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Abstract

Ockham'’s razor is the principle that, all other things being equal, it
is rational to prefer simpler scientific theories to more complex ones. In a
series of a papers, Kelly, Glymour, and Schulte argue that scientists who
heed Ockham’s razor make fewer errors and retract their opinions less
often than do their complexity preferring counterparts. The centerpiece
of their argument is the Ockham Efficiency Theorem, which provides a
precise explanation of errors, retractions, and Ockham’s razor within a
model of scientific inquiry developed by formal-learning theorists. Kelly,
Glymour, and Schulte’s previous arguments, however, were restricted in
two important ways: (1) they applied only to deterministic (rather than
randomized) methods for choosing scientific theories from data and (2)
they failed to successfully model inference from statistical data with er-
ror. In this paper, we full address the first issue by extending the Ockham
Efficiency Theorem to prove that, amongst any set of randomized strate-
gies, a systematic preference for simpler theories minimizes the number of
errors and retractions one commits before converging to the true theory.
By incorporating probabilistic elements into the model employed by for-
mal learning theorists, moreover, we take a large step towards addressing
the second issue as well.

1 Introduction

From the Copernican revolution to Einstein’s jettisoning of absolute space from
mechanics, some of the most celebrated advances in the history of science were
motivated in part by a desire to simplify existing theories. The systematic pref-
erence for simpler theories, moreover, still dominates scientific practice today.
Faced with multiple competing theories that are all compatible with existing
experimental and observational evidence, scientists eschew complexity in favor
of theories with fewer laws, fewer free parameters, fewer postulated causes, fewer
fundamental entities (e.g. particles), and so on. Moreover, this systematic bias



for simpler theories is often tacitly built into computer-statistical packages that
have become the modern-day toolbox for working scientists. But why should
scientists favor simpler scientific theories when the world might, in fact, be ex-
tremely complicated? In particular, is there any reason to believe that simpler
theories are more likely to be true?

To answer these questions, many philosophers have argued that simpler the-
ories possess other theoretical virtues. Simpler theories, they claim, are more
unified (Friedman), more easily falsified or tested (Popper, Mayo), more ex-
planatory (Harman, Nolan, and Baker), and more concise, in that simpler theo-
ries minimize description length (Risannen, Vitanyi, Li, Simon,). However, the
scientific theory that truly describes the world might lack unity or be “dappled”
(Cartwright); it might be difficult to test and/or falsify, and its explanation of
observed phenomena might be long and convoluted. In short, unless one has
independent reason to think that true scientific theories possess these other
virtues (unifying power, falsifiability, explanatory power, etc.), the above argu-
ments provide no reason to think that simpler theories are more likely to be
true.

Other philosophers and statisticians have argued that scientists who favor
simpler hypotheses will eventually endorse the true theories in the long run
(Sklar, Friedman, Rozenkrantz). Yet as Reichenbach first noted, and was sub-
sequently endorsed by Hempel and Salmon, almost any arbitrary bias is com-
patible with finding true scientific theories eventually. [Finish - describe prior
washing out in long run]

So-called Bayesians and confirmation theorists, argue that simpler theories
are better confirmed, and hence, there is reason to think that simpler theories are
more likely to be true. Such arguments, however, either explicitly (Jeffreys) or
implicitly (Rosenkrantz) assume that simpler theories are assigned higher prior
probabilities.! But then simpler theories are more probable precisely because
one assumes them to be more probable. Clearly, such circular arguments are
unacceptable.

Most recently, a number of philosophers have harnessed mathematical theo-
rems from statistics and machine learning to argue simpler theories make better
predictions (Harman and Kulkarni, Vapnik, Forster, Sober, and Hitchcock). But
the theorems prove too much: simpler theories, according to the theorems, make
better predictions regardless of whether they are true or not. For this reason,
Vladamir Vapnik, the inventor of statistical learning theory, argues that one
should use simpler statistical models in many practical applications even when
it 1s known that the simpler model is false. Astute philosophers have noticed this
feature of the statistical theorems they employ. For example, Forster, Sober,
and Hitchcock argue that simplicity is merely instrumental in helping one make
better predictions, but it is no indication of the truth of a scientific theory.

In a series of papers, Kevin Kelly, Clark Glymour, and Oliver Schulte have
provided a more nuanced and promising defense of Ockham’s razor. They ar-
gue that scientists who systematically favor simpler hypotheses will make fewer

IExplain why uniform prior on simpler and complex theories begs the question.



errors (i.e. they will endorse false theories less often), and they will retract
previously endorsed theories fewer times before ultimately settling on the true
theory in the long run. This thesis is captured by the slogan, “Ockham’s razor
equals efficient convergence to the truth.” Importantly, the model of scientific
inquiry developed by these authors provides a successful explanation of why
simpler theories ought to be preferred in a number of scientific problems in-
cluding curve-fitting, causal inference, and estimating conserved quantities in
particle physics.

Kelly, Glymour, and Schulte’s arguments, however, only consider determinis-
tic methods for choosing scientific theories from observed data. In game theory,
it is familiar that the use of randomized strategies often allows one to minimize
costs (or maximize gains) in a way in which deterministic strategies cannot.
Thus, an important question is the following:

“Does a scientist who employs Ockham’s razor minimize errors and retractions
in converging to truth, when compared, as well, to scientists capable of employ-
ing any randomized method for choosing theories from data?”

In this paper, we prove that the answer to this question is ”yes.” The no-
tion of randomized strategy we consider is very general: it includes the class
of "mixed strategies” developed to analyze normal form games; it includes the
class of “behavior strategies” developed to analyze extensive form games; it in-
cludes the class of Randomized Turing Machines (RTMs), whose output is a
function of both the current tape reading and its immediate previous internal
state (i.e. RTMs are Markov processes). In fact, in the model of scientific in-
quiry developed in this paper, a scientist may choose theories on the basis of
existing data using a random device that is correlated (or not) to any arbitrary
degree with her choices in the past and in the future. Amidst all such strategies
for choosing scientific theories, a systematic preference for simpler theories still
proves to minimize errors and retractions in converging to the truth. Moreover,
the randomized methods that minimize costs in converging to the true theory
turn out to be only minor variants of the deterministic strategies described in
previous papers (Kelly ****). This is good news, as (we hope that) working
scientists rarely flip coins or roll dice to decide which of a set of theories to
pursue researching.

2 Stochastic Empirical Inquiry

2.1 Stochastic Processes

The contents of this section are introductory and may be skipped by those with
sufficient background in stochastic processes. Our summary is borrowed from
Shalizi’s text. If f is a function from X x Y into Z, then for each z € X, let
fz : Y — Z be the unique function such that for each y € Y, f.(y) = f(z,y).
For each y € Y define f, : X — Z similarly.



Let T, A, Y be arbitrary sets. A stochastic process is a quadruple
Q - (T7 (Av Dvp)7 (278)7 X)’
where:

1. T is a set called the index set of the process;

[\]

. (A,D,p) is a (countably additive) probability space;?

w

. (%,8) is a measurable space of possible values of the process;

[N

. X : T x A — X is such that for each fixed ¢ € T, the function X; is
D/S-measurable.

Ift €T and § € A, then X; is a random variable of the process, and Xy is a
sample path of the process. Let t € T and S € S. Let t € T and define:

[X, €8] = (X,)M(S) = {6 € A: X(t,8) € S}.

Then p(X; € S) is defined.

2.2 Empirical Worlds and Theories

Let FE be a non-empty, countable (finite or countably infinite) set of empirical
effects. A problem is a set K C 2F that corresponds to an empirical constraint
on which finite sets of effects one might see for eternity. In this paper, K is a
parameter that is often held fixed, in which case reference to K may be dropped
to ease notation. Say that problem K is bounded nowhere if and only if for each
S € K there exists S’ € K such that S C §’.

An empirical world in K is an w-sequence w of disjoint subsets of E such

that

U w; € K.

1EW
Let Wi be the set of all empirical worlds. Let w|n denote the finite initial
segment (wo, ..., w,—1) of w, so that, in particular, w|0 = (). For arbitrary set
R, let R*® denote the w-sequence that is constantly R. Let:

Frg, = {wn:weWg}
Fx = |JFx.
i>0

Let e, e’ € Wi U Fg. Define the length of e as:

l(e) = |dom(e)].

21t is usual to denote the underlying measurable space by (2, F), with w as a representative
element of €2, but in this paper the set-theoretic interpretation of w as the first infinite ordinal
number takes precedence.



Define e < €’ to mean that e an initial segment of €’ and let e < €’ hold just
in case e is a proper initial segment of ¢’. Let e < €’ hold just in case e < €’
and [(e)l(e) + 1. Say that e = ¢’ if and only if e < €’ or ¢’ < e, in which case
one may say that e is compatible with e’. Let * denote sequence concatenation.
Define:

FK,e = {G/GFK:(BSQ/};
Wgke = {BIEWKM?S@/}.

The set of effects presented along e is:
Se = U €;.
i<l(e)
The restriction of K to effect sets compatible with e is then:

K.={SeK:S.CS}

Also, if e € Fi, let e_ denote the result of deleting the last entry in e, if
e # () and let e_ denote () otherwise. Let S € K. Then the unique theory
corresponding to effect set S is:

TSZ{”LUGWZSMZS}.
Then let:

Thy = {Ts:SEK};
Thre = {Ts:S¢€ K.}

If T € Thg, let St denote the unique S’ € K such that for eachw € T, S,, = 5’.
For each w € Wk, it will be convenient to abbreviate Ts, as T, which is the
unique theory 7' € Th such that w e T.

2.3 Stochastic Empirical Methods

Let Ansg = Thr U {?’}. Since the intended applications all involve a discrete
hypothesis language, it will be assumed that the set E of empirical effects is
countable. Because Ansg contains only ‘7’ and finite subsets of E, it will likewise
be countable. We think of a stochastic empirical method M as operating as
follows. At the outset of inquiry, when no inputs have yet been provided, M is
initialized to a non-random state

X() = 0y-

At stage n, finite input sequence e(Sp,...,S,—1) has been presented and M
enters a new random state
X, =0,



in response to e. Then method M employs a uniform rule or procedure «(e, o)
for choosing an answer in Ansg in light of the current input sequence e and the
current random state o. Hence, at stage n:

M. = ale,0,) € Ansg.

This setup is general enough to model random automata and random Turing
machines, but it is far more general than that. Random computational models
are Markov processes, which are processes in which X, is dependent only on the
set of variables X, such that ¢/ > e given the value of X._. The arguments
that follow assume nothing about statistical independence among the evolving,
random states of M. Furthermore, we do not consider joint probabilities of
state evolutions of alternative methods at all, so the question of correlations
between alternative methods does not even arise.

A stochastic empirical method for problem K is just a stochastic process
indexed by the set Fi of all finite input sequences. A stochastic empirical
method is a triple

M= (9, a,00),
where:
1. Q is a stochastic empirical process (Fk, (A, D, p), (%,S), X);
2. o0g € ¥ satisfies: X61(00) =A.

3. a: Fg x 3 — Ans is such that for each e € Fg, a. is S/ZA“S—rneasurable.

Call X, the random state variable, 3 the set of possible states, and « the output
generation function.

Let payq denote the probability measure occurring in the stochastic process
Q occurring in M. When M appears elsewhere in the formula, as in pa(MA),
the subscript M will be dropped to avoid clutter. One may think also of M,
as a function:

Me(6) = (e 0 Xe)(6).

