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Chapter 13

The Arithmetical Hierarchy

We may think of K as posing the problem of induction for computational de-
vices, for it is impossible to tell for sure whether a given computation will never
halt. Thus, K is effectively refutable and K is effectively verifiable. We know
from the philosophy of science that universal hypotheses are refutable and exis-
tential hypotheses are verifiable. This correspondence also holds, if we think of
the expressions of the sets in Kleene normal form. Kleene normal form prenex
normal form with U as the only predicate. Thus, we have

K(x) ⇐⇒ ∃z U(x, (z)1, (z)2, 〈x〉)

K(x) ⇐⇒ ∀z ¬U(x, (z)1, (z)2, 〈x〉)
Thus, we may think of K(x) as an “existential hypothesis” and of K(x) as
a “universal hypothesis” given that instances of U are “observable” (e.g., the
“scientist” is treating program x as a black box and watching what it does in
various numbers of steps of computation on input x.

It is also notorious in the philosophy of science that most hypotheses are
neither verifiable nor refutable. Thus, Kant’s antinomies of pure reason include
such statements as that space is infinite, matter is infinitely divisible, and the
series of efficient causes is infinite. These hypotheses all have the form

∀x ∃y (Φ(x, y))

But computers have their own “antinomies of pure reason”, for example:

Tot(x) ⇐⇒ φx is total ⇐⇒ ∀w ∃z U(x, (z)1, (z)2, 〈w〉)

Inf (x) ⇐⇒ Wx is infinite ⇐⇒ ∀w ∃z ∃y>w (U(x, (z)1, (z)2, 〈y〉))
In both cases, things get worse as the quantifier structure of the hypothesis
becomes more complex, where complexity is measured as number of blocks of
quantifiers: i.e., ∃∀∀∀∃∃ counts as three blocks. Also, verification and refutation
depend on whether the block is ∃ or ∀ and in general we will want to keep track
of the leading quantifier. We can count quantifier alternations as follows.
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102 CHAPTER 13. THE ARITHMETICAL HIERARCHY

13.1 The Arithmetical Hierarchy

Σ[A]0(P ) ⇐⇒ P is recursive in A

Σ[A]n+1(P ) ⇐⇒ ∃R (Σ[A]n(R)] ∧ ∀x (P (x) ↔ ∃y ¬R(x, y))

Π[A]0(P ) ⇐⇒ P is recursive in A

Π[A]n+1(P ) ⇐⇒ ∃R (Π[A]n(R)] ∧ ∀x (P (x) ↔ ∀y ¬R(x, y))

∆[A]n(P ) ⇐⇒ Σ[A]n(P ) ∧Π[A]n(P )

Arith =
⋃

nΣ[A]n

N.B. you can define the whole thing as a hierarchy of sets rather than relations
by treating relations as sets of coded n-tuples.

Proposition 13.1 (basic structure and closure laws)

1. ∆[A]n = recursive in A; Σ[A]n = r.e. in A; Π[A]n = co-r.e. in A

2. Π[A]n(R) ⇐⇒ Σ[A]n(R)

3. ∆[A]n ⊆ Σ[A]n, Π[A]n ⊆ ∆[A]n+1

4. ∆[A]n, S[A]n, P [A]n are closed downward under ≤M

5. ∆[A]n is closed under ∧,∨,¬

6. Σ[A]n is closed under ∧,∨,∃

7. Π[A]n is closed under ∧,∨,∀

Exercise 13.1 Prove it. Hint: use logical rules and some induction on n.
These are all very easy so don’t work too hard!

13.2 The Arithmetical Hierarchy Theorem

We don’t know yet whether the whole hierarchy collapses into some finite level.
The simplest way to do it is to index the levels in the hierarchy the way we did
for the r.e. sets and then diagonalize all the levels at once.

R is universal for Γ ⇐⇒
[
Γ(R) ∧ ∀P

(
Γ(P ) → ∃n ∀~x (P (~x) ↔ R(n, 〈~x〉) )

)]
Define

W1,x(〈~y〉) ⇐⇒ Wx(〈~y〉)

Wn+1,x(~y) ⇐⇒ ∃z (¬Wn,x(〈~y, ~z〉))
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Proposition 13.2 (universal indexing theorem)

∀n>0(R(x, ~y) ⇐⇒ Wn,x(〈~y〉) is universal for Σn)

Proof: by induction.
The base case is immediate by the fundamental theorem for r.e. sets.
Inductively, suppose that Wn,x(〈~y〉) is universal for Σn.

Now suppose Σn+1(R).

So ∃R
[
Σn(R) ∧ ∀~x(P (~x) ↔ ∃y (¬R(~x, y)))

]
.

