequences in a
given subproblem. By definition, the set of demonic sequences is as good as
an arbitrary solution in the subproblem. So M is as good as an arbitrary
solution in the subproblem and, hence, is efficient in the subproblem. q.e.d.
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So not only is an efficient solution as good as any solution, it is as good
because it is as good as the demonic sequences, which are as good as any
solution.20

13 Efficient Solutions = Ockham Solutions

Here is the main result. Ockham is indeed necessary and sufficient for effi-
ciency in an extremely broad range of problems. The hypothesis of forcing-
determinacy makes the proof surprisingly easy.

Proposition 5 (Ockham Equivalence Theorem). Let the problem be
forcing-determinate. Then the efficient solutions are exactly the Ockham
solutions.

Proof. Let a forcing-determinate problem be given. For the necessity ar-
gument, suppose that solution M violates Ockham’s razor upon entering
some subproblem by producing non-Ockham answer A. Let D be the set of
demonic sequences for the subproblem. Since A is not Ockham and M is a
solution, there exists (by Proposition 1) a demonic sequence σ in the sub-
problem such that A ∗ σ does not map into any demonic sequence. Hence,
M 6≤ D. So by Proposition 4, M is not efficient.

For sufficiency, it suffices to argue that every finite sequence of Ockham
answers encountered in subproblems successively reached as experience in-
creases maps into some demonic sequence in the first subproblem. For then
an Ockham solution, which produces only sequences of Ockham answers in-
terspersed with question marks, is as good as the demonic sequences in an
arbitrary subproblem and, hence, is efficient, since the demonic sequences
are, by definition, as good as an arbitrary solution. In the base case, each
Ockham answer A in a subproblem has an information sequence for it, so
the singleton sequence (A) can be forced by the demon in the subproblem
and, hence, is demonic in the subproblem. Now consider a finite, downward-
nested sequence of non-empty open sets (E0, . . . , En+1) determining respec-
tive sub-problems with respective Ockham answers (A0, . . . , An+1). By the
induction hypothesis, (A1, . . . , An+1) is demonic in P1. Furthermore, since
E1 is a non-empty subset of E0, whatever the demon can force in P1 he can
force in P0, so (A1, . . . , An+1) is demonic in P0. So since A0 is Ockham in
P0, (A0, A1, . . . , An+1) is demonic in P0, which proves the italicized claim
and, hence, the theorem. q.e.d.

More can be shown for the particle-counting problem and for others of
its attractive kind. For such problems have the special feature that in each

20Such a result is called a universal factorization [Mac71, p. 1–2].
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subproblem, if A is an Ockham violation upon entering the subproblem,
then there exists an Ockham answer U upon entering the subproblem such
that the binary sequence A ∗ U is not as good as any demonic sequence
for the subproblem. Say that such problems are stacked.21 Examples of
non-stacked problems illustrate intuitive ideas about empirical symmetry
and will be considered in the next section. The result is:

Proposition 6 (Strong Ockham Necessity for Stacked Problems).
In a stacked, forcing-determinate problem, if a solution violates Ockham’s
razor upon entering a sub-problem, the solution is stongly worse than each
efficient solution in the same sub-problem.

Proof. Consider an efficient solution to a stacked, forcing-determinate prob-
lem and suppose that M solves a given subproblem but violates Ockham’s
razor upon entering it by producing A. Let U be the Ockham answer
promised by the stacking property. Then since M already says A and U is
compatible with the current subproblem, the demon can force M to pro-
duce U after producing A. (That is the initial U-turn resulting from the
Ockham violation). Consider an arbitrary, finite output sequence τ of the
efficient solution. Then for some demonic δ, τ ≤ δ (Proposition 4) and,
hence, τ ≤ A ∗ U ∗ δ. Since U is Ockham and δ is demonic, U ∗ δ is de-
monic (by Proposition 1). So since M already says A and U ∗ δ is demonic,
A ∗ U ∗ δ is as good as one of the output sequences of M in the current
subproblem. Of course, τ ≤ δ ≤ A ∗ U ∗ δ, so M is as bad as the efficient
solution. Furthermore, A ∗ U maps into no demonic sequence, so neither
does A ∗ U ∗ δ. Since all the optimal method’s output sequences map into
demonic sequences, it follows that A∗U ∗δ is as good as none of the optimal
method’s output sequences. Hence, M is strongly worse than the efficient
solution in the current subproblem. q.e.d.

This fits closely with the spirit of the freeway example and with what
is going on in particle counting and curve fitting. The property of being
“stacked” can be viewed as the topological essence underlying the very
strong Ockham intuitions attending such problems.

