
Chapter 11

Productive Sets

The theory of computability was originally invented to unpack the full signifi-
cance of Gödel’s incompleteness theorems. As we have seen, the main issue was
to arrive at a comprehensive mathematical explication of “effectiveness” that is
not subject to diagonalization.

But one might also wish to study the Gödel phenomenon, itself, in the newly
erected, general framework. The “Gödel phenomenon” may be expressed by
saying that every attempt to effectively enumerate the truths of arithmetic is
bound to fail. Fix a Gödel numbering of formulas in the language of arithmetic.
Let A denote the set of all Gödel numbers of truths of arithmetic. Then:

∀n (A 6= Wn)

So for each proposed recursive enumeration Wn of A, either some falsehood is
included (unsoundness) or some truth is missed (incompleteness). Equivalently,
for each enumeration Wn, if Wn doesn’t include a falsehood, then Wn misses a
truth.

∀n
[
(Wn ⊆ A) → ∃x (A(x) ∧ ¬Wn(x))

]
But the situation is more interesting than that. Gödel’s construction allows one
to effectively produce the missing truth from a sound enumeration. In other
words, the existence claim is uniform:

∃ total recursive f ∀n
[
(Wn ⊆ A) → (A(f(x)) ∧ ¬Wn(f(x)) )

]
This situation is computationally stronger than the non-uniform version, which
states only that A is not recursively enumerable. What more, beyond non r.e.-
ness does it imply? This encourages us to formulate the Gödel phenomenon as
a general, recursion theoretic property of sets:

S is productive ⇐⇒
∃ total recursive f ∀n

[
(Wn ⊆ S) → (S(f(x)) ∧ ¬Wn(f(x)) )

]
Then f is called the productive function for S.
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Everybody who hears about Gödel has thought of the following idea. Each
r.e. approximation to a productive set misses something. What if we keep adding
the new things to what we started with?

Proposition 11.1 Each productive set has an infinite r.e. subset.

Proof: there is a total recursive f such that for each x, y,

Wf(x,y) = Wx ∪ {y}

Exercise 11.1 Prove it.

Let g be the productive function of S. Let Wa = ∅. Now do what everybody
wants to:

h(0) = a

h(n+ 1) = f(h(n), g(h(n)))
d(n) = g(s(n))

We know that rng(d) is infinite because Wh(n) ⊆ S (by induction on n), so
¬Wh(n)(g(n)). And since d is total recursive, rng(d) is r.e. a

Now we may ask: is productivity (a.k.a. the Gödel phenomenon) just the
same as non-r.e.-ness or is it something more? Our first clue is that K, our
favorite example of a non-r.e. set, is productive.

Proposition 11.2 K is productive.

Proof: the identity function p1
1 serves as a productive function.

For suppose that Wn ⊆ K.
We need to show that K(n) ∧ ¬Wn(n).
Suppose, for reductio, that Wn(n).
Then K(n), by the definition of K.
But this contradicts Wn ⊆ K.
So ¬Wn(n), i.e., Wn(n).
Now suppose, for reductio, that K(n).
Then Wn(n), by the definition of K.
But this again contradicts Wn ⊆ K.
So ¬K(n), i.e., K(n).a

Roger Penrose turned this argument into a second career by claiming it
proves that humans are not machines. It can’t be producing the missing ele-
ments of K that makes us superior, since that is a matter of computing the
identity function! It can’t be that we see that the the produced object belongs
to K, for arbitrary n, since that depends on seeing first that Wn ⊆ K, and it
isn’t likely we can “see” that. If we could, then cracking the Pentagon’s web
pages would be a cake walk in comparison. I think the linchpin of the argument
is his cryptic discussion that complex systems n for which we couldn’t “see”
Wn ⊆ K wouldn’t count as systems of mathematics (which must be simple and
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intersubjective), so the range of n for which we must decide the question is
radically restricted.
The next result is that productivity is closed upward in the many-one reducibil-
ity ordering

Proposition 11.3 (S is productive ∧ S≤MQ) ⇒ Q is productive.