By the induction hypothesis there exists k such that

∀x P (x) ⇐⇒ ∃z ¬Wn,k(〈~x, z〉)
⇐⇒ Wn+1,k(x)

a
We can now form the usual Cantorian table for the Σn sets just as we did

for the r.e. sets before:
Tn[x, y] = Wn,x(y)

Counterdiagonalizing, we obtain a non Σn set as follows

Kn(x) ⇐⇒ ¬Tn[x, x]
⇐⇒ ¬Wn,x(x)

Proposition 13.3 (arithmetical hierarchy theorem)

1. Σn(Kn) ∧ ¬Π[A]n(Kn).

2. ¬Σn(Kn) ∧Π[A]n(Kn).

Proof: (1) the counter-diagonal set Kn differs from each set Wn,x. By the
universal indexing theorem, Kn therefore differs from each Σn set. On the other
hand, the definitional form of Kn witnesses its membership in Πn.
(2) follows by duality.a
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13.3 Jumps and the Hierarchy

We can also use the jumps to hold the hierarchy apart. An advantage of this
approach is that it yields a constructive perspective on the ∆ classes.

Proposition 13.4 (Post’s theorem)

1. Σ[A]n+1(R) ⇐⇒ ∃P (Π[A]n(P ) ∧R is r.e. in P ).

2. Σ[A]n+1(R) ⇐⇒ ∃P (Σ[A]n(P ) ∧R is r.e. in P ).

3. Σ[A]n+1(R) ⇐⇒ R is r.e. in A(n).

4. ∆[A]n+1(R) ⇐⇒ R is recursive in A(n).

5. n > 0 ⇒ A(n) is Σ[A]n-M -complete.

Corollary 13.5

1. Σn+1(R) ⇐⇒ R is r.e. in 0(n).

2. ∆n+1(R) ⇐⇒ R is recursive in 0(n).

3. n > 0 ⇒ 0(n) is Σn-M -complete.

Proof: following Soare p. 64

1. Suppose Σ[A]n+1(R).

So ∃P
[
Σ[A]n(P ) ∧ ∀x (P (x) ↔ ∃y P (x, y))

]
.

By the P -relativized projection theorem, R is r.e. in P .

Conversely, suppose ∃P (Π[A]n(P ) ∧R is r.e. in P ).

Then by the relativized fundamental theorem of r.e. sets:

R(x) ⇐⇒ WP,y(x)
⇐⇒ ∃w UP (y, (w)0, (w)1, 〈x〉)
⇐⇒ ∃w UP |w(y, (w)0, (w)1, 〈x〉)
⇐⇒ ∃w ∃ finite S (S = P |w ∧ US(y, (w)0, (w)1, 〈x〉))
⇐⇒ ∃w ∃k (lh(k) = w ∧

∀v≤w((P (v) ↔ ∃u ≤ w (k)w = y) ∧ Uk(y, (w)0, (w)1, 〈x〉))

where we define Uk(y, a, b, 〈x〉) just like the Kleene predicate except that when
lh(y) = 6, we have

Uk(y, a, b, 〈x〉) = 1 if ∃u≤w (k)w = y and

Uk(y, a, b, 〈x〉) = 0 otherwise.

This is clearly recursive in all arguments including k.
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Also, (P (v) ↔ ∃u≤w (k)w = y) is Σ[A]n+1 since Π[A]n(P ).

Hence, R(x) is Σ[A]n+1.

2. The preceding construction could have been done just as well with P .

5. By in induction: A′ is Σ[A]1-complete (proposition 12.4.4).

Suppose that A(n) is Σ[A]n-complete.

Hence A
(n)

is Σ[A]n-complete.

Let Σ[A]n+1(B).

So ∃P Σ[A]n(P ) ∧B is r.e. in P (by part 2).

So B is r.e. in A(n), since P≤MA(n), (by induction hypothesis).

So B≤MA(n+1) (12.4.4).

3. By parts 1 and 5.

4.

∆[A]n+1(R) ⇐⇒ Σ[A]n+1(R) ∧ Σ[A]n+1(R)
⇐⇒ R,R are r.e. in A(n) (by part 3)

R ≤ A(n) (by the relativized proof that recursive sets are r.e. and co-r.e.).a

Exercise 13.2 How many ∆[A]n degrees are there?

Proposition 13.6 (arithmetical hierarchy theorem again)

1. Σ[A]n(A(n)) ∧ ¬Π[A]n(A(n)).

2. ¬Σ[A]n(A
(n)

) ∧Π[A]n(A
(n)

).

Proof: A(n+1) is Σ[A]n-M -complete (by proposition 13.2.4).

A(n) is ∆[A]n complete (by proposition 13.2.5).

Suppose Π[A]n+1(A(n+1)).

Then ∆[A]n+1(A(n+1)).

Then A(n+1) ≤ A(n), contradicting proposition 12.4.2.a


