
Chapter 5

The Partial Recursive
Functions

We have seen in great detail that more and more nested recursion yields more
and more functions, ad infinitum. And lest one think that there is a concept of
“mega-recursion” that captures effectiveness altogether, we have seen how such
functions could be effectively indexed (add a new clause for mega-recursion)
and then effectively diagonalized to yield an intuitively computable function
that is not mega-recursive. The only solution, we saw, is to not leave “targets”
everywhere in the Cantorian table of function values for the impending diago-
nalization to strike. (Think of the children’s game BattleshipTM. It’s easy to
win if every ship of your opponent has to sit on the diagonal of the grid!)

The moral is that capturing the total computable functions requires that
we think about partial functions that are undefined on some arguments. In
computational terms, these undefined values correspond to the program or de-
scription of the function going into an “infinite loop” or running off the end of
an unbounded search. Infinite loops and partial functions are the price we pay
for a computer language capable of computing all intuitively computable total
functions. To catch all the flounder, we have to put up with catching some old
tires. The “net” of an effective definitional language is too coarse to do the
sorting for us.

5.1 Partial Functions

First some notation on partial functions. I know you have probably seen this
before, but notation is not standard so choices must be clarified at the outset.

1. A relation R on A×B is just a subset of A×B.

2. We write R(a, b) to mean (a, b) ∈ R.

3. dom(R) = {a ∈ A|∃b∈B((a, b) ∈ R)}.

39



40 CHAPTER 5. THE PARTIAL RECURSIVE FUNCTIONS

4. range(R) = {b ∈ B|∃a∈A((a, b) ∈ R)}.

5. A function f : A→ B is a single-valued relation in A×B.

6. If x 6∈ dom(f) then we say that f(x) is undefined.

7. A function f is total with respect to some set A (usually understood from
context) just in case dom(f) = A.

8. A standard convention is to denote total functions with lower-case Latin
letters like f, g, h and partial functions with lower-case Greek letters like
φ, ψ.

The following points are very important.

1. We write φ(x) ' y when we mean that (x, y) ∈ f . Thus, one is not
entitled in the theory of partial functions to assume that closed terms like
f(6) denote. Since the proof rules governing function symbols and identity
presuppose that primitive functions in the logical language are total, this
means that the notation φ(x) ' y must be eliminated as shown before
such rules are applied in a proof.

2. The composition operator is extended to partial functions in an obvious
way: if any function in a composition fails to return a value, the whole
composition is undefined as well. More precisely, the whole composition

C(ψ, φ1, . . . , φn)(~x)

is undefined just in case any one of the component applications φ1(x) is
undefined or they are all defined but

ψ(φ1(~x), . . . , φn(~x))

is undefined.

3. Similarly, the primitive recursion R(g, f)(n, ~x) is undefined if any inter-
mediate value involved in the computation of R(g, f)(n, ~x) is undefined.

5.2 Minimalization

There are lots of ways to introduce partial yet calculable functions. One such
way is to close Prim under the minimalization operatorM , whereM(φ) denotes
the unique function:

(µx)φ(x, ~y) ' 0,

which returns the least x such that φ(x, ~y) ' 0 and φ(z, ~y) is defined and
nonzero for all z < x. Note that whenever an “infinite loop” is hit among
the successive computations φ(0, ~y), φ(1, ~y), φ(2, ~y), . . . the whole minimalization
crashes. Thus, we think of minimalization as a stupid, “serial” search that goes
off the deep end if any successive computation doesn’t halt.
As before, let

(µx)R(x, ~y) ' (µx)[sg(χR(x, ~y))].



5.3. THE ZEN OF DOVETAILING 41

5.3 The Zen of Dovetailing

Suppose we want to find a, b such that R(a, b, ~z) is true. A dumb way to proceed
is to set

a(~z) ' (µx)[(µy)R(x, y, ~z)];

b(~z) ' (µy)[(µx)R(x, y, ~z)].

This is dumb, for suppose that R(1, 1, ~z) holds but R(x, 0, ~z) fails for all x. Then
b(~z) is undefined, for the inner search is handed y = 0 by the outer search and
goes off the deep end waiting to find a matching x.

It is a curious historical fact that while medieval Western philosophy was
employed by the Church to come up with static demonstrations of timeless
Church dogmas, Zen masters in medieval Japan made their way in the world
by giving fencing advice to samurai warriors. Since samurai wore thin armor
and carried lethal blades (capable of slicing a human body from shoulder to hip
in one stroke) it was a matter of the utmost importance to strike all of one’s
enemies first on the battlefield. Only fractions of seconds separated life from
death, so in a field of expert enemies, it would be a (truly) fatal error to focus
on one enemy to the exclusion of the others. This fatal focus of attention on an
isolated feature of battle was called a “suki”. Buddhists recognized “suki” as a
special symptom of the general human weakness of trying to conceptualize and
partition reality. There is a Zen koan about the “thousand armed” bodhisattva
(bodhisattva = “all but dissertation buddha”) Kannon. If Kannon uses only one
of her arms to perform each task to completion, to the exclusion of all others
(serial computation), then she/he is no more powerful than a human; but if
she avoids “suki” and works on all problems with all arms at once (parallel
computation) she can achieve marvels.

