
Chapter 6

The Church-Turing Thesis

Let Eff denote the intuitive collection of intuitively effective total functions (not
a set since not clearly defined). Since it is easy to see how our ad hoc operators
yield intuitively effective functions from intuitively effective functions, and since
the basic functions are intuitively effective, we have:

Tot ⊆ Eff .

I should mention, however, that this is not entirely uncontroversial. Some fini-
tists (e.g., Goodstein) have tried to argue that finitism stops with primitive
recursion.

The converse is the Church-Turing thesis:

Eff ⊆ Tot.

This is more troublesome. We have defined Tot in a completely ad hoc way by
adding a dumb kind of unbounded serial search on top of a dumb, restricted
notion of recursion. It would be a miracle if we caught all the intuitively effective,
total functions using these two simple-minded ideas.

But perhaps miracles can happen. Since Eff is not a mathematically defined
concept (that’s the whole point of defining Tot!) we can’t prove that Tot = Eff .
But we can try to provide a philosophical or empirical argument for the thesis.
The two standard arguments are as follows.

6.0.1 The Amazing Coincidence Argument

No language for defining intuitively effective functions has ever yielded a defi-
nition of a function outside of Tot (although many such notations fall short of
capturing all of Tot, as we have seen). This is the argument usually quoted
in textbooks. It is a kind of physicist’s argument, like discovering that wave
mechanics and matrix mechanics are the same theory.

The proofs are tedious but you already know more or less how they go. Let
X be a given class of functions computed by a given computational formalism.

47

48 CHAPTER 6. THE CHURCH-TURING THESIS

To show
Part ⊆ X,

we show that the basic functions are in X and X is closed under the three
partial recursive operators. This is usually easy. Conversely, to show

X ⊆ Part,

we proceed in a more fussy manner as follows.

1. Use finite sequences of numbers to represent in a natural way instanta-
neous computational states of computations directed by program M .

2. Code these sequences as single numbers using the primitive recursive Gödel
coding.

3. Write a primitive recursive function init(m,~x) = s that converts a list ~x of
input arguments into the Gödel code s of the initial computational state
of the computation.

4. Then we write a primitive recursive function transit(s) = s′ that trans-
forms each state code number into its successor state code number to
simulate computations.

5. Finally, we write a primitive recursive relation Output(s, y) = y that de-
termines whether the process has yet halted with output y.

The work involved is not deep and is similar to what we did when we pro-
grammed the universal function (Cf. Cutland for lots of this).

6.0.2 Turing’s Mathematician Simulation Argument

The preceding argument didn’t impress either Church or Gödel, as the nota-
tions circulating at the time weren’t all that different and the inter-simulation
arguments were not that deep. Also, the fact that all the analyses “stop” at the
same place doesn’t necessarily mean that the capabilities of algorithmic math-
ematics had been exhausted. It might mean only that everyone had found a
natural, easily axiomatized subclass of effectively computable functions whose
extension requires a much more subtle insight— sort of like the relationship
between Newtonian mechanics and quantum mechanics.

What did impress Gödel was Turing’s argument based on Turing machines.
As you know from many other classes at this university, Turing computations
are opaque and ugly. Well, using them wasn’t the point. They were the linchpin
of Turing’s argument that Eff ⊆ Tot. The argument goes something like this.
Consider a mathematician following an algorithm. The algorithm specifies a
finite set of rules for modifying scribbles on a notebook in light of the current
state of mind of the mathematician. The mathematician may have boundless
originality, but the states of mind relevant to following the algorithm are finite
and discrete. Also, only finite many distinct notational states can occupy a page

49

of the scratch pad, else a microscope would be required to follow the algorithm
(Turing wryly notes that Chinese characters seem to be an attempt to challenge
this assumption). Simple reduction arguments turn the scribblings into bits on
a linear tape, the mathematician into a finite state automaton (for the purposes
of his involvement in the computation) and the algorithm into a set of rules
for elementary operations on the tape. So the mathematician is simulated in
all relevant respects by a formal Turing machine. Let Tur denote the set of all
Turing-computable functions. The argument purports to show (philosophically)
that

Eff ⊆ Tur.

One can now prove mathematically that Tur = Part along the lines described
above. Thus

Tot = Eff .