Then since a is §/2A"-measurable and X, is D/S-measurable, it follows that
M (a0 X.) is D/2A"-measurable and, hence, M, is an Ans-valued random
variable on (A, D). Let A € Ansgk, and define:

M. =A]={0€ A: M.(§) = A}
Thus for any for any A € Ansg, the probability p(M, = A) is well-defined.

2.4 Discrete State Methods

The proposed conception of stochastic empirical methods is very general. We
constrain the concept in a natural way, by assuming that the set X of possible
states of M is countable and discrete, which means that X is either finite or
countably infinite and

S=2%



Such a stochastic method is called a discrete state method. For example, meth-
ods implemented in random Turing machines are a special case of discrete state
methods.

Random Turing machines are Markov processes, which have the property
that future states are statistically independent of past states given the current
state. The results that follow are far more general: they require no indepen-
dence conditions at all regarding states. There may, for example, be magical
informational channels from states in which empirical effects have been observed
back to states in which they have not yet been observed. That might seem to
make Ockham’s razor a bad idea, at least in some cases. Surprisingly, Ock-
ham’s razor is still demonstrably the best policy to follow at every stage, so
far as worst-case expected errors and retractions are concerned. The trick is,
roughly, that convergence to the truth in worlds in which the effects never arise
eliminates the advantage of such correlations in the worst case.

2.5 State and Answer Trajectories

Let M = ((Fk,(A,D,p),(0,S,X)),a,00) be a stochastic method. When e €
Fi and § € A, the finite state history of M in response to e given sample point
0 is:
X (0) = (Xepi(6) i < U(e)),
and the finite output trajectory of M in response to e given state trajectory
s € XHe)
Mig(s) = (a(s(i — 1)(3). wli) i < 1(e)).

Thus, the finite output trajectory of M in response to e given ¢ is:
Me)(8) = (M 0 X)) ().

Similarly, if w € Wik and 6 € A, then define the infinite versions of these
concepts as:

X[w] (5) = (th-(&) 1< w);
My (s) (a(s(@i—1)(5),w|i) : i < w);
M) (6) = (M) © Xjw))(6).

Define the event:

(X =5l = () [(Xpe)i = sil-

i<l(e)

By definition, [X[,; = s] is D-measurable, so the probability p(X}, = s) is
defined. When e = (), the initial state g is assumed to be certain, so we have:

(X[ = (00)) =p(A) = 1.
If AC /—\ns%(e),deﬁne:
Mg eA = {6€d: My(d)c A}



Let:
YMe,A = {se yie+t ./\/l[e] (s) € A}.

Then:

[M[e] S A] = U [X[e] = s]
SEX A, e,A

Since Xy o(A4) € ZUOFL is countable, [Mie) € A] € D and, hence, p(M|,) € A)
is defined.

2.6 State Support and Total Probability

The countable state assumption allows one to represent all probabilities of inter-
est as countable linear combinations of conditional probabilities. Let e € F,
let s € ¥4°) and let D € D satisfy p(D) > 0. Define the conditional state
support of M on e given D as:

Spt(X[e] | D) = {8 S Zl(e)_H :p(X[e] =s | D) > 0}

In particular, when D is an event of the form X, = s for e € Fg, s € nie)+1
and p(X¢ = s) > 0, then for any arbitrary e’ > e, we have

Spt(X[e/] | X[e] = S) = {SI S El(e/)—H :p(X[e/] =5 | p(X[e] = S) > 0}

It is easy to check that s’ is an element of Spt(X.q | X[ = s) only if s’ > s.
Assuming that ¥ is countable, it is also true that Spt(X | D) is countable,
so we have:

Proposition 1 (total probability) for each e € Fi and for each D, D’ € D:
p(D| D) = > p(D | Xigs AD')-p(Xp =5 | D).
s€Spt(Xie) | D)
Some elementary consequences of total probability will be essential.

Proposition 2 Suppose that e € Fx and € € Fg. and D € D such that
p(D) >0 and s € Spt(Xg | D). Then:

Spf(X[e/] | D) 75 0.
Proof. Since s € Spt(X | D), it is immediate that p(X}, = s) > 0, so:
0 > p(X[e] = s)

= > pXg=s|Xe=5 A D) p(Xp=5|D)
s'€Spt(Xery | D)

= Z p(X[e] =S ‘ X[e/] = S/ A D) -p(X[e/] = S/ ‘ D)
s'€Spt(Xery | D) A s<s’

= > p(Xen =5"| D),

s/ €Spt(X (1) | D)



where the first identity is by total probability and the second holds because
P(Xg=5| X =8 AD)=0ifs £ s and 1if s < s’ when s’ € Spt(X(e | D).
Since the last sum is non-zero, Spt(X.| | D) # 0. O

Proposition 3 Let e € Fk, let D,D' € D, and let p(D’) > 0. Then the
following statements are equivalent:

1. p(D | D) =0;
2. p(D| D" N X =s)=0, for each s € Spt(X, | D).
The same is true if 0 is replaced by 1 in both statements.

Proof. By total probability:

p(D| D) = > p(D | D'A X =3) p(Xe=s| D).
SESPt(X[e] | D)

For each s € Spt(X[ | D'),
p(X[e] =S8 | D/) > 0.
Hence, the statement:

> p(D | D'ANXp=35) p(X=s|D)=0
SESpt(X[e] | D)

holds if and only if for each s € Spt(X[ | D’),
p(D | D’ /\X[e] =s)=0.

O

2.7 Variable Conventions

To eliminate clutter, the following typing conventions are assumed for variables
and are assumed in all definitions, theorem statements, and proofs.

K is a problem;

M is a stochastic empirical method for K;
X, is the state variable of M;

« is the output function of M;

0y is the initial state of M;

w,w € Wg;

e, e € Fi;



5 € Spt(Xe) and s" € Spt(X[e).
Particularly important is the assumption that e, e’ € Fg, which entails that:
Wi # 0 and Wi o # 0;
and the assumption that s € Spt(X(.)) and s" € Spt(X[e/1), which entail that
(X = 5) >0 and p(Xey = s") > 0.

When a second method M’ is introduced, its initial state, state variables, and
output function are all primed.

3 Methodological Properties
A methodological property is a relation of form:
(K, M, e,s).
Adopt the mnemonic notation:
D (M, e | Xigs) = P(K, M, € e,s).
Recalling that [X[(y(00)] = A, define:
(M, e') = (M, e | Xgy(00)).

It is not assumed that ® depend upon all of its arguments. Also, in applications,
it is intended that ¢’ = e, since we are not interested in random trajectories in
counterfactual input scenarios, but it turns out that the results do not actually
require that assumption, so it is never explicitly made.

3.1 Properties that Hold Henceforth and Perfectly

Say that methodological property ® holds henceforth of M in K given X = s
if and only if:

P (M, €' | Xi = s) holds for all ¢’ € Fi ..

The holding of & henceforth given X} = s varies time into the future but holds
the conditioning event X[, = s fixed. A stronger notion of ® “continuing to
hold” is perfection, which varies the conditioning event along with the time. Say
that methodological property ® holds perfectly of M in K given X, = s if and
only if:

P (M, e | Xjo)=5") holds, for all ¢’ € Fg . and s" € Spt(X[e).

When @ holds henceforth given X)) = (00), say that ® holds always and when
® holds perfectly given X|;(00), say that ® holds perfectly.

10



3.2 Logical Consistency With the Data

An obvious methodological idea is to refuse ever to produce an answer logically
incompatible with the current inputs. Theory T is refuted by e if and only if

E. < Er.
Let Ref. denote the set of all theories in Thy that are refuted by e. Then:

(M. €Ref] = [ [MA

A€Ref(e)

Since E is countable, so is Ref(e), so p(M,. € Ref,) is defined. Let e € Fx and
let s € Spt(X[)). Then say that M is logically consistent at e’ given X{, = s if
and only if:

p(./\/le/ € Ref,, ‘ X[e] = S)O.

3.3 Empirical Simplicity and Ockham’s Razor

Let e € Fg. A path in K, is a finite or infinite sequence of elements of K,
ordered by C. Let pathy (S | ) denote the set of all finite paths in K. that
terminate in S. A path (Sp,...,Sn,...) is said to be mazimal if for all S;, there
does not exist S € K, such that S; C S C S;4+1. Then define the empirical
complezity of S given e as:

cke(S) =max{l(q) : ¢ € pathy (S | )} — 1.

Then define:
CK,e(w) = CK,e(S'w);
cre(Ts) = cre(9);
Crnle) = {weW,:ckelw)=n}

The set C y(e) is the nth empirical complezity class of worlds relative to prob-
lem K given e. A basic fact is that the least complexity class is non-empty.

Proposition 4 Ck(e) # 0.

Proof. Recall the notational convention that e € Fx. Then there exists w €
W such that e < w. So
Se C Sy € Ke.

Since each element of K, is finite, let S be a least element of K.. Then (5) is
the longest path ending with S in K., so ¢k (S) = 0. Hence:

ex (S\ Se)* (0) € Ckole).

11



If S € K. is such that S = S, for some w € Ck o(e), then we say S is minimal
with respect to e. Let e, € Fx and let T € Thg. Then say that T is Ockham
at e if and only if for each S € K, such that cx (S) =0, S = Sp. That is, T
is Ockham for e if and only if St is uniquely minimal with respect to e. Let
Ockg . = {*7’,T}, where T is the unique Ockham theory for e, if there exists
one. Then for fixed e € F the event:

M € Ockee] = | [Me=4]

A€O0ckg e

is in D, so p(M. € Ock,) is defined, since F is countable and, hence, Thg is
countable.
Let e € Fx and let s € Spt(X[)). Say that M is Ockham at e’ given X[ = s
if and only if:
p(./\/le' S OCkK,e/ | X[e] = 8) =1.

An important fact is that the only way a theory can cease to be Ockham is to
be refuted.?

Proposition 5 Suppose that T € Ocky .\ Ockk .. Then
Se € Sr.
Proof: Since T' € Ockg _, it follows that
(%) For each S € K, if S._ C S, then S._ CSr C S

Because T' ¢ Ockg e, it follows that one of three options hold:
1. Se ¢ Sr,

2. St is not uniquely minimal in K. That is, there exist at least two distinct
sets S’,S"” € K, such that neither S’ C S” nor S” C S’, and for any
S e K,,either S CSorS”"CS

3. There exists an S’ € K such that S, C S’ C Sr.

If (3) were true, then because S, C S, we’d have S, C S’ C S, contradicting
(*). If (2) were true, then again because S._ C Se, there are two distinct sets
S,8" € K, such that S,_ C S’,S” and for any S € K containing S,_, either
S’ C Sor S CS. By (), we obtain that S._ C Sr C 5’,5”, and by the
assumption of (2), we obtain that either S’ C St or S” C Sr. Hence, either
St =58 or Sy = 8”. Without loss of generality, assume that S = 5’. Now as
St = 5" is Ockham at e_, by (%) it follows that S._ C 5" C 5", contradicting
the fact the assumption that S ¢ S”. Hence, (1) must hold, as desired. O

In many applications, the problem K has additional structure that yields a
stronger efficiency argument for Ockham methods (see Theorem 2). Let I(K)

3This assumption fails in some interesting applications.
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be the length of the longest path in K (where I(K) = w if the longest path is
infinite). Say that path ¢ in K is traversing if and only if [(q) = nk. Clearly,
if n < ng, then Ck ,(e) # 0. Say that K has no short paths if and only if for
every e € Fg, and for every minimal S € K., there exists a traversing path
in K, beginning with S. For example, if K is linearly ordered by C (as in the
curve-fitting problem), then K has no short paths. Another, plausible condi-
tion for no short paths is that for each S, S’ € K there exists S” € K such that
S, 8" C 8”. Tt is immediate that if K has no short paths, then for each e € F,
K. has no short paths.