We will use our n-ary encodings to achieve the same result. Instead of
searching for the first component and then for the second, we search for the
code number of a pair whose components satisfy the relation. Then we return
the desired component of the number we find.

a(~z) ' ((µw)R((w)0, (w)1, ~z))0;

b(~z) ' ((µw)R((w)0, (w)1, ~z))1.

Searching in parallel by minimalization over a coded tuple is called dovetailing
because infinite searches are interleaved together to avoid “suki”. This is the
basic programming technique in recursive function theory and is involved in
almost every interesting construction. We will employ it shortly.

5.4 The Partial Recursive Functions

Let Part denote the least set X such that

1. the basic functions o, s, pi
k are all in X;



42 CHAPTER 5. THE PARTIAL RECURSIVE FUNCTIONS

2. X is closed under the extended notions of composition, primitive recursion,
and minimalization.

Although composition and primitive recursion produce total functions from total
functions, once minimalization is applied we end up with partial functions in
the mix, so we have to use our extended notions of composition and primitive
recursive to deal with them.

Sadly, the standard way of talking is screwed up, because the partial recur-
sive functions include total functions, which are then the total partial recursive
functions. This silly decision is softened by calling the total partial recursive
functions simply the total recursive functions or simply the recursive functions.
Let Tot denote the total recursive functions. It would have been better to call
the partial recursive functions the recursive functions and the total ones the
total recursive functions, but the damage of putting the qualifier on the broader
class is already done. Where is Aristotle when you need him?

The following is immediate (why?) and allows us to retain all our earlier
work!

Proposition 5.1

1. Prim ⊆ Part.

2. If Prim is closed under an operator, then so are Part and Tot.

5.5 Indexing the Partial Recursive Functions

One might suppose it would make more sense to index Tot instead of Part,
since the intuitively effective, total functions were the ones we initially wanted
to capture. But this proposal raises a dilemma. If the indexing were intuitively
effective, then we could diagonalize (because the functions are total) and pro-
duce a total effective function that is not total recursive, undermining our hope
to have captured all the intuitively effective total functions. But if the indexing
is not effective, we can’t use it to construct intuitively effective functions. We
escape the dilemma by indexing the partial recursive functions. Then if we have
indeed caught all the intuitively effective functions, it follows that we can’t ef-
fectively sort the total indices from the partial ones. That’s how we will escape
from the diagonal argument.

To index Part, we simply add a clause for minimalization to our earlier
indexing of Prim. The arity of the function minimalized should be one plus the
arity k of the function we want to obtain. To reflect the fact that the indexed
functions may end up being partial, we write φk

x instead of fk
x .



5.6. THE “UNIVERSAL MACHINE” THEOREM 43

k = 0 ⇒ φk
x = x

k > 0 ∧

lh(x) = 0 ⇒ φk
x = C(o, p1

k);

lh(x) = 1 ⇒ φk
x = C(s, p1

k);

lh(x) = 2 ⇒ φk
x = p

min((x)0,k)
k ;

lh(x) = 3 ⇒ φk
x = C(φlh((x)1)

(x)0
, φk

((x)1)0
, . . . , φk

((x)1)lh((x)1)−̇1
);

lh(x) = 4 ⇒ φk
x = R(φk−̇1

(x)0
, φk+1

(x)1
);

lh(x) = 5 ⇒ φk
x = M(φk+1

(x)0
);

lh(x) > 5 ⇒ φk
x = C(o, p1

k).

5.6 The “Universal Machine” Theorem

We now have an indexing φk
n of Part. But n and k are parameters to φk

n, not
arguments. In the case of Prim, we provided an effective indexing fk

n of Prim
such that

g(n, ~x) = fk
n(~x)

is not primitive recursive. So it would be of no small interest if in this case there
were to exist a universal function ψ in Part such that

ψ(n, 〈~x〉) = φk
n(~x) if φk

n(~x) is defined;

ψ(n, 〈~x〉) is undefined if φk
n(~x) is undefined.

Notice that the k parameter is dropped because the code number of the argu-
ment list effectively “tells” the program how many inputs to expect. It will turn
out that the existence of such a function is of broad significance for the theory
of computability. It is much more useful for later work to first define a primitive
recursive relation

U(n, t, y, i)

such that for each n, t, y, and k-ary ~x,

∃t U(n, t, y, 〈~x〉) ⇐⇒ φk
n(~x) ' y.

Think of t as a “resource bound” on computation so that, intuitively,

U(n, t, y, 〈~x〉) ⇐⇒ n halts with output y on the k inputs ~x after using
no more than quantity t of computational resources.



44 CHAPTER 5. THE PARTIAL RECURSIVE FUNCTIONS

The universal relation is often called the Kleene predicate. The existential
quantifier is now intuitive. A halting computation halts under some finite bound
on resources. Computations that never halt use more and more resources. (This
intuitive gloss works better for more “computery” formalisms like Turing and
Urm machines than it does for partial recursion).