Here is an interesting autobiographical description of the reception of the
two arguments by Stephen C. Kleene. Since Kleene was a student of Church
and invented much of computability theory, he was in a fine position to report!

Church had been speculating, and finally definitely proposed,
that the λ-definaable functionss are all the effectively calculable
function— ... which I in 1952... called “Church’s thesis”. When
Church proposed [the CT] thesis, I sat down to disprove it by diag-
onalizing out of the class of the λ-definable functions. But quickly
realizing that the diagonalization cannot be done effectively, I be-
came overnight a supporter of the thesis.

Gödel came to the Institute for Advanced Study [at Princeton]
in the fall of 1933. According to a ... letter from Church..., Gödel
“regarded [the CT] thesis as thoroughly unsatisfactory”. Soon there-
after, in his lectures in the spring of 1934, Gödel took a suggestion
that had been made to him byHerbrand in a letter in 1931 and mod-
ified it to secure effectiveness. The result was what is now known as
“Herbrand-Gödel general recursiveness.” ...

In a February 15, 1965, letter to Martin Davis, Gödel wrote,
“However, I was, at the time of these lectures [1934] not at all con-
vinced that my concept of recursion comprises all possible recur-
sions...”.

Church (1936) and I (1936a) published equivalence proofs for
Herbrand-Gödel general recursiveness to λ-definability. So, under
Church’s thesis, ther were now two exact mathematical character-
izqations of the intuitive notion of all effectively calculable func-
tions....

The last of the original three equivalent exact definitions of ef-
fective calculablity is computability by a Turing machine [1936-37].
...

For rendering the identification with effective calculability the
most plausible— indeed, I believe compelling— Turing computabil-

50 CHAPTER 6. THE CHURCH-TURING THESIS

ity has the advantage of aiming directly at the goal [i.e., the math-
ematician simulation argument]....

It seems that only after Turing’s formulation appeared did Gödel
accept Church’es thesis, which had then become the Church-Turing
thesis.1

6.0.3 What the thesis doesn’t say

Turing’s reductive argument does not show that all mechanical computations
are Turing computable or that human intelligence is Turing computable. The
argument that the mental state may be treated as though it were a member of
a discrete, finite space works only because the mind is assumed to be working
out a “mind-less” mathematical algorithm. It is only the intuitively effective or
algorithmic that is treated by the argument. To extend this to arbitrary mental
or mechanical processes is quite another matter. Of course, this didn’t prevent
A.I. from doing so.

6.1 Arguments “by Church’s Thesis”

Granting the Church-Turing thesis, any crisp procedural specification entitles
us to infer that a partial recursive index exists for the function.

To compute k-ary ψ on inputs ~x do blah blah blah.

By the Church-Turing thesis (CT), there exists an n such that ψ = φk
n.

Yippee! But don’t do it until I say you may. And then make sure you provide
a procedure. CT doesn’t read your mind and then write the program you want!

6.2 Acceptable Indexings2

In physics, it is a disaster to confuse “coordinate effects” with physical realities.
Thus, the “coriolus force” which “pulls” a projectile westward when it it shot
to the north is not a force at all, but the effect of viewing rectilinear inertial
motion in a rotating coordinate system. Here is a nice metaphor: programming
languages are to computable reality as coordinate systems are to physical reality.
The analogy isn’t too bad. Physical coordinates allow us to refer to physical
events. Programs allow us to refer to computable functions. The arbitrariness
of coordinates is handled by the fact that physical laws are invariant under the
relevant group of coordinate transformations. What is the corresponding part
of the analogy for computable functions? Not physical transformations. Not
topological transformations. Not geometrical transformations. You guessed it:
computable transformations.

1Kleene 1981, op. cit. pp. 59-61.
2(Rogers, exercise 2-10).

6.2. ACCEPTABLE INDEXINGS 51

More abstractly, sufficiently powerful computer languages may be viewed as
numberings of the partial recursive functions. To be really careful about it, a
numbering of Part is a surjective (onto) mapping:

ψ : N2 → Part

where ψk
i denotes the ith k-ary partial recursive function according to numbering

ψ. Now let δ, ψ be numberings. Say that δ compiles into ψ just in case for each
k there exists a total recursive ck such that for each i, k, δk

i = ψk
ck(i). “Compiles

into” is a pre-order (reflexive and transitive). Say that δ intercompiles with
ψ just in case each numbering compiles into the other. Intercompilation is an
equivalence relation.