Proposition 6 Suppose K has no short paths, and let e € Fg. Suppose that
T & Ockk .. Then there exists a traversing path q in K. such that St # qo.

Proof: If T' ¢ Ockg ., then again one of the three following options hold:
1. Se & Sr

2. St is not uniquely minimal in K. That is, there exist at least two distinct
sets S’,S” € K, such that neither S C S” nor S” C S’, and for any
S e K,, either S’ C Sor §” CS8S.

3. There exists a minimal S’ € K, such that S. C S’ C Sr.

If (1) holds, then any traversing path in K, is as desired. To show that such a
traversing path exists, note that C'kx o(e) # () by Proposition 4, and then apply
the no short paths assumption. If (2), then because S’ # S”, either S’ or S” is
distinct from S7. Without loss of generality, assume that St # S’. Because K
has no short paths and S’ is minimal, there is a traversing path in K, beginning
with S” # St, and we’re done. If (3) holds, the there exists an S’ € K such
that S, C S’ C St. Because K has no short paths and S’ is minimal, there is
a traversing path in K, beginning with S’ # St as desired. O

3.4 Stalwartness

Stalwartness complements Ockham’s razor. Ockham’s razor proscribes answers
other than the uniquely simplest. Stalwartness insists that one hang on to an
Ockham answer until it is dethroned by further data. In the deterministic case,
that is easy to define: don’t drop you previous answer until it fails to be uniquely
simplest. The statistical generalization of this idea is intuitive: if you ever have
a chance of producing an answer, produce it with unit chance conditional on
having just produced it.

Let e € Fi and let s € Spt(X[)) and let ¢’ € F. Say that M is stalwart
for T at e’ given X, = s if and only if:

I(e) >0 and p(My =T | X =s)>0and T € Ockg e
implies:

p(Me/:T‘MEL :T/\X[e]:s)zl

13



3.5 Statistical Consistency (Convergence to the Truth)

In statistical usage, a consistent method is a method that converges in proba-
bility to the truth. Let e € Fx and let s € Spt(X() and let ¢’ € F. Say that
M is consistent over K given X[, = s if and only if:

lim; oo p(My)i =Ty | Xjgg =5) =1, for each w € Wg_.
Consistency can be expressed as:
P (M| X[gs),

which does not depend on the additional argument ¢’.

3.6 Eventual Informativeness

Under the usual restrictions, say that M is eventually informative over K given
Xie) = s if and only if:

lim p(My;*?7" | Xjg =5) =0, forall we Wge.

Eventual informativeness is entailed by consistency and implies that M cannot
keep producing ‘7’ infinitely often with non-vanishing probability.

3.7 Property Stability

Let ®x (M, e e, X,s) be a methodological property. Say that methodological
property ®x (M, e’ | X = s) is stable just in case for each ¢’ € Fk ., the
following conditions are equivalent:

a. Px(M,e | X = s);

b. @ (M, e, | Xjer) = s"), for each s” € Spt(X(er).
The methodological properties introduced above are all stable.
Proposition 7 The following properties are stable:

1. M s statistically consistent given X, = s,

2. M is eventually informative given X = s,

8. M is logically consistent at €' given X = s,

4. M is Ockham at €' given X = s,

5. M is stalwart at ' given X¢) = s.
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Proof of (1). By total probability:

p(Mw|i 7é Ty | X[e] = 5)

= > PMuyji # T | Xjerp = 8") - p(Xjery = 8" | X =5).
S”Gspt(x[e//] | X[B]IS)

The second factor under the summation is non-zero for each s’ € Spt(Xien | Xj¢) =
s). So, since the second factor does not depend on 4, the statement:

lim; 0o p(My)i # Tw | Xjeg =5) =0
holds if and only if for each s” € Spt(Xjen | Xj¢ = s):
limy, oo p(Mojn # T | Xjerp = ") = 0.
Proof of (2). Similar to proof of (1).

Proof of (3 and 4). Immediate consequences of proposition 3.

Proof of (5). The implication from (b) to (a) is immediate, since (a) is a substi-
tution instance of (b). For the implication from (a) to (b), Suppose that M is
stalwart for T' € Thy at e’ given X[ = s. Let ¢” € F and let s” € Spt(Xe)
and suppose that:

I(e) >0 and p(My =T | Xjer)=5")>0and T € Ocke.
Then, by proposition 3:
pMe =T | Xie=5) > 0and T € Ocks and I(e") > 0.
So, since M is stalwart for T" at e’ given X = s:
pMe =T | Mo =T NX[g=5)=1.
So, by proposition 3 again:
pMe =T | Mo =T NXperp =5") =1

O

3.8 Consistency of Eventually Informative Ockham Meth-
ods

One reason to use an Ockham method is that if such a method is not too
skeptical, it is guaranteed to converge to the truth.

Proposition 8 Suppose that M is both henceforth Ockham and eventually in-
formative given X[ = s. Then M is consistent over K given X[ = s.
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Proof. Suppose M Ockham and eventually informative over K given given
X[e] = 5. Let w € Wk . Then

Se € Sw = Suis
1EW

so since Sy, is finite, there exists n > I(e) such that S, Sy|,. Then for each
m > n, (Sy) is a unit path in K. to S, and (S,,) is the longest such path in
K.. Hence, ck c(Sw) = 0, 50 ¢k wjm(Tw) = 0. Furthermore, for each S € K,
such that S # Sy, we have S, # S, so there is a path (Sym,,S) in K.
Hence, cg ujm(Ts) > 0. Hence, for each m > n, Ockg y|m{Tw, ?’}. Since M is
Ockham given X.js and n > [(e), we have that for each m > n:

p(./\/lw|m S {Tw, ‘?7} ‘ X[e] = S) =1.
Since M is informative given X = s:
hm p(Mw\i 75 e | X[e] = S) =1.
71— 00

Thus:
hm p(Mw|1 = 1w | X[e] = S) =1.

O

But that is just one way to converge to the truth. The question remains why
converging to the truth the Ockham way is better than doing so in any other
way: e.g., by guessing a complex theory for a thousand stages and reverting to
an Ockham strategy thereafter. That one reverts to the Ockham strategy later
is of little help in explaining why the Ockham theory is the right one to believe
now. That is the nub of the puzzle of simplicity.

4 Efficiency of Empirical Inquiry
4.1 Loss Functions
A loss function is a mapping:
A:Ans® x Wg — R.
A local loss function is a mapping:
v AnsSY x Wi — R.

In the intended applications, v(c) reflects cost incurred only at the moment
when the last entry in c is produced. If v,~" are local loss functions, say that
v < ' just in case for each ¢ € Ans<* and each w € Wy,

(e, w) <+ (c,w).

16



4.2 Errors
Let ¢ € Ans<%. Define:

Err(c,w) iff  wé¢e(l(c)—1) € Thy.

Then say that an error occurs in ¢ at stage ¢ with respect to world w (recall
that at stage ¢ answer ¢(i — 1) has just been produced). Only theories can be in
error—to output answer ‘?’ is to be immune from error. We (crudely) charge
one unit per error, regardless of its severity, which corresponds to the following,
local loss function:

1 if Err(c, w);
0 otherwise;

e(e,w) = {

Our argument continues to work, however, when the cost depends on the theory
produced as long as the cost of producing a theory in error is invariant over
worlds in which the theory is false.?

4.3 Retractions
Let ¢ € Ans”. Define:

Ret(e) iff I(c) >2and c(l(c) — 1) # c(l(c) — 2) € Thg.

Then say that a retraction occurs in c¢ at stage i. Only theories are retracted:
changing one’s mind from ‘7’ to some substantive theory does not count as a
retraction. Again, merely for simplicity, we charge one unit per error, which
corresponds to the following, local loss function:

1 if Ret(c);
0 otherwise;

plevw) = p(e) = {

4.4 Cumulative Loss

If v is a local loss function and w € Wi and 3 < w, define the cumulative loss
functions induced by ~ as follows:

B
'V(va)[lgz = Z’Y(C‘i7w)'

In particular, we consider as losses both cumulative errors e(c, w)[?, and cu-

mulative retractions p(e,w)[?,. It is convenient to adopt the following, obvious

4That is the case, for example, in the epistemic utility theories of 1. Levi (***) and C.
Hempel (***), according to which the loss of an error depends only on the content of the false
theory. For Levi, more false content is better than less; for Hempel, less false content is better
than more.
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notations:

(e, w)" = (e, w)lp;
Y(e,w)<" = ylew)fh
e w)=" = (e, w)[f;
Y(ew)”™ = yle,w)[5iq;
Ve, w)m" = (e w)f.

4.5 Lag Time to Accumulated Loss

An Ockham efficiency theorem can be obtained for cumulative errors and cu-
mulative retractions alone, but a stronger Ockham efficiency theorem can be
obtained if we consider as well the lag time to each retraction. It is not always
the case that we prefer to incur costs earlier rather than later—many prefer to
pay their debts as late as possible. But delaying retractions seems different.
For one thing, belief in a theory leads to further, subsidiary inferences from
it just as a cancerous tumor spreads malignancy to other organs—best to nip
the malignancy in the bud. Also, in the case of paying debts later rather than
earlier, one assumes by default that the indebtedness is known. Retractions,
by their nature, can’t be anticipated in advance, so to get them over as early
as possible is more like having the creditor come to collect as soon as possible
when you have forgotten the debt—Iliving a sumptuous lie can be as financially
dangerous as living a scientific lie is epistemically dangerous. If v is a local loss
function, define the lag time prior to aggregated cost r € R as follows:

_f min;y(e)[§ >r if there exists i such that y(c,w)[) >r;
Tyzr(c;w) = { 0 otherwise;

For example, the elapsed time to the kth retraction is given by the loss function
Tp>k(c, w). Thus, the Oth retraction occurs at stage 0 and if there are at most
k retractions, then since there is no k 4+ 1th retraction, the k + 1th retraction
occurs also at stage 0.

4.6 Measurability

Let v be local loss function. The random local loss incurred by M in w at stage
i is:
Vit (8) = V(M) (8), w).
Rewrite:
Ve, w) = Yw(c).
Thus:
Vit (8) = (Y © Miuji) © Xuw)i) ) (6)-
_ For the remainder of the paper, let B denote the Borel algebra on . Let
R = RU{—00,00} be the real line extended by positive and negative infinite
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elements, and define an algebra B on R such that B* € B if and only if B* =
BU S where B € B and S € {0, {—o0}, {oo}, {—00,00}}.

Proposition 9 If v is a local loss function, then Y w i is D/B-measurable.

Proof. It is required show that the pre-image ’yXA{w)i(B) of any Borel set B
under Y, 18 D-measurable. Accordingly, let B C R be any Borel set and
define:

Sp={se€ X y(s,w) € B}

Then S is countable since 3 is. Now:
[Ymuw,i € Bl = {0 €A:ymw,i(d) € B}
{0 € A y(Mpy(6),w) € B}
U {6 € A Xpuyy(8) = s}

s€Sp

= | X =5l

s€Sp

O

In the same spirit, define random cumulative loss as a function of §, where
0B <w:

Imwln(8) = (M (), )l

Again, it is convenient to adopt the notation:

< -1,
IMw = TMuwlo
<n _ n.

