Chapter 9

The Kleene Recursion
Theorem

Kill Grates at Macrohard Corporation wants to corner the market with pro-
gramming system 7-. Since Kill knows that 7~ isn’t very good (it re-uses all the
previous system’s code and takes twice as much disk space), he has to resort to
cunning rather than to quality. His plan is to wipe the competing programming
system ¢- off of the planet by releasing MH-Virus into the ambient computing
environment. The MH-Virus design team has been commanded to find a com-
puter virus that screws up the performance of every program in the ¢- system.
That is, MH-Virus is supposed to compute a total recursive function v such that
for each n, k,

bn # Da(ny-

You are agent Godel number 7 and your job is to foil Grates’ plan. Your first
question is: can such a plan possibly succeed?

Here is an analogy from analysis. Suppose you are looking at the unit line
and you are challenged to find a continuous transformation of the unit line that
alters every point. In other words, you have been challenged to find a continuous
f :[0,1] — [0,1] such that for each x € [0,1], f(x) # f. This amounts to
drawing a line (without gaps) across the unit square without touching the x = y
diagonal of the square (try it). For if the graph of f touches the x = y diagonal,
then at that point f(z) = x. so point x has not been altered. But that isn’t
possible, because the diagonal is “in the way”, no matter how you try to draw
the connected line from one side of the square to the other. If f(x) = z then =
is called a fixed point of f.

Now if Kill Grates’ virus is viewed as a computable distortion of the partial
recursive functions, we might expect that the diabolical scheme must fail in the
(not very useful) sense that at least one program’s input-output behavior is un-
affected by the virus. That is precisely what happens. In fact, the construction
is literally analogous to trying to avoid the diagonal of a square when you try
to draw a continuous line across it, as I shall try to bring out in the following

(0]

76 CHAPTER 9. THE KLEENE RECURSION THEOREM

proof.

The Kleene Recursion Theorem Let ¢f be an acceptable numbering of
Part.
Vk V total recursive f In (¢F = gb’}(n)).

Proof. T'll do it for the case of £ = 1 and drop the annoying superscripts. The
proof of this theorem is facilitated by a convention. Consider the embedded
expression

b, (2 (¥)-
It is pretty clear that if
On(T) = 2
then
P, (z) = P=-

But what if ¢, (%) is undefined? Then our acceptable numbering isn’t “given
a number to interpret”, so ¢, () (¥) does not denote a function. But there is
another way to look at it. Let u be a universal index for acceptable numbering
¢-. Now we have that for each y,

Gu(Pn(T), (9)) 1,

where T means “undefined”. Thus, we may also think of the whole expression
as denoting the everywhere undefined function

Do) =0

Now let an arbitrary, total recursive “virus” f be given. Think of a two-
dimensional table in which the cell T'[n,m] is filled by the function ¢4 (m)-.
The table looks like:

Ppo(0) Ppo(1) Peo(2)
Ppr(0) Por(1) Per(2)
Ppa(0) Ppn(1) Poa(2)

(Think of this table as standing in for the unit square of reals in our analogy).
Every cell of the table is filled with a partial recursive function because of our
convention for dealing with the case in which ¢,,(m) is undefined. Consider the
(bold-face) diagonal of the table. We will now see, remarkably enough, that the
diagonal of the table

Dpo(0)r Por(1)s Pa(2)s - - -

is also a row of the table

Dp.(0)> Po.(1)s Pp.(2)5 - -

7

where the function ¢, generating the row is a total recursive function. We do
this using the universal and s-m-n properties as follows. Using a universal index
u of numbering ¢-, define partial recursive function

P(n,x) = du(dn(n), (z))
d)qﬁn(n) (93)
Since ¢~ is onto Part, choose w such that

Ow(n,) = (n,x).

Using the s-m-n property of numbering ¢-, we obtain a total recursive s such
that

1

¢s(w7n) ('7;) = ngw(n,x).
Now compose in a constant function to obtain a unary total recursive g such
that for all n,

g(n) = s(w,n).
Let ¢; = g. Unwinding the definitions, we obtain:
Poy(m) (€)= Pg(n)(2)
= d’s(w,n) (LE)

~ ¢y(n,x)

~ Y(n,z)

~ ¢u(n(n), (z))
>~ g, m)(T)-

So as promised, the diagonal of the table is also the jth row table where
¢; = g is a total recursive function:

Po;(n) = Pg(n) = Popu(n)-
Now consider the total recursive virus f. Since g is total recursive, so is ¢, =
C(f,g). Let so we also have that

P(g(0)) PFa(1))s Pr(g(2))s - -+

is the nth row of the table. Now (just as in our attempt to draw a line across
the unit square), this row intersects the diagonal at ¢y, (n) = G f(g(n)). Now let’s
check the effect of the virus f on the index g(n), which exists because g is total:

1

Do) (2)
Py(n) ().
So the behavior of the index g(n) is unaltered by f. -

Df(g(n) ()

1

Exercise 9.1 Can the theorem be strengthened to a guarantee that the unaf-
fected index is primitive recursive? Total? If your answer is affirmative carry
out the proof. If it is negative, prove the negative claim and describe where
Kleene’s proof fails. You don’t understand a theorem unless you do this. Re-
late the existence or nonezistence of acceptable numberings for classes of total
recursive functions to your result.

78 CHAPTER 9. THE KLEENE RECURSION THEOREM

9.1 Good, Kleene Fun

We usually use the recursion theorem in tandem with the universal and s-m-n
theorems. The recursion theorem can generate wonderful curiosities, like the
self-printing program. At first it seems easy to make a self-printing program:
something like

print(progam).

But that won’t do because what is printed is program, not the actual program
print(program). Now we start to wonder if it is possible. It looks like there might
be an infinite referential regress, in which the program tries forever to refer to
itself but always misses the outermost “print” command in its own program.
We would like to say

print(me),

but can programs be self-conscious? Some can. Let’s construct one. The
projection function po is partial recursive. So let

¢n = p§~
Now apply the s-m-n theorem to obtain a total recursive s such that for all z,
¢s(n,;ﬂ) (y) = d)n (Iv y)
~ p3(z,y).

Now compose in a constant function and the appropriate projections to obtain
a total recursive g such that

g(z) = s(n,x).

By the Kleene recursion theorem, we obtain an m such that

(bg(m) = ¢m-

Thus, for each z:

Om(T) = Pg(m)(T)
Ps(n,m) (2)
Pn(m,y)
p3(m,y)
m.

1

1

12

Exercise 9.2 Show that each partial recursive function ¢; has a finite variant
@; that is “self-referential” in the sense that pz.¢; #0=j and Yk > j, ¢;(k) ~
pi(k). .

9.1. GOOD, KLEENE FUN 79

Exercise 9.3 Show that double recursion over the partial recursive functions
yields a partial recursive function. Before we only said that it is “intuitively
effective”. By the Church-Turing thesis it follows that double-recursion is partial
recursive. But we can now prove this fact formally, bypassing the Church- Turing
thesis. Hint: follow the pattern of the preceding example. Write an expression
for the recursion in which the recursive call is just a free variable. Apply s-m-n
to this variable position and then apply Kleene’s fixed point theorem. This is
why it’s called the “recursion theorem”.

The Kleene recursion theorem has far wider significance than these examples
suggest. As we will see, it is a powerful way of turning purely computational
problems into empirical problems.