Then we can recover the desired universal function y by dovetailing the
search for the output y with the search for a suitable runtime bound t and then
returning the component that represents the output.

ψ(n, 〈~x〉) ' ((µz)U(n, (z)0, (z)1, 〈~x〉))1.

Since a runtime bound and output exist only if the computation halts with that
output, and since the predicate will be shown to be primitive recursive, the
minimization is guaranteed to find the pair and return the correct output.

It remains only to exhibit a primitive recursive decision procedure for
U(n, t, y, 〈~x〉). In our definition, the “resource bound” will concern the sizes of
code numbers of tuples of outputs of intermediate computations. The tuples
will be “horizontal” (synchronic) in the case of composition and “vertical” (di-
achronic) in the case of recursion and minimalization. The resource bound will
allow us to bound quantifiers in our primitive recursive derivation. We define
the parametrized family by simultaneous recursion and course-of-values recur-
sion. You might be worried about stuffing variable numbers of arguments, but
recursive calls to U take care of it! Watch closely how that works. (I guess
you will have to when you do the exercise). Strictly speaking, this is a course-
of-values recursion (on which variable?), so aren’t you happy we already know
that course-of-values recursion is a primitive recursive operator?

U(n, t, y, i) = [lh(i) = 0 ∧ y = n] ∨
[lh(i) > 0 ∧ lh(n) = 0 ∧ y = 0] ∨
. . . some other disjuncts . . .
[lh(i) > 0 ∧ lh(n) = 3 ∧ (∃z≤t)[lh(z) = lh((n)1) ∧
(∀w≤lh((n)1))U(((n)1)w, t, (z)w, i) ∧ U(d(n)0, t, y, z)] ∨
. . . more disjuncts . . .

Exercise 5.1 Finish it. Also, where can you place this definition in the Grze-
gorczyk hierarchy? Draw on work you have already done and explain as simply
as possible (i.e., in a way that you might remember).

Observe that the definition of this relation is elementary. Thus, we have
shown:

Proposition 5.2 (Kleene Normal Form) There exists an elementary rela-
tion U such that for each n, n-ary x,

φk
n(~x) ' ((µz)U(n, (z)0, (z)1, 〈~x〉))1.



5.7. THE S-M-N THEOREM 45

This is remarkable. It says that all the power of primitive recursion after Grze-
gorczyk class E3 is superfluous for arriving at all the partial recursive functions.
In fact, E2 suffices. That is the solution to Hilbert’s 10th question. The following
is a less informative corollary.

Proposition 5.3 (Universal Machine Theorem) There exists a u such that
for each n, k, and k-ary x,

φk
n(~x) = φ2

u(n, 〈~x〉).

Proof. Just set φ2
u(n, 〈~x〉) = ((µz)U(n, (z)0, (z)1, 〈~x〉))1, which is justified by

the fact that the right-hand side is a partial recursive derivation tree. a

5.7 The s-m-n Theorem

Despite the nearly great name, the s-m-n theorem is a pretty tame fact. It says
that you can effectively “stuff” arguments to obtain programs that act as though
the arguments were already received. But it will turn out that together with the
universal theorem, the s-m-n property codifies everything about our indexing
that is essential for computability theory. So by simply assuming the universal
and s-m-n theorems as axioms, we can ditch all the fussy details once and for
all! But not until we prove it and show that it has that pivotal significance.

Proposition 5.4 s-m-n Theorem There exists a primitive recursive function
sn

m(n, ~x), where ~x is m-ary, such that for each n-ary ~y,

φn
sn

m(i,~x)(~y) ' φm+n
i (~x, ~y).

How to prove it? Well, it’s pretty obvious we want sn
m(i, ~x) to return an

index of the y such that:

ψ(~y) ' φm+n
i (cx1(p

1
n)(~y), . . . , cxm(p1

n)(~y), p1
n(~y), . . . , pn

n(~y)).

This involves crossing from index i in the φm+n indexing to some index j in the
φn indexing.
First, we have to define a primitive recursive function proj such that for all
n-ary ~x,

φn
proj(i,n)(~x) ' xi.

But that’s easy, since our coding doesn’t care about arity:

proj(i, n) = proj(i)
= 〈i, 0〉.

Next, we need to be able to compute the index of a constant function from the
constant. Easy, but annoying.



46 CHAPTER 5. THE PARTIAL RECURSIVE FUNCTIONS

Exercise 5.2 Define a primitive recursive function const such that for all x,

φn
const(n)(x) ' n.

Hint: you could use the answer to exercise 3.

And we have to write a primitive recursive program that knows how to return
the index of a composition from the indices of the functions involved.

Exercise 5.3 Define a primitive recursive function comp such that for all j,
and m-ary i,

φk
comp(j,~ı) = C(φk

i1 , . . . , φ
k
im

).

Exercise 5.4 Now it’s easy to use the above to define sn
m(i, ~x).