TMuw = ’Y/\/l,w[oa
>n _ w .

TMw — ’YM,w[n-Ha
>n

VX/I,’LU = ’yM,’LU[L'rLL}'

Proposition 10 If v is a local loss function and 3 < w, then Ypm w2 is D/B-
measurable.

Proof: Note that if § is finite, then for any Borel set B, one can define:

B
Sp={sex’™m: Z’y(s(i),w) € B}
i=n
and complete the proof in an analogous manner to that of the previous propo-
sition. Call this fact . Now suppose § = w is infinite. By the definition of
YM,w[5:

YMuwln(8) = Z YMw,i(6)

hmmﬂoo Z YM,w,i (6)

i=n
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Or equivalently one may write:

YM,w i = SUPpen M wln
By fact 1 above, each of the functions on the right-hand side of this equation
is D/B-measurable. Hence, because the supremum of a set of measurable func-
tions is measurable, the function yaq,, [ is D/B-measurable. [
Note that the function yaq,[% may take on infinite values if the method M
retracts or commits an infinite number of errors in a world w along some state
history. Thus, the use of the extended real line ® and the extended o-algebra
B are critical. Finally, define:

TJ’\YAZ; (6) = T’YZT(M[LU] (0),w).

T

" is D/B-measurable.

Proposition 11 If v is a local loss function, then TXAZ

Proof. First, note that the for any local loss function ~, the range of A under
YM,w,i i countable by the following calculation:

|rng(7/\/1,w,i)| = ‘{PYMw,Z(&) VRS A}|

= H{yMiuwy(6),w) = 6 € A}
{r(s,w) = s € B
= Ny

IN

where the last equality holds because ¥¢*! is countable (as i is finite and ¥ is
countable). For any local loss function v and any real number r € R, then, it
follows that:

-0 >0
bl =] = U Vitw =]
r<r’erng(Ym,w,i)

is measurable, as all events on the right-hand side are measurable by the previous
proposition and the union is countable because rng(ya,w,;) is countable. By
similar reasoning, the set [’yﬂfw < r] is measurable for any n € N. Now by
definition of 7: _

[P = il = B <10 bR 2 7
As both events on the right-hand side of the equation are measurable by the

> . .
above remarks, we’ve proven that [7{7" = ] is measurable for any i € R. Note

that, for any loss function ~y, the range of TXAZZ) is contained in the natural

numbers. Hence, for any measurable set B* € B, it follows that:
eneBl= U =1
reNnB*

where the right-hand side is a countable union of D-measurable events. So TX/IZ;

is D/B-measurable. [J
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4.7 Expected Loss

Since the functions just considered are D-measurable, they all have (possibly
infinite) expected values. In the case of expected cumulative losses:

Proposition 12 Let v € {¢, p} and let p(Xj) = s) > 0 and let f <w. Then:

B
Exp(rmaly | Xig=9) = D> Exp(ymw,i | X = 5).
i=n
Proof. Case: g = w:
Exp(ymwly | X =s) = /WM,w[ff dp(. | Xje) = s)

/ZVMU:'L ‘X[e—s)

=n

/hm Z’Ysz |Xe]—5)
= hm /Z’Ysz |Xe]—5)
= hmZ/’Ysz |Xe]*5)
= Z/VMW | X =s)

=N

= ZEXP (YMwi | Xje) = 5)-

i=n

Pulling out the limit works by (Billingsly 1986) Theorem 15.1.iii, since the
functions are non-negative. Pulling out the sum works by (Billingsly 1986)
Theorem 15.1.iv, since again the functions are non-negative. Drop the limit in
case f <w.

4.8 Certain Costs

Because the retractions of M along e_ given X[ = s are certain and do not
depend on w, they may be viewed as certain costs given X[, = s.

Proposition 13 For each w € K., for each non-empty Q C Wi .
Exp(pfvllfzj) | Xjgg=s) = sup Exp(pM w | X[ = 5)
weQ
= pMpe_y(s-)).
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Similarly, the times of retractions that occur along e_ are fixed forever after.
Proposition 14 For each w € K., for each non-empty Q C Wi e:
if p(Mie_1(s-)) > m, then:

EXp(TﬁZ}L | X =5) = Slelg Exp(Tﬁ’S | X} = )
= To>mMie_j(s-)).

Errors are uncertain costs because what counts as an error depends on the
infinite future.

4.9 States of Inquiry

We wish to rank stochastic methods M, M’ in light of finite input history
e, but it isn’t that simple because M has, by that time, already traversed
some state trajectory s € Spt(X[.)) and M’ has traversed some state trajectory
s’ € Spt(X [’e]). The two state spaces could be entirely disjoint. Therefore, we
will begin by ranking states of inquiry for K at e, by which we mean pairs
(M, s) such that M is a stochastic empirical method for K and s € Spt(X[,).
Let Inqg . denote the set of all states of inquiry for K at e.

4.10 Worst-case Cumulative Errors and Retractions

It remains to define some concrete rankings to put into I' in the definition of
efficiency. Let v be a local loss function. A natural way to turn v into a ranking
on Inqg . is to compare worst-case loss in each world compatible with e:

sup  Exp(iga, | Xigs) < sup Exp(vig, | X[ =5).
wEWEK e weEWK e

The trouble with that, however, is that all the costs under consideration are
unbounded over all of Wi ., which would result in equivalence of all methods.
On the other hand, some methods can achieve finite retraction bounds in each
empirical complexity class, which explains both the reason why we consider
retractions as a loss function and why we will consider rankings defined in
terms of worst-case loss taken not over all of Wi ., but over complexity classes
Ck (i), for i € w. Accordingly, define:

(M, 5) <k o (M'57)
to hold if and only if:

sup Exp(fy/%/ﬁw | Xigs) < sup Exp(’yi?’w | X[ =)
weCK o (n) wECK,e(n)

It is immediate from the definition that S}’(e , is a pre-order (reflexive and
transitive) over: Inqy ..
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4.11 A Ranking Based on Retraction Times

If a retraction is coming anyway, it seems better to get it over with earlier rather
than later. It is not a general principle of decision theory that debts should be
paid earlier rather than later. But it does seem natural to get retractions over
with as soon as possible, because belief in a theory that one will later reject con-
stitutes a kind of insouciance reflected in standard Gettier examples in which
one believes “for the wrong reason”.® That consideration is purely epistemic.
Pragmatically, whenever a fundamental theory is retracted, all the subsidiary
applications of the theory must also be re-examined and, in some cases, dis-
carded. The longer one “lives a lie” by delaying an inevitable retraction, the
longer these subsidiary applications have to accumulate before being “flushed”.
Of course, the theory to be retracted might be true (if the method is not a
stalwart method) and in that case, retracting later would seem to be better,
because, as Plato remarked long ago, true belief is as good as knowledge while
one has it. But we will credit belief in the true theory by jointly considering
cumulative errors as a cost as well.

A simple proposal is to compare the time of the first retraction by M with the
time of the first retraction by M’, and so forth, for the second retraction, third
retraction, etc., so that if M’ runs out of retractions before all the retractions
by M have been “accounted for”, we conclude that M is not at least as good as
M’ in terms of timed retractions. But that is wrong, intuitively. Consider an
“honest” method M that behaves sensibly and a “renegade” method M’ just
like M except that it gratuitously “waffles” for the first forty stages between
Ty and ‘7’ resulting in twenty gratuitous retractions. Since they happen right
away, these retractions may all precede the first retraction of M, so that all the
retractions performed by M will be performed later by M. It seems that M’
is Pareto-dominated in terms of retraction times by M, but that is not true if
we compare retraction times by naively matching retractions between the two
methods by the order in which they occur. Evidently, one could delete the first
twenty retractions from the sequence of retractions performed by M and then
retractions by M’ would be no earlier than the corresponding retractions by M.
On the other hand, there is no way to delete retractions by M so that all of the
retractions by M’ occur no later than corresponding retractions by M. This
is like weak Pareto dominance with respect to the times of all the retractions,
except for the deletion of retractions by M’ prior to checking respective times
of corresponding retractions.

Accordingly, define:

(M.5) <k (M',5)

to hold if and only if for each w € Ck (n), there exist w’ € Ck (n) and a local
loss function v < p such that for each j < w:

Bxp(rhict | Xig =9) < Bl | Xiy =),

Again, we have a ranking of states of inquiry:

5Even tax withholding is desirable if, as in the case of retractions, one doesn’t know when
or even whether one’s tax bill will come due.
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Proposition 15 <7 is a pre-order over Inqy ..

Proof. Each relation <} ., is clearly reflexive by letting v = p and w = w'. It

remains to be shown that each relation <¢.i is transitive. Suppose that:

(Mo, s0) <¢,, (Mi,s1) <7, (Ma,s2).

—e,n

Let X, denote the state Variable of M; and A be the set of all cumulative loss
functions. By the definition of < , and the axiom of choice, there are functions
f071,f172 : WK — WK and 90,1,91,2 - WK — A such that 9071(’(1)),91,2(11}) S P,
for all w € Wi and:

w>
Exp(r{e), | Xog, =s0) < Exp(riy! (070 | Xy, = s1);

w>
Exp(rhr?, | X1, =s1) < Exp(r270 | Xa,) = 52).

Define:

f0,2 = f1,20f0,1;
go2 = 91,2Of0,1~

By construction, it follows that:

>4 w)>
Exp(Tiw | Xor, =50) < Bxp( .7\3111(1‘0)1(511 | X1y = 1)
< P(TMI fo.1(w) | ‘Xl[€ = 31)
g1,2(fo,1(w)) >3 _
< P( ./\/12 f1,2(fo,1(w)) | XQ[S - 2)
< Ex ( 90,2(w))>J | _ )
= PUT A, fo,2(w)

Thus, the functions fy 2 and go 2 provide the witnesses to the inequality:

(Mo, s0) <¢.,, (M2, s2).

4.12 Pareto-Rankings

It remains to assemble the various rankings under consideration into a single
ranking. We do so in the least controversial way, by ordering two states of
inquiry just in case all the individual rankings agree. That is known as the
Pareto ranking. Think of v € {p, €, 7} as a formal parameter picking out relation
S}’( em- Let T'C {p,€,7}. Then define:

(M, s) < Ke o (M) iff (M,s) <, (M s"), for each v € T

(M, 5) <o M) i (M, 5) <oy (M) and (M, 8") i o (M, 5);
(M, 8) <k on (M, 8) i (M,s) <k., (M,s), for each v €T.
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Now we go through another round of Pareto-combination, this time with respect
to world complexity. First define the upper complexity bound for K. as:

cke=sup{i+1:i€wand Ck(B) #0}.°

Then define
(M, s) <o (M',s) iff (M,s) <k. (M',s), for each n € w;
(M, s) <k (M) iff (M,s) <j., (M',8') and (M',s") £ (M, 5)
(M, 5) <o (M,s) i (M,s) <k, (M,s), for each n < cke;
(M, s) o M',8) iff (M,s) < op (M',s), for each n < ¢

Then <! is weak Pareto-dominance and <! is strong Pareto-dominance. The
relation <. falls in between, requiring weak dominance over I' over each non-
empty complexity class Ck .(n), and will be called strong complezity dominance.
Unwinding the definitions of the preceding relations yields a clearer picture of
what is involved in each.