21To see that the particle-counting problem is stacked, suppose that A is not Ockham
upon seeing, say, four particles. Let U be the Ockham answer “four”. Then the binary
sequence A ∗ U maps into no demonic sequence in the subproblem. For if A posits fewer
than four particles, A maps into no demonic sequence since the demon can’t force an
arbitrary solution into a refuted answer. If A posits more particles, then (A, U) maps
into no demonic sequence since all such sequences are ascending.
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14 Testing as an Instance of Ockham’s Razor

Suppose that you want to decide whether some theory is true or not. That
poses a binary question: the theory vs. the theory’s denial. Typically, the
theory is refutable and, hence, closed. Everyone chooses the refutable (e.g.,
point) hypothesis as the null hypothesis and its denial as the alternative.
On the proposed account of simplicity, the decision to accept the refutable
hypothesis until it is refuted is an instance of Ockham’s razor and is under-
written by the U-turn argument, so that the proposed account of efficient
theory choice subsumes this aspect of testing practice as a special case.

First, observe that the demon can force you to conclude the refutable
hypothesis H (by showing you a boundary point in the hypothesis, since
closed sets contain all of their boundary points). Then he can show you data
refuting the theory. So only (H,¬H) and its subsequences are demonic.
Hence, only H is Ockham (Proposition 1), so (by Proposition 5) every
efficient solution says H (or suspends) until H is refuted, which reflects
practice. Finally, that practice is efficient (since its output sequences are all
demonic), so Ockham’s razor bites and you should heed his advice.

The trouble with standard conceptions of hypothesis testing is that they
ignore the possibility of extra mind-changes. Yes, it is refutable to say that
the bivariate mean of a normal distribution is precisely (0, 0), since {(0, 0)} is
closed (and hence refutable) in the underlying parameter space. But what if
you want to test the non-refutable and non-verifiable hypothesis that exactly
one component of the mean is zero? Solving this binary question requires
multiple mind-changes, as in particle-counting and other model selection
problems. For the demon can make it appear that both components are
zero until you probably say “no” (as sample size increases) and can then
reveal deviation of one component from zero until you probably say “yes”
and then can reveal deviation of the other component from zero until you
probably say “no” again, for a total of two mind-changes (in probability).
Essentially, you are just counting deviations of mean components from zero
as you were counting particles before. So the demonic sequences are all the
sequences that map into “yes, no, yes”, so the obvious method of counting
nonzero mean components is efficient and the unique Ockham hypothesis at
each stage is the one that agrees with the current nonzero mean count. So
you should heed Ockham’s advice, (as you naturally would in this example).

Since testing theory usually isn’t applied until all the parameters in a
model are fixed by point estimates, it appears as though a testing theory
for refutable (closed) hypotheses is good enough. Hence, the essential in-
volvement of Ockham’s razor in testing theory is missed and so the strong
analogy between model selection and testing with multiple mind-changes is
missed as well. The proposed account of Ockham’s razor, therefore, suggests
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a new, more unified foundation for classical statistics, whose development
lies beyond the scope of this explorative essay.

15 Ockham and Respect for Symmetry

When there are two maximally simple answers compatible with the data,
Ockham can’t help you decide among them and the strong intuition is to
wait for nature to “break the symmetry” prior to choosing. For example,
modify the particle-counting problem so that particles come in two colors,
green and blue and you have to specify the total number of each that will
ever be emitted. Assume also that you can hear particles rattle down the
faucet before they emerge from the machine (Figure 37). Having seen no

Bonk!

Bonk!
?

Figure 37. Breaking Symmetry.

particles, you hear the first one coming. What do you conclude? It is hard
to say, for both colors of marbles will stop appearing, eventually, so there is
no general “pattern” to detect in the data, and there is no obvious primacy
of one color over the other so far as the underlying problem is concerned.
This is not mere skepticism, since after the next marble is observed, you
will eventually have to leap to the bold Ockham hypothesis that no more
particles are coming. Instead, it is respect for symmetry, one of the strongest
intuitions in science since Greek times. That leads to an intriguing idea.
Perhaps the U-turn argument also explains our strong hesitance to break
symmetries in experience. Then respect for symmetry would simply be
Ockham’s razor conforming itself to the structure of symmetrical problems.
That is correct.

Consider how Ockham’s razor applies to the case at hand. When you
hear the rattling that announces the first particle, you have entered a new
subproblem. There are two equally simple answers at that point, “one
green, zero blue” or symmetrically “zero green, one blue”. But neither
of these answers is Ockham. For each answer constitutes a unit demonic
sequence, but neither binary sequence consisting of the two symmetrical
competitors is demonic in the subproblem, since the demon can’t take back
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the first particle after its color is observed. So Ockham demands silence,
and we already know from Proposition 5 that every efficient solution to
the problem must heed this advice. Is there an efficient solution? Indeed,
just heed Ockham’s advice by counting the total number of particles whose
colors are seen and by suspending judgment when the next rattle is heard.
Respect for symmetry follows from Ockham’s razor.