Exercise 6.1 To make sure you are awake and understand the definitions:
prove that compilation is a pre-order (reflexive and transitive) and that inter-
compilation is an equivalence relation (reflexive, transitive, and symmetric).

Our special numbering φ is not arbitrary. It has a special structure. For
example, it satisfies the universal and s-m-n theorems. Presumably, it satisfies
many other conditions as well. But perversely enough, we will focus on these two
curious properties. Say that ψ is acceptable just in case satisfies the conditions
of the universal and s-m-n theorems; i.e., just in case:

1. ∃u ∀n, ~x ψ2
u(i, 〈~x〉) ' ψ

lh(~x)
n (~x)

(universal machine property);

2. ∀n,m ∃ total recursive s ∀i, n-ary ~x,m-ary~y (ψn
s(i,~x)(~y) ' ψm+n

i (~x, ~y)).
(s-m-n property)

Now why would acceptability be of any interest? Because it characterizes
the set of all numberings intercompilable with our original numbering ψ. When
you stop to think that the empirical evidence for the Church-Turing thesis is
that all natural programming systems yield numberings intercompilable with
ψ, we see that the universal and s-m-n theorems as it were axiomatize all the
computationally invariant structure of our indexing! That means we may kick
free of all the arbitrary scaffolding and work only with the universal and s-m-n
theorems! But first, as they always say, we have to prove it. The proof is a
beautiful illustration of how the universal and s-m-n constructions interact.

Proposition 6.1 Numbering ψ is acceptable ⇐⇒ ψ is intercompilable with
numbering φ .

We proceed by a series of lemmas.

Lemma 6.2 ψ satisfies the universal machine property
⇒ ψ compiles into φ .

52 CHAPTER 6. THE CHURCH-TURING THESIS

Proof. Suppose that ψ satisfies the universal property. Then for some u,

∀n, ~x (ψ2
u(i, 〈~x〉) ' ψ

lh(~x)
i (~x)). (6.1)

To get rid of the coding on the ~x, define:

δ(i, ~x) ' ψ2
u(i, 〈p1

m(~x), . . . , pm
m(~x)〉). (6.2)

Since rng(ψ) = Part = rng(φ), there exists a z such that

δ = φm + 1z. (6.3)

Since φ has the s-m-n property, there is a total recursive s such that for all
i, x, ~y,

φm
s(i,x)(~y) ' φm+1

i (x, ~y). (6.4)

By composing in the constant function cz, we obtain the total recursive r such
that:

r(x) = s(z, x). (6.5)

Now we use the above to calculate:

φm
r(i)(~y) ' [6.5];

φm
s(z,〈i〉)(~y) ' [6.4];

φ1+m
z (i, ~y) ' [6.3];
δ(i, ~y) ' [6.2];

ψ2
u(i, 〈pi

m(~x), . . . , pm
m(~x)〉) ' ψ2

u(i, 〈~y〉)
ψ2

u(i, 〈~y〉) ' [6.1]

' ψ
lh(~x)
i (~x).

Thus, r is the desired, total recursive compiler for arity m. a

Lemma 6.3 ψ compiles into φ ⇒ ψ satisfies the universal property.

Proof. Suppose that ψ compiles into φ . Then for each k there exists a
total recursive c such that

ψk
i ' φk

c(i).

By the universal theorem for φ , there is a u such that for all ~y:

φm
c(i)(~y) ' φ2

u(c(i), 〈~y〉).

So we obtain a partial recursive function

δ(i, ~y) ' φ2
u(c(i), 〈~y〉).

Since ψ is onto Part, there exists a z such that for all ~y:

ψ2
z(i, 〈~y〉) ' δ(i, ~y).

6.2. ACCEPTABLE INDEXINGS 53

Thus, for all ~y, we have:

ψ2
z(i, 〈~y〉) ' δ(i, ~y)

' φ2
u(c(i), 〈~y〉)

' φm
c(i)(~y)

' ψk
i (~y).

So z is a universal index for ψ . a

Lemma 6.4 ψ satisfies the s-m-n property ⇒ φ compiles into ψ .

Exercise 6.2 Prove it.

Lemma 6.5 ψ intercompiles with φ ⇒ ψ satisfies the s-m-n property.

Exercise 6.3 Prove it.