Proposition 16

(M,5) <ho (ML) iff (W0 €w)(¥y €T) (Mys) <kon (M, 5'):
(M, s) <. (M,s) iff (Ynew)(vyeT) (M,s) <ken M) and
Inew)(FyeTl) (M,s) <}( en (M'8);

(
(
(
(M, s) *1;{,@ (M8 iff (Yn<ck,e)(VyeT) (M (
(Vn < cke)(Fy€T) (M,s) <K em (M58T);
( ) (M (

(M,s) <o (M',s") iff (Vn<cge)(Vyel

4.13 Switching Methods in Midstream

Let M be a stochastic method for K. Suppose that one has been using M’ and
the current, finite input sequence is e. Given that X = s, where e > (), the
past outputs of M along e_ cannot be changed, so one is stuck with the output
sequence ¢ = Mi._j(s) and with the cumulative loss y(c)[y H9=1 " Now consider
alternative stochastic method M’ with state variables {X] : e € Fx}. Given
that X[’ )= = s’, one has the option to switch methods from M to M’ with state
history s’ from e onward. But one is still stuck with the costs from having used
M (s is relevant only insofar as s’ affects the future performance of M’). So,
when switching from M to M’ at e, one must consider not the overall resource
consumption of M’ given X1 = s, but the cost of M’ given X[ = s’ from
I(e) onward, added to the resource consumption of M given X = s along e_.
It is convenient to conceive of the switch from M to M’ at e as having always

6Adding 1 makes the bound strict both in the case of finitely bounded and finitely un-
bounded orders of complexity.
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followed hybrid method M xZ M’, which acts like M given X[ = s along e_
and like M’ thereafter. That is readily accomplished simply by modifying the
output function o/ of M’. Define the hybrid output function:

s o [ ale () e <e
(axga’)(e,0) = { a'(e,a) otherwise.

Then define the hybrid method:
MxE M

to be the result of replacing o’ with (a %5 a/) in M’.

4.14 Efficiency
Say that M is T-efficient for K given X = s if and only if for each (M’ s") €
Inqg .,

if M" is consistent given Xj, = s’ then (M, s) <, (M2 M, ).

Next, say that M is weakly I'-dominated given X = s if and only if there
exists (M’,s") € Inqx . such that:

M’ is consistent from e given X[,js" and (M x; M’, s') <L (M,s).
Finally, say that M is strongly I'-dominated given X[, = s if and only if there
exists (M’,s") € Inqg . such that:

M’ is consistent from e given X[, = s" and (M x M', &) <L (M, s).

Note that these concepts are relative to M and e and that such a property holds
perfectly just in case it holds at every e € Fi. Thus, one may speak of perfect
I-efficiency, perfect non-I' dominance and perfect non-I'-strict-dominance. It is
obvious that weak I'-dominance at some e implies lack of perfect I'-efficiency,
but it is a strong and surprising feature of the Ockham efficiency theorems that
follow that I'-inefficiency at some e implies at least weak I'-dominance at e and,
in an interesting class of cases, strong I'-dominance at e.

4.15 General Ockham Efficiency Theorem
Theorem 1 (Ockham Efficiency Characterization) Assume that M is con-

sistent and that:
{e,p} € T C {p,e1} or
{r} ¢ I < {per}
Then following are equivalent:
1. M is always Ockham and stalwart.

2. M is perfectly T'-efficient.
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8. M is perfectly weakly I'-undominated.

It is immediate from the definitions that weak I'-dominance at some e implies
I inefficiency at that e, but the converse, implied by the preceding theorem, is
not at all trivial: it holds only because of the asymptotic character of the costs
considered and because of nature’s ability to force one arbitrarily late retraction
for each degree of empirical complexity from an arbitrary, consistent method.
Thus, the consistent methods are neatly partitioned into the efficient, stalwart,
Ockham ones and the weakly dominated ones.

Proof of theorem 1. Proof of 1 = 2. Let M be always consistent, Ock-
ham, and stalwart. That means that M is henceforth Ockham, stalwart, and
consistent given X)) = (00). Let e € F be of length k and let s € Spt(X{)).
So by proposition 7, M is henceforth Ockham, stalwart, and consistent given
X = 5. Now, let M’ have state variable X/, let s’ € Spt(X[’e]), and let M’
be consistent given X[’e] = s'. It must be shown, for each v € {¢, p, 7}, for each
s' € Spt(X[,) such that M’ is consistent given X, = s', and for each n € w
that:
(M, s) <, (Mg M), ).

Suppose that v € {e, p} Since Since EM w =0, if Ck c(n) # 0, by 18, it must be
shown that for each s’ € Spt(X [e]) such that /\/l’ is consistent given X/ (] = =4,

for each n such that Ck c(n) # 0:

sup Exp(’yj%?,w | Xjgg=5)<  sup Exp( (M*SM, | X[e] =s).
wECK,e(n) wECK,e(n)

Accordingly, let s’ € Spt(X ]) and suppose that M’ is consistent given X/ ] = =4
Then M *5 M’ is con51stent given X/ (] =

Case A: v = e. Define:

a(n) = sup  Exp(eify | X =5)=  sup  Exp(eXfonp o | Xig = 5).
weCK ¢ (n) weCKk e(n)

Then Propositions 19 and 20 yield the following bounds, keeping in mind that
the upper and lower bounds in the ¢ > k column collapse to zero if Ck (n) = 0.

Errors, n =0 i<kl|i=k|i1>k
SupwECK e(0) Z EXP(EEM*eM’),w | X[/e] = 8/) Z CL(O) 0 0
SUDy,eCyc . (0) > Exp(eﬁ\/l)w | X[ = 5) < | a(0) 0 0
Errors, n >0
SuprCK e(n) Z EXP(EEM* sM)w | X[le] = S/) Z a(n) 0 w
SUPweCk . (n) Z EXP(53\4,w | Xie] = s) < | a(n) 0 w
Thus:
a(0) < sup  Exp(e (M*gM w | X[e] =s');
weCk (0)
a(0) > sup Exp(eﬁw w | X[ = 9),
wECK, e (0) ’
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and if n > 0 and Ck ((n) # 0, then:

w < sup Exp(efM*ﬁM,)yw | Xig =5");
weCK,e(n) )

w > sup  Exp(eiy | Xe) = 5).
wECK, e (0) '

Hence:

(M, 5) <f¢ o (M M), s").
Case B: v = p. Define:

b= p(Mi._j(s-)) = p(M*g M)e_1(s1)).

Case B.1: Suppose that SqueCK,c(n)EXP(P]jw,w | X[ =5)=0.

Then, by Propositions 13, 30, 19 and 17, we have the following bounds which

imply, by proposition 29, that (M, s) <% , (M=% M’),s").

Retractions i<k |i=k|i>k | total
SUP e . (n) Qi PP pus iy w | X =) =] b 0 n | b+n
SUPweCk o (n) Ez Exp(pi\/l,w | X[e] - 8) < b 0 n b+n

Case B.2: Suppose that SUPweCK,e(n)EXP(Plf\/t,w | X[ =5)>0.
Then, by proposition 26, there exists 7' € Thg such that:

pMe # M, =T | Xjg =s) > 0.
Since X[ = s settles the outputs of M._, M.,

= p(/\/le_ =T | X[e] = s);
0 = p(./\/le =T | X[e] = S)

Hence:
0 = pMe=T | Mc_ =T AN X[ =5).
So, since M is stalwart from e onward:
T ¢ Ockg e,
T and, since M is always Ockham and p(M._ =T | X =) = L
T € Ockg e

So by proposition 5,
Se & St.
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Hence, for each path (Sy,...,Sy) in K., we have that St # Sy. So by propo-
sitions 27, 21, and 19 we have the following bounds which, by proposition 29,
suffice to establish that (M, s) <f . (M % M), s").

Retractions i<k|i=k | i>k | total
SupwECK e(n) Z Exp(p(_/\/[* sM'), | X ) > b 0 n+1 b+n+1
SUDyeCk .o (n) D EXP(PM,w | X[e] = 5) < b 1 n b+n-+1

Case C: v = 7. To establish that (M,s) <f . ((M*; M’),s"), it must be
shown that for each n € w and for each w € Ck (n) there exists local loss
functiony < p and w’ € Ck (n) such that for each j < w:

o | X =) € Bl | Xy =)
Set a = p(M[e](S)) Let w € CK,E(”)'

Case C.1: suppose that j < a. Then M(s) = (M xf M')g(s), so the
first a retractions of M occur along w no later than those of M x M’. Since
these retractions occur with unit chance by the end of e:

Exp(TM ] Xig) = s) = Exp(TM, | X s').

Case C.2: suppose that j > a. Set k = Exp(TM/ | X’] =5').Set j' =j —a.
Apply proposition 24 to obtain w’,y < p such that:

Exp(ﬁ(jfuﬂ | Xie) =s) > k.
In light of cases A-C, it has been shown that when I" C {¢, p, 7}:
(M, 8) <o (M M), ).
Proof of 2 = 3. Weak dominance implies inefficiency immediately.

Proof of 3 = 1. Let M be an always consistent method that is not always
Ockham and stalwart. Then there exists an e € Fg such that M is not Ockham
and stalwart at e given X[y = (0¢) and no e’ € Fg such that ¢’ < e has that
property. Let k = I(e). By proposition 7, there exists s € Spt(X.)) such that
M is not both Ockham and stalwart at e given X[, = s but is Ockham and
stalwart at each e’ € F such that ¢’ < e given X[ = s. We construct a (de-
terministic) competitor O for M that is Ockham and stalwart from e onward
by modifying output function a of M. Define the output function 3 so that for
each e/ € Fk:

M (8) for all e < e where X (6) = o3
B(o, e/) = TSC/ if ¢/ > e and TSC/ c OCkK(e/);
e otherwise.
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Now let O denote the result of replacing the output function « of M with
the output function (§ just defined. By construction, we have that for each
s’ e Spt(X[e]):

(M%¢ 0)=0.

It suffices to show that:

1. (0,s) g%m (M, s), for all i;

2. (M,s) L5 0. (0,5"), for some i.

By construction, O is henceforth Ockham and stalwart given X[, = s. Fur-
thermore, M is eventually informative given X[} = s because for each w € Wk
there exists i such that for all j > i, S,,|; = S, and, hence, Ockg (w|j) = {Ts,, }-
So by proposition 8, method O is consistent given X[ = s. Since M is con-
sistent by assumption, statement 1 is an instance of (1 = 2). For the second
statement, focus on ¢ = 0. Let:

a(n) = sup  Ep(pit, | Xig =) = Bp(p3], | Xi = s);
’LUGCK’C(n)

=
—~

S
~

Il

sup  Exp(exf,, | X = 5) = Exp(eg), | X = s).
weCKk, c(n)

Case A: M is not stalwart given X[ = s.

Then there exists T' € Ockg . such that:

0 < p(Me_:T‘X[e]:s);
I > pMe=T| M =TAXp =5).

Since X[ = s settles the values of M._, M. and O agrees with M at e_:

1 = p(./\/le_ =T ‘ X[e] = S)
= p(Oc. =T | X = 5);
0 = p(Me:T|M67:T/\X[e]:S).
Since O is henceforth stalwart given X = s and p(O._ =T | X[ =5) = 1
1 :p(Oe =T ‘ M67 ZT/\X[B] :S).