The symmetrical problem under discussion is a nice example of a non-
stacked problem. For consider the answer “zero green, one blue”. There is
no Ockham answer one can concatenate to this answer in the subproblem
entered with the first rattle because there is no Ockham answer at all. And
the violator is not strongly worse than the Ockham method just described in
that subproblem, because the demon can force even an optimal method to
say the same answer the violator chose in advance and the violator produces
no output sequence worse than that.

The same argument works even after a run of a thousand exclusively
green particles, in which case it might be objected that past experience does
break symmetry between blue and green. But the subproblem so entered is
topologically equivalent to the original problem prior to seeing any marbles.
Hence, no non-circular, efficiency-based account of Ockham’s razor could
possibly explain why it is more efficient to say “green” rather than “blue”
upon entering the subproblem.

In the preceding problem, the counting question slices the problem into
topologically invariant simplicity degrees corresponding to particle counts
in spite of occasional symmetries (e.g., when the particle rattles and has
not yet been seen). In other problems, symmetry is so pervasive that Ock-
ham’s razor doesn’t bite at all (Figure 38). For example, suppose you have

Tonk!

Figure 38. Overly Symmetrical Problems.

to report not only how many particles will appear, but when each one will
appear (forgetting about color). It might seem, at first, that the simplest
answer is to say that you have seen all the particles already and that they
appear exactly when they were observed to, since if you were asked only how
many particles there are, you would only be permitted to say the number
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seen so far. That is so, if you choose to conceive of the sequence iden-
tification problem as a refinement of the particle counting problem. The
trouble is that the sequence identification problem also refines alternative
problems that lead to incompatible simplicity judgments. For example, one-
icles are non-particles up to stage one and particles thereafter. There are
finitely many particles if and only if there are finitely many oneicles, so
the underlying space Ω is unaltered by the translation. But the answers
to the two counting problems are different and the U-turn argument leads
to correspondingly different recommendations (i.e., to count particles or to
count onecles, respectively). Since the sequence identification problem re-
fines the problems of counting particles, oneticles, twoticles, threeticles, etc.,
it can’t consistently favor one kind of counting over another without making
a global, symmetry-breaking choice in favor of one of its possible coarsen-
ings. The only sensible resolution of this Babel of alternative coarsenings is
for Ockham to hold his tongue.

And that’s just what the proposed theory says. First of all, no answer
is Ockham in this problem, since every demonic sequence is of unit length.
For consider a single answer. The answer is true in just one world, which
the demon can present until you take the bait. So each unit sequence of
answers can be forced. For each alternative answer (satisfied by an alter-
native world), there is a least stage by which the two cease agreeing and
diverge. But some solution refuses to be convinced of the first answer (on
pain of converging to the wrong answer) until the divergence point is already
passed (Figure 39). So the demon can force no binary sequence of answers

already
ruled
out

Hasta la vista, baby!

Figure 39. The Trouble With Singleton Answers.

from an arbitrary solution. Hence (Proposition 4), there can be no efficient
solution, since no solution to this problem succeeds without mind-changes.
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So there are lots of solutions to this problem, but no efficient ones. Hence,
even if there were an Ockham answer, there would be no efficient method
to put normative teeth into the U-turn argument! Ockham is both mute
and toothless in this problem.

Again, that is the correct answer. The sequence-identification problem is
completely symmetrical in the sense that any homeomorphism of the space
into itself results in the very same problem (since each permuted world still
ends up in a singleton answer over the same topological space). So there is
no objective, structural sense in which one answer is simpler than another
any more than there is any objective physical sense about where zero degrees
longitude is. Coordinate systems are not physically real because they aren’t
preserved under physical symmetries; philosophical notions of simplicity
(e.g., brevity, sequential uniformity, entrenchment) are not real because they
aren’t preserved under problem symmetries. To seek objective, truth-finding
efficiency in distinctions that really aren’t in the problem is like trying to
generate electricity by formally spinning coordinate axes. The situation
is different in the counting problem. There exist homeomorphisms of the
underlying topological space that materially alter the original problem (e.g.,
the unique Ockham hypothesis “no particles” would become “no oneicles”,
which means “one particle at stage 1”). It is precisely this lack of symmetry
in the particle-counting problem that allows Ockham to slice it into objective
simplicity degrees.

The usual attempts to use coding, “entrenchment”, or prior probability
to force a foliation of the sequence identification problem into simplicity de-
grees must involve the imposition of extraneous considerations lacking in the
problem’s intrinsic structure as presented. Therefore, such considerations
couldn’t possibly have anything objective to do with solving the problem
(as stated) efficiently. So the proposed account yields precisely the right
judgment in this example when its true nature is properly understood.

One can also arrive at overly-symmetrical problems by coarsening the
particle-counting problem. For example, consider the question whether
there is an even or an odd number of particles. Since this coarsens the
particle-counting problem, one again expects “even” to be the Ockham an-
swer when an even number of particles have been observed and “odd” to be
the right answer otherwise (Figure 40). But the proposed theory of Ock-
ham’s razor doesn’t agree. Ockham is once again silenced, but this time the
difficulty is exactly reversed: every solution is efficient and every answer is
Ockham in every subproblem so every method satisfies Ockham’s razor and
the U-turn argument can’t even begin (Figure 41).22

22In the theory presented in [Kel07], there is no Ockham solution to this problem.
Either way, Ockham refuses to choose among potential solutions to the problem.
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Figure 40. Even/Odd as Particle Counting.
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Figure 41. Ockham Under Refinement.

The theory is right. Yes, if one thinks of the problem as a coarsening
of particle counting, “even” must come first. But one could also think
of it as a coarsening of counting oneicles instead of particles. Then the
zero oneicle world is an “odd” world. The one oneicle worlds include the
zero particle world as well as all the two particle worlds in which the first
appears right away. These are all “even particle” worlds. Continuing in
this way one obtains a oneicle-counting simplicity foliation (Figure 42) in
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Figure 42. Even/Odd as Oneicle Counting.

which the obvious “first” conjecture is “odd”. But the oneicle translation is
a homeomorphism of the space that reflects each answer onto the other, so a
prior preference for “even” couldn’t have anything to do with the objective
efficiency of solutions to the even/odd problem as stated.

The urge to extend Ockham’s advice to symmetrical problems is under-
standable — guidance is most precious when there is none. And even in
light of the proposed account, nothing prevents us from saying that we are
really interested in counting marbles rather than merely saying whether
they are even or odd, in which case the problem is no longer symmetrical.
But it is quite another matter to smuggle extra structure into a symmetrical
problem without acknowledging that one has done so, for such practice is not
warranted by truth-finding efficiency in the problem addressed (Figure 43).

16 Conclusion: Ockham’s Family Secret

Ockham is beloved as an inexhaustible source of free information that some-
how parlays the scientist’s limited viewpoint into sweeping generalizations
about unseen realities (Figure 44). But his very appeal is his undoing, for it
is impossible to explain how his fixed advice could be true without assuming
exactly what we rely upon him to tell us.

This paper presents an alternative view, according to which Ockham
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Hey, Ock baby.
I got what ya need.
Now pick up dat razor!

smuggled
structure

Figure 43. Theft Over Honest Toil.

He had me cornered!

Urk!

Figure 44. Ockham’s Day Job.

helps us find the truth, but in an unexpected way. He doesn’t provide any
guarantee that the theory he selects is true or probably true. He doesn’t
point at the truth. He can’t even bound the number of future surprises or
U-turns you will have to make in the future on your way to the truth. All
he does is save you the trouble of needless surprises beyond those arbitrarily
many surprises nature is objectively in a position to exact from you. But
in that respect, his advice is still uniquely the best.

The proposed explanation is unnerving because it singles out simplicity
as the right bias to have, but falls so far short of our craving for certainty,
verification, and guarantees against future surprises. That is far harder to
dismiss than the usual, academic sort of skepticism, which finds no connec-
tion between simplicity and truth and urges rejection of simplicity-based
conclusions altogether.

It is also ironic that Ockham is viewed as a comforting figure when, in fact,
he is built out of the inductive demon’s opportunities to successively force
science to reverse course. Indeed, Ockham and the demon work together as
a coordinated team, since Ockham changes his recommendations each time
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the demon uses up one of his opportunities to fool the scientist (Figure 45).

Father!
We were a great team today, son!
Did you see that guy’s face?

Figure 45. But by Night. . .

The key to understanding Ockham’s razor is to set aside our instinctive
appetite for certainty and to focus squarely on the objective complexity
properties of empirical problems that underly unavoidable reversals of sci-
entific opinion through time. A similar focus on problem complexity has
long been the norm in the mathematical theories of computability, computa-
tional complexity, and descriptive set theory. In these established, scientific
subjects, nobody would dream of “victory” over complexity. It is late in
the day for the philosophy of science and induction to be dreaming still.
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