So by proposition 26,
Exp(p,e | Xie) = 5) = 0.

Using this fact and propositions 22, 27, and 19, one obtains for C (i) # 0:

Retractions, n > 0 i<k |i=k]|i>k | total
SUDwye .. (n) > Exp(p’Mw | Xjgg=5) > | a(n) 1 n a(n)+n+1
SUPye e o (n) 22i EXP(Pow | Xig =) < | a(n) | 0 n_ | a(n)+n
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By proposition 29, the supremum over expected retractions is in the total col-
umn. The advantage to O is proper since C'x . (0) # 0, by proposition 4. Turning
to retraction times, it follows from the second row of the preceding table that
there is no ¢’ € Fi . and s’ € Spt(Xjey | X[ = s) such that p(Me(s")) > n.
The same is true for arbitrary local loss function v < p. Thus, for each v < p
and w € Ok et

EXp(T(gifH_nJrl ‘ X[e] = 8) =0.

By the first row of the table and proposition 25, if Ck (n) # 0, then there
exists w € Ck ¢(n) such that:

EXp(T/l\)/%Zj_n—"_l ‘ X[e] = 8) > 0.

Hence:
(M, 5) £k en (O, 5).
Again, the advantage is proper since C (0) # 0.

Case B: M is not Ockham at e given X[, = s. Then:
p(./\/le ¢ OCkK,e | X[e] = S) > 0.

Recall:
M, ¢ Ockg.] = U M, =T]

TeThk ,TQOCkKyg

Hence, because Thg is countable and p is countably additive, there exists T €
Thg \ Ockg e such that:

p(Me =T | X[e] = S) > 0.
Moreover, because the output of M, is settled by X[, = s, this implies:
p(./\/le =T | X[e] = S) =1.

Since T ¢ Ockg e, there exists maximal unit path (S) in K. such that Sp # S.
Let:

wo = ex* (S\ Se) * (0v).
Then M commits an error with unit probability in wqg at e. Furthermore, by
proposition 23:

b(0) < Exp(exy,, | X[ = 5) = Exp(egl,, | Xj = 5).

Thus:
Errors, n =0 1<k |i=k|i>k| total
> EXP(Et, i, | Xie) = 5) > 1 b(0) 1 0 b(0)+1
SUPye e (0) Do EXP(Eb,w | Xjgg=s) < | b0) 0 0 b(0)
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The cumulative loss in wy is the total cumulative loss. Again, the advantage to
O is proper, since Ck (0) # 0, by proposition 4.

Regarding retraction times, let wy be as defined above. Let v < p and
w € Cg (0) be arbitrary. Since M and O retract deterministically at the same
times along e_, we are done if v fails to count each retraction along e_, for
a total of a(0) retractions, so without loss of generality, suppose that v agrees
with p along e_. Recall that M deterministically produces a theory false in wy
at e given X[ = s. Since M is always consistent, we have for each € > 0:

lim p(./\/lw0|i =Ty | X = s)=1.
1— 00
Choose:

I(e)
lle)+1°

Then there exists k > [(e) such that:
PMaugli =T | X =8) > 1—e

Since M produces an error at e in wg, with probability > 1 — ¢, a retraction
occurs no sooner than I(e) + 1. Hence:

Exp(rhr O™ | Xy =5) > (1-¢)-((e) +1)

(o o)) v

Since O is Ockham and Stalwart from e onward by construction, proposition 19
yields that O never retracts properly after e in arbitrary w € Ck (0). So for
each v < p and w € Ck (0):

Exp(rhr e | Xy =5) > Exp(rgon @ | X = 9).

So:
(Ma S) ﬁ}—(,e,o (M7 S)

5 Strengthened Ockham Efficiency Theorems
Recall that K has no short paths just in case for every e € K and every S € K,

there is a traversing path in K. beginning with S. For example, K has no
short paths if each maximal path in K is infinite, as in standard examples like
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curve fitting. The following two theorems strengthen Theorem 1 in two different
ways. Theorem 2 proves that, if K has no short paths, then any method that
fails to be always Ockham and stalwart is strictly dominated in worst-case costs
in every complexity class with respect to the empty sequence. That is to say,
Theorem 2 proves that there is never any reason to deviate from the behavior
of an Ockham, stalwart strategy. Furthermore, Theorem 1 says that, if K has
no short paths, then agents that have fallen from the stalwart, Ockham path
(no pun intended!) in the past would do better to return to it at every stage of
inquiry. Thus, the stalwart, Ockham property is perfectly truth-conducive, in
the sense that it always makes sense, given what has happened, to reform one’s
ways and adopt the stalwart, Ockham lifestyle.

Theorem 2 (Strong, Stable Ockham Efficiency Characterization) Suppose
that K has no short paths. Let e € Fi, s € Spt(X|g) and let M be consistent
given X|) = s. Assume, finally, that:

{r} CT C{p,¢,7}.
Then following are equivalent.
1. M s henceforth Ockham and stalwart given X = s.
2. M is perfectly I'-efficient given X, = s.
3. M is perfectly strongly I'-undominated given X[ = s.

Proof of 1 = 2: The 1 = 2 argument in the proof of Theorem 1 works up
to the  symbol, where the assumption that M is always Ockham is used to
show the existence of path (So,...,S,) € K. such that Sy # Sr. But the same
conclusion can now be obtained from Proposition 6, because there are no short
paths.

Proof of 2 = 3: Again, weak dominance immediately implies inefficiency.

Proof of 3 = 1: Follow the proof of the (3 = 1) direction of the proof of
Theorem 1 up to Cases A and B, including the definitions of O and a(n). Cases
A and B of that proof will now be strengthened using the no short paths hy-
pothesis.

Case A’: M is not Stalwart given X|,) = s. It is shown in case A, with-
out assuming that e is the first stalwartness violation by M, that for each n
such that Ck .(n) # 0:

(M. 5) Zkom (O 5).
Case B’: M is not Ockham given X[, = s. It is shown in Case B that:

(M7 5) ﬁ?{,e,o (Ov S)a

so it suffices to show that for each n such that C (n + 1) # 0:
(Ma 5) ﬁ;(,e,n-&-l (Ov 5)
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Let a = a(n + 1). It is shown in case B, without assuming that e is the first
Ockham violation by M, that there exists T' € Thx such that:

pMe =T | X =3)=1;

and that there exists maximal unit path (Sp) in K, such that Sp # Sy. Suppose
that Ck e(n) # 0. Then, by the no short paths hypothesis, (Sp) can be extended
to a maximal path (Sp,...,Sp+1) in K.. By Propositions 19 and 21:

sup Exp(pM€)|X =s) > n+2
weCK e(n+1)

sup Exp(pzluf) | Xjg=5) < n+1l
weCK,e(n+1)

Choose w € Ck (n + 1) such that:
Exp( pM(e) | Xjeg=s) > n+1L

So, by countable additivity and the discreteness of retractions in a given state
history, there exists &’ > I(e) and s’ € Spt(Xi, k) | X[ = s) such that:

PIOMuun(s) 2 n+2>  sup Exp(pp ) | Xy = 5).
wECK (n+1)

Furthermore:

a=p< O Mppq(s)) = sup Exp<pjjffj | X = 9);
weCK, e(n+1)

and for each 7 < a:

0 < 7= (M (s) = sup Exp(75, | Xy = 9)-
wECK e(n+1) ’

Case B.1: Suppose that M retracts at e if O does. Let 0 < b < b < 1. Then:

P M (s) = a+b +n+2
> a+b+n+1
> sup Exp(p(%?w | X[ = 5).
wECK,E(n+1)
Hence, by proposition 25, for each j < a+ b +n + 2:
Exp(TMw | X[ =5)>0.

But since n + 1 > supyecy . (n+1) Exp(ps ) | X[ = s), we have, for each
j>a+b+n+1and for each v < p:

Exp(TO o | Xie) = s)=0.
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So there exists no v < p and w’ € W . such that for each j > w:

Exp(TJ‘\’;{U | Xjg) =) < Exp(TXA>fU, | X[e) = 5).

Case B.2: Suppose that O retracts at e and M does not. Then:

P (Mpe(s')) = a+n+2

> sup  Exp(pg, | Xi = s);
weCKk, e(n+1)

and:

TP (M (8) > 1(e);
p>a+1

= sup Exp(TO w | X[ = 5).
weCK,e(n+1)

So if v < p and:

Exp(thre " | X = ) S Exp(T3Tol " | X = 9),

it follows that:
(O (s)) = 0.
But then:

P~ (M (s)) a+n+2
a+n+1

>
> sup Exp(’y%?w | Xie) = s).
weCKk, e(n+1)

By proposition 25, for each j < a+n + 2:

EXp(TMw | X[e] —8) > 0.

But since n + 1 > sup,ccy , (nt1) Exp(po | X[ = s), we have, for each
j>a+n-+1and for each v such that 'y(O[ 1(s)) = 0.

EXp(TO w | X[e] = 8) =0.
So there exists no v < p and w’ € Wk . such that for each j > w:

Exp(TM ] X[e] =s) < Exp(TM | Xie) =5).
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6 Subsidiary Concepts and Lemmas

6.1 Errors and Retractions in Probability

Here, we introduce an auxiliary concept that links expected errors and retrac-
tions with learning theoretic argumentation. Instead of penalizing expected
retractions, one can penalize retractions in probability, which occur when the
chance of producing a theory drops over time. In a similar spirit, an error in
probability occurs when there is a chance of producing the wrong answer. Let
the total error in probability committed by p in w at stage i given X[, = s be:

Iprl€n | Xie) = 5] = P(Moji € Errge(w) | Xy = s),

where the square brackets indicate that Ipr[e}y, ,, | X[ = s] is a formal notation
intended to resemble the notation for conditional expectation, rather than a
literal operation on the random variable 63\4,w- The total retraction in probability
by M in w at stage i given X|,; = s, denoted by the formal expression:

o | X = s,

is defined as:

> My =T | Xig=5) © p(Myjiz1 =T | X =s),
TeThg

where x Oy =z —y if > y and © © y = 0 otherwise. Let v € {e¢,p}. Then
define:

Iprlest, | X =s] = > Iprlehgn | X = sk
i<k
and similarly for >, <,>. As in the case of expected cost, let the joint cost in
probability be:

prleif | X =5l = (prleify | X = sl, Iprloifn | X = s));

and similarly for >, <, >, and relate joint costs by the Pareto ordering discussed
for expected cost.

Aside from the intrinsic interest of errors and retractions in probability,
they provide lower bounds on errors and retractions constitute lower bounds on
expected errors and retractions, by the following proposition. To see that the
inequality cannot be improved to equality in the general case, consider a stochas-
tic method M that flips a fair coin to decide between T and T” for ten stages.
No retraction in probability occurs over these ten stages, because the chance of
producing T, T does not change, but the expected retractions are non-zero since
the chance of retraction is .5 at each such stage (i.e., the chance of producing
pattern (T,T") plus the chance of producing pattern (77,T)). This point has
concrete methodological consequences: it is never a good idea to produce an
answer twice in succession with fractional probability, since such a strategy in-
curs needless expected retractions. That is why violations of stalwartness imply
inefficiency.
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Proposition 17 Let v € {¢,p,x} and let e € Fx and s € Spt(X[.)). Then we
have:

IpYitw | X =51 < Exp(Vigw | X = $)-
Proof.

Exp(eﬁw’w | Xjgg=5) = /53\/1@ dp(.| Xi¢ = s);
= 1'?(65\4,11;:1 ‘ X[e] :s)+0~p(e§ww0 ‘ X[e] :S)

= p(d\/l,w =1 | X[e] = S)
= p(./\/lw“ S Err(w) ‘ X[@} = S)

= Z p(Mw|i =T ‘ X[e] = 8)

T eErr(w)

= Ipr[ei\,l’w | Xig = s].

Exp(piyga | Xp = 5) = / Pt dp(| Xiy = 5)
= 1 p(phw=11Xieg=5)+0-p(pp=0] X =5)

= PP =11 X =5)
= pMyjig1 # My 7 | Xig = 5)
= p( | Mup =TI\ Myjig1 =T | X = 5)

TeThk

- Z P(Muyji =T\ [Muyjiy1 =T] | Xjg = 5)

TEThK

> Z p(./\/lw‘i =T ‘ X[e] = S) GP(Mw‘H_l =T | X[e] = 8)
TeThk

= Iprloivtw | Xieg = sl.
O
It follows immediately from propositions 12 and 17 that:
Proposition 18 (basic inequality) Let v range over {€,p,k}. Then:
Ipvtw | X =3l < Exp(yafe | X = 5),

and similarly for 'y/f,ﬁw, Yot -

7 Upper Loss Bounds

Proposition 19 Let M be henceforth stalwart and Ockham given X = s.
Let ¢’ € Fk . Then:
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>i(e
1. SupwECK,o(el)EXp(eﬂfw) ‘ X[e] = S) = 0.

2. SUPyec, i (n) Exp(pi,llff;) | Xie) =5) <n.
By proposition 18, Ipr may be substituted for Exp.
Proof. For n = 0, suppose that w € Ck o(e’). Then, for each k > [(¢),
Ockyjp = {7’} or Ockyp = {7, T}
Since M is henceforth Ockham given X = s, it follows that:
(*) pMypr € {Tw, 7} | X[ =s) =1, forall k>I(e).

For statement 1, let k& > I(e’). Recall that:

Exp(chun | Xig=9) = [ o dol.| Xig =)
= 0-p(ehgw=0] X =)
+1-p(eh, =1 Xp = 9)
= 0-pMyjp € {Tw, 7} | Xjg = 5)
+1-p(Myjp & {Tw, 7} | X = 5)
PMuji & {Tw, 7} | Xjg = 5)
0.

So, since w € Ck o(€¢’) and k > [(€') are arbitrary, proposition 12 yields 1.
Next, we prove statement 2 by induction on n. Let k > [(¢’), recall that:

/p.]f\/l,w dp(. | Xje = s)
= 0-pMyp = Myj—1 V Myjp—1‘7 | Xjg) = 5)
+1 'p(Mw|k: 7é Mw\kfl 7é v | X[e] = S)
= pMuyji # Muyji—1 # 7 | X[ = 5).
Case 1: Suppose that p(M -1 # ‘7" | X[ = s) = 0. Then:
Exp(pfigw | X =5) = pMyp # M1 # 7 | X = s)

< pMujp—1 # 7V | Xjg = 5)
= 0.

Exp(pit,w | Xie) = 5)

Case 2: Suppose that p(Myx—1 # ‘7" | X}¢) = s) > 0. Recall that because M
is henceforth Ockham given X = s and k > I(e) and w € Ck o(€’), we have:

p(./\/lw|k_1 € {Tw, ‘?’} | X[e] = S) =1
which, by the assumption of Case 2, implies:

p(Mw|k—1 = Tw | X[e] = 8) > 0.
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So by the henceforth stalwartness of M given X, = s:

1 =pMyp =Tw | Mejp—1 = Tow A X[e) = 5)
which implies:

0=pMuyp =7 | Mejp—1 = Tw A X[e] = 5).
Thus:

Exp(p.]/c\/l,w | X[e] = 5) = p(Mw|k 7é Mw\k—l 7é “p | X[e] — S)
= p(MwVC ="TA Mwlkfl =Ty | X[e] =5)
+ Y My =T AMy =T | Xpg = 5)
TEThw, T#Te
+ Z p(Mw|k:T/\Mw‘]€_1 =T | X[e] :5)
T T'€Thx , T£T"
p(Mw|k =7 | Mw‘k,1 = Tw N X[e] = 5)

Y pMyp =T [ X =)+
TEThg, T#Tw

+ Z p(./\/lw‘k =T | X[e] = 5)
TeThy , T#T,
0+0+0
= 0.

IA

So, since w € Ck o(e’) and k > l(e’) are arbitrary, proposition 12 yields:

l ’
wGCK,o(el)EXp(p/>\/l(,Z) | X[e] = S) = 0

For induction, suppose that w € Cg ny1(€¢’). Then each nested path Ses C
... C 8y through K./ has length < n+2. Let m be least such that S/ C Sy,
Then, since no path from Sy, to Sy in K|, begins with Se/, each such path
has length < n+1, so w € Ck ,(w|m). By the induction hypothesis:

L. SUPyecy, . (n) Exp(pify | Xigg =5) <n.

Construct:
w' = wlm — 1% (0>).
Then the only nested paths from S, to S, = Ses have unit length, so
w' € CK’O(G/).
So by the base case:
(e
Exp(piAEw,) | X =5)=0.
By choice of m:
w'|m—1=wlm -1,

SO:
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ii. Exp(piys | Xjeg =) =0, for each i such that I(e) <i < m.
By the definition of pfy, ,,:

iil. Exp(piy. | Xigg =5) < 1.
Thus, by (i -iii) and proposition 12:

Exp(pj}lfg) | X[ =5)<n+1.

Since w € Ck e (n + 1) is arbitrary:

(e
SupwecK@,(nH)EXP(P?MEw) | Xjg=5)<n+1.

O

8 Lower Loss Bounds

The fundamental idea behind the Ockham efficiency theorem is the following
proposition, inspired by computational learning theory. It says that nature is in
a position to force an arbitrary, consistent strategy to retract at least n times
in complexity class n and to retract w times in each complexity class > 0. One
reason for counting retractions instead of errors is that worst-case retractions
are bounded within empirical complexity classes whereas worst-case errors are
not.

Proposition 20 Suppose that M is consistent given Xi.) = s, let e’ > e and
assume that Ck o (n) # 0. Then:

sup Ipr[ei/ltffu/) | Xigg=5s] > w, ifn>0
weC or(n)

sup Ipr[pi,ltfi) | Xjgg=s] > n.
wECK)C/(n)

By proposition 18, Exp may be substituted for Ipr.
Proof. Let ¢/ > e and suppose that Ck . (n) # ) and M is consistent with
respect to K given X[ = s. Let I(e/) = K.

Proof of the first statement. Since Ck e(n) # @ and n > 0, it follows from
the definition of empirical complexity that there exists a finite, upward-nested
sequence (Sp, ..., S,+1) of elements of K./ such that S,,+1 # Sp. Define:

w=¢"x(Sy\ Ser) * (0°°).

Then S, = Sp € K and w extends €', so w € Ck (e’). Since M is consistent
given X[ = s, there exists ng > k' such that for all m > ng:

p(Mw|7n =Ty | X[e] = S) > 1/2
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Let m € w be arbitrary and define:
w’ = (w|(no + 2m)) * (Sn+1 \ Swl(not+2m)) * (0°°).

Then ¢/ < w’ and Sy = Spy1 € K, so w' € Cge(n). But Ty = Ts,,, #
Ts, = Ty, so Ty, is an error in T,,. Thus:

Ipr[ei’f:w, | Xjgg=5] = Z Ipr[eﬁ\,,’w/ | X = s]
i>k'
= Y My € {Tuwr, 7} [ X =)
P>k
k'4+2m

Z €>2m/2=m.

>k’

V

Hence:

sup Ipr[eﬂ“:w | Xjgg =5 > supm
weC or(n) mew

- Ww.

Proof of the second statement. The base case when n = 0 is trivial, since costs
are non-negative. For the inductive case, Suppose that Ck ,,11(€’) # 0. Since
Ce(n+11¢€) # 0, there exists an upward-nested path (So,...,,Sn,Spt1) in
K. Let K' = {Sp,...,Sn,Snt1}. Then M is still consistent with respect to
K’ given X|; = s and the decremented path (Sp,...,S,) in K’ witnesses that
Crrn(e") # 0. So, by the induction hypothesis,

sup Ipr[pf\/’f)w | X[ = 5] >n.
weCiyr ,(e')

Let € > 0 be given. Then there exists w € Ck ,,(€’) such that

Ipr[pﬂiw | X[g8] = Z Iprpiw | X = 8] >n—€/3.
>k’

Hence, there exists kg > k' such that:

ko
D ot | X =] >n—e/2.
ik

Since M 1is consistent given s in response to e, there exists k; > kg such that
for all m > kq:
p(./\/lw‘m =1y | X[e] = S) > 1 —6/4.

In K’ the unique effect set of complexity n is Sy+41, so since w € Cg e/ (n), it
follows that:
Sw = Sn+1 g Sn+2-
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Define:
w' = (w[k") % (Spt2 \ Swirr) * (0°°).

Then w' extends ¢ and S,» € K' C K, so w' € Cgpnt1(e’). Since M is
consistent in K given X[ = s, there exists k2 > k; such that for all m > ko:

p(Mw’\m = L’ | X[e] = 3) > 1 76/4

Then:
PMaurjhy, =T | Xig) = 8) = pMar iy = T | X = 8)
> (1—¢/4) = (1—(1—¢/4))
= 1-—¢/2.
But:
Ty =Ts,,, #Ts, = Tw,
so:
oo
prlpit | X =51 = > Iprlphu | Xig =s]
i>k!
ko k1
> Z |pr[pj\47w/ | X[ = 8] + Z Ipr[p.i/\/l,w’ | Xje) = 5]
i>k’ i>ko
> (n—¢€/2)+ (1 —¢/2)
= (n+1)—e

Since € > 0 is arbitrary, it follows that:

sup Ipr[pf/]f:w/ | Xjgg =5 > n+1
weCK nt1(e’)

Proposition 21 Suppose that M is consistent given X = s. Let ¢’ € Fi .
Let (So, ..., Sn) be a mazimal path in K. ending with S,,. Suppose that St # S
and that p(Me =T | X =s) =r > 0. Then for each j < n:

sup Ipr[elj\(j:z} | Xjg=s] >

’LUGCKﬁ/(O)
sup o) | Xy =s] > j+r
weCk . (J)

By proposition 18, Exp may be substituted for Ipr.
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Proof. Let k = I(e). In the base case for n = 0, let (Sp) be a maximal path
through K. and define:

w=ex*(Sp\ Se)* (0°).
Since S7 NSy = 0, it follows that T, # T, so:
r = pMe €Errge | X = 5)
= lprlefsw | Xpg = sl.
By the consistency of M given X, = s:
Jim p(My; = T | Xpgp = 5) = 1.
Let € > 0 and choose 7 > k such that:

PMypi =Ty | Xjgg=5)>1—c

Then
r—e > Ipr[eﬁ,l’w | Xig = s];
r—e > Ipr[pi’f’w | X[e = 3],
so:
ro> sup  lprlef, | Xie) = sl;
weC K ./ (0) ’
ro o> sup Ipr[pi,’fw | X[ = s].
wECK,e/(O) ’

For the induction, let (Sp, .. ., Sp+1) be a maximal path through K,/ terminating
in S,41 such that St # Sp. Truncate the path to (Sp,...,S,). It is still the
case that St # Sp.

Let K ={Sp,...,S,}. Let e > 0. By the induction hypothesis,

sup Ipr[piff’w | X =58 =n+r.
wGCKYe/(O)

So there exists w’ € Ck (n) and j > k such that:

] .

Z Ipriphg | Xje) = 8] >n+71—¢€/2.
i=k+1

By the consistency of M given X[, = s,

‘lim p(Mw’U = Loy | X[e] = S) =1.
Let

w” = wlj"x (Snt1 \ Swy) * (07).
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By consistency again:
Jim p(Muyrj; = Tor | Xpgp = ) = 1,
so let j” > j’ be such that:
P(Muprijr = T | Xpoy = 5) > 1 — /4.
Since S,41 ¢ K', it follows that T, # Ty,~». Hence:

.71

Yo Prlp | X = s> (1—¢/4) —¢/4

i=j'

1—¢/2.

So:

>

-1
i=k

(n+r)—¢/2+1—¢/2

(n+1l4r)—c

So, since € > 0 is arbitrary:

sup Ipr[pi/’ﬁw | Xjgg=sl=>2n+1+r.
weCK ¢ (n+1)

O

Proposition 22 Suppose that M is consistent given X[o) = s, that M fails to
be henceforth stalwart given X = s, and that Ck (n) # 0. Then there exists
e € Fi . and s' € Spt (X(.) such that:

sup  Iprpls ), | Xpeyp = 1> n+ 1,
weC (r(n)

By proposition 18, Exp may be substituted for Ipr.

Proof. Suppose that M is consistent given X[, = s fails to be henceforth
stalwart given X [ = s- Hence, there exists ¢’ € Fk . and T € Thg such that
M fails to be stalwart with respect to T" at e’ given X[} = s. By proposition 7,
there exists s’ € Spt,(X[e/) such that M fails to be stalwart with respect to T
at €’ given X[ = s’. Thus:

i. T € Ock(e');
ii. P(Meg =T | X[e/] = Sl) > 0;

iii. p(Me/ =T | Me/_ = T/\X[e/] = S/) <1
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So, since s’ determines all states assumed by M along ¢’:
i pMer =T | Xy = ') = 15
iii’. p(Me/ =T | MeL =TNA X[er] = S/) =0.

Thus:
p(MeL =T | X[e’] = SI) @p(Me/ =T | X[e’]sl) =1.

Let:
w=-¢e_ x(0>).

Since €’ € Fg, there exists w € Wk ., so Ser C S, € K. Hence, one may choose
S € K to be least such that S.r € S. Then cx (S | ') = 0. Define:

w=¢x(S\ Se) * (0°).

Then:
w e CK’SI (0)
and: Lo
lprlp'ts ) | Xien = 8] > 1.
Hence:

sup Ipr[pljfjiq)v | Xjep=s"]>1.
’LUGCK,E/(O)

That establishes the base case for n = 0. The inductive step proceeds as in the

proof of proposition 20, under the induction hypothesis that

sup Ipr[pl/gj,zu | Xje1=s]>n+1.
’LUGCK/&/(H)

Proposition 23 Let e € Fg, € < e, s € Spt(X[.), and suppose that M is
Ockham at €' given Xy = (00) and that M(s") = Ts € Thx. Then for each
w,w’ € Ck (0):

wE Tg + w' € Ts.

Proof. Let w,w’ € Ck(0). Then (Sy), (Sy) are maximal unit paths in K.
Let ¢/ < e and let M,/ (s") = Ts € Thg. Suppose that w’ ¢ Ts. Then:

S # S

By hypothesis, M is Ockham at e’ given X[y = (00¢), so Ts is Ockham at €’
and, hence, (5) is the unique, maximal unit path in K.,. Thus:

Se’gSgSegSw/7
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where the second inclusion is by uniqueness. Therefore:
S C Sy

So, since (S,) is a maximal path in K., we have that S ¢ K.. So, since (S,,)
is also a maximal unit path in K., we have: S # S, sow ¢ Ts. O

For the propositions that follow, if 7 is a local loss function and I(s) = I(e) + 1,
define:

7(s) = ¥ (Mg (s)).

Proposition 24 Suppose that M is consistent given X[ = s and assume that
n >0 and that Cx e (n) # 0 and that s € Spt(X.). Let a = Exp(p=<!®) | X =
s). Then for each k there exists w € Ck e(n) and v < p such that:

EXp(TX/‘Z’Zj—n ‘ X[e] = S) > k.

Proof by induction on n: The proposition is trivial if kK = 0, so without loss
of generality suppose that k£ > 0. The base case is trivial, since n > 0. Now
suppose that C e (n+ 1) # 0 and s € Spt(X,). Then Ck e (n) # 0. Let k € w
and let a = Exp(p<!©) | X[¢) = s). By the induction hypothesis, there exists
w € Cg.e(n) and v < p such that:

Exp(TX,IZﬂ‘f" | Xjeg=s) > k.

Define the following local loss function, which is just like v, except that it ignores
all retractions after the a + 1th retraction counted by ~:

(s) = 1 ify(s) =1and and v<!)(s) < a + n;
T\ 0 otherwise.

Thus:
Yo=Y =P
and:
Exp(TX,/[if‘Jr” | Xjgg=5) > k>0.
Define:
S={eeX<¥:l(s) >0and y(s) =a+nand y(s_) < i}.
Since:
Exp(ro ™ | X =5) = Y Us) p(Kpupesy =5 | Xieg = 5),

s'esS
it follows that there exists sg € S such that:

0 <I(s) - p(Xjwjusy] = S0 | Xje) = 5).
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Set:
b = p(X[w\l(s’)] =50 | X[e] = 5);
I = le).

Let p > € > 0. Since M is consistent, there exists m > I(s) such that for each
m' > m:
PMuyjmr =T | Xjep = 8) > 1—¢/2.

Let:

mo > max(m,

),

p—e€
SO:
PMupjme = Tw | X =8) > 1—¢/2.

Since Ck e(n + 1) # 0, there exists effect z € E'\ S.. Construct world:
w' = w|mg * {x} * 0.
Again, since M is consistent, there exists m; > mg such that for all m’ > m:
P( Mt = Ty | Xj = 8) > 1—¢/2.
Now define a new local loss function v; < 7g as follows:
i(s) = { 1 if I(s) > mg and p(s) =1 and and ’yo<l(s)(s) <a+n+1,;

0 otherwise.

Let s’ € X™1. Then by the definition of ~;:

s’ > 59 and p[[n1 (s) > 0 implies vo(s") =TT > my,.
Thus:
p(r72ZCTRL >y | Xigg=5) 2 P(Xwimi] = s0 and p[t (X jwjm,]) >0 | X = )
> p(Xpwlmi]) = S0 | Xie) = 8) = p(plms (X jmi]) =0 | Xjep = 3)
> p = p(Mpwme] # Tw o Mpyrjmy] # Tw | Xjg) = 5)
> P =DM |me] # Tw | Xie] = 8) + 2(Mw|my) # Tw | Xje) = 5)
> p—2(e/2)
> p—e
But mg > pfe, so:
Exp(r22cthtl | X =58) > mo Sp(rEEetR L > | X =)
k
> p—
= (p—e)

k.
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Proposition 25 For each r > i and Boolean-valued local loss function ~y:
>0 N yZitl
Exp(Vitw | Xje) = 8) > 1 implies Exp(1,,, | X[ =35) > 0.

Proof. Suppose that:

>it1

Exp(Thg | Xy =5)=0.

Let @ denote the set of all s’ € ¥<¢ such that (s C s’ or s’ C s) and ’yiﬁw (s) >
i+ 1. Let Q' be the set of all s’ € @ such that for all s” < s, s” ¢ Q. Then for
each s € Q':
P(Xpwja(s)-1) = 8 | Xjeg =) = 0.
So by countable additivity and the fact that <% is countable:
Ep(Viw | X =9) < i+ (+1) ) p(Xwiig)-1) | X = )

seQ
< i<

0

9 Basic Lemmas

Proposition 26

EXp(p.Ij\/l,w | X[e] = S) = p(Me 7& Me_ 7& ‘?,| X[e] = 8)7
EXP(ELCVLU) | X[C] = S) = p(Me ¢ {Tw7 ‘?’} | X[e] = s)

Proof.

/PM,w dp(. | Xie) = 8)

= Op(p.];\/l,w:0|X[P]:S)+1p(p.lj\/l,w:]' |X[€]:s)
= pPhw =11 Xps)
= pMe# M._ € Thg | X[e] =s).

Exp(plj\/l,w | X[e] = 5)

The argument for the second statement is similar. [J

Proposition 27 Let v € {¢,p}. Then:

1 > sup Exp(Yigw | X =s).
weCK e(n)

Proof. Immediate from the definitions of 61}\/{,11; and Pljvl,w- O
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Proposition 28 Let v be a local loss function. Then:

l(e
sup Exp(w%ﬁw | Xjg=s) < sup Exp(’y;lfw) | Xie) = 5)
weCK e(n) weCK e(n)

+ sup Exp(yle, | Xig = 5)

weCK,e(n)
l(e
+ sup EXP(")/;/[SLU) | X[e] = S).
U)ECK,e(n)

The same is true if Exp is replaced with Inp.

Proof. Immediate. (J

Proposition 29

I(e
sup  Exp(pri, | Xg=5) =  swp  Bxplpis) | Xpg =)
weCK e (n) weCK,e(n)

l(e
+ osup Exp(pl, | Xig =)
weCk e(n)

l
+  sup Exp(piASfB | Xig = s).
weCK e(n)

The same is true if Exp is replaced with Inp.

Proof. Let k =l(e). By proposition 12:

sup  Exp(pmuw | Xjg =8) = sup  (Exp(pifa | Xie = 9)
weCK,e(n) weCK,e(n)
+Exp(p.]/€\/l,w | X[e] = 5)
+ Exp(0ify | X =9)) -

Since M responds the same way along w|k for each w' € Ck (n), it follows
that, for each w' € Ck ((n):

Exp(pifw | X =5) = sup  Exp(pif o | X()$);
weCk e (n)
Exp(p]j%w, | X[e]s) = sup Exp(’ylfww | Xie) = s).
weCk e (n)
Hence:
Exp(omw | X =3s) = sup  Exp(pif | X(e)s)
weCKk e(n)

+ sup Exp(phq. | Xig =)
weCK e(n)

+Exp(pi’f7w | Xie) = 5).
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Since the first two terms in the sum are constants:

sup  Explpmw | X =s) = sup  Exp(pif, | Xis)
wECK (n) weCK,e(n)

+  sup  Exp(phy, | Xig =)
wECK,e(n)

+ sup Exp(prfy, | X = ).
weCK,e(n)

The logic depends only on suprema and sums, so it works as well for Inp. [J
Proposition 30 If Ck .(n) # 0 then:

(e l(e
Exp(ply. | Xio = s) = S )EXP(PL?w | Xpeps)-
w K,e(

Proof. Note that if w € Wi . then for each § € A:

P]/Cvuw((S) = Plf\47w\z(e)(5)-
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