Proof: let g be the productive function and let f witness the reduction
relation. We need to construct from these a total recursive productive function
h for Q. This function must have the property:

∀n (Wn ⊆ Q→ (Q(h(x)) ∧ ¬Wn(h(x)))

Here’s an idea for how to proceed. First we construct a total recursive d that
computes the index of the inverse image of an r.e. set under the reduction func-
tion f :

∀n (Wd(n) = f−1(Wn))

This can be done as follows. Define partial recursive

ψ(x, y) ≈ (µz) U(x, (z)0, (z)1, 〈f(y)〉)

Applying s-m-n, we obtain total recursive d such that

φd(x)(y) ≈ ψ(x, y)

Thus:

Wd(x)(y) ⇐⇒ ψ(x, y) ↓
⇐⇒ (µz) U(x, , (z)0, (z)1, 〈f(y)〉) ↓
⇐⇒ (f−1(Wn))(y)

We now propose that h(x) = f(g(d(x))) is a productive function for Q.

For suppose that Wn ⊆ Q.

Then Wd(n) = f−1(Wn) ⊆ S, since f witnesses S≤MQ.

So since g is productive for S, S(g(d(n)) ∧ ¬Wd(n)(g(d(n))).

Since f witnesses S≤MQ, we have Q(f(g(d(n)))).

Since Wd(n) = f−1(Wn) and ¬Wd(n)(g(d(n))), we have ¬Wn(f(g(d(n)))).

So Q(f(g(d(n)))) ∧ ¬Wn(f(g(d(n)))).a

Corollary 11.4

• All co-r.e.-hard problems are productive.

• All index sets that are not experimentally verifiable are productive.
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Proof: the first follows from the fact that is co-.r.e.-complete. The second
follows from the Rice-Shapiro theorem.a

So we know that everything from K upward is productive. What about sets
below K? Clearly, the recursive ones cannot be productive because productivity
implies non-r.e. But even if there were non-recursive co-r.e. sets below K, they
couldn’t be productive.

Before we can show this, we require a strengthened version of the recursion
theorem.

Proposition 11.5 (The strengthened recursion theorem)

∀ total recursive f ∃ total recursive g (φf(g(x),x) = φg(x))

Proof: let total recursive f be given. Using the universal and s-m-n theo-
rems, construct total recursive s such that

φs(x,y)(z) ≈ φf(φx(x),y)(z)

By s-m-n again we obtain total recursive m such that:

φm(y)(x) ≈ s(x, y)

So
φφm(y)(x)(z) ≈ φf(φx(x),y)(z)

Now substitute m(y) for x.

φφm(y)(m(y))(z) ≈ φf(φm(y)(m(y)),y)(z)

Now define
g(y) = φm(y)(m(y)) = s(m(y),m(y))

This is total recursive since s,m are.
So we have

φg(y)(z) ≈ φf(g(y),y)(z)

a Now we may show the following characterization of productivity. According
to this result, productivity is equivalent to non-r.e.-ness just in case there are
no incomplete r.e. degrees. The proof gets the Deviousness Award for the day.

Proposition 11.6 (Myhill’s theorem) A is productive ⇐⇒ A is r.e.-hard.

Proof: by corollary 11.4, co-r.e.-hardness implies productivity. But by propo-
sition 8.1, A is r.e.-hard just in case A is co-r.e.-hard.
Conversely, suppose A is productive with productive function g.
Let arbitrary r.e. set Wn be given. Using the universal construction and s-m-n,
obtain total recursive s such that:

φs(x,y)(z) ≈ 0((µw)(g(x) = z ∧ U(n, (z)0, (z)1, 〈y〉)) )
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Thus

Ws(x,y) = {g(x)} if Wn(y)
and

Ws(x,y) = ∅ otherwise.

Applying the strengthened recursion theorem we obtain a total recursive h such
that

Wh(y) = Ws(h(y),y)

Now I claim that the composition C(g, h)(x) = g(h(x)) witnesses Wn≤MA.
For suppose Wn(y).
Then Wh(y) = Ws(h(y),y) = {g(h(y))}.
Suppose for reductio that A(g(h(y))).
Then Wh(y) = {g(h(y))} ∈ A.
So since g is the productive function of A, A(g(h(y))). Contradiction.
So A(g(h(y))).
Now suppose that Wn(y). Then Wh(y) = Ws(h(y),y) = ∅ ∈ A.
So since g is the productive function of A, A(g(h(y))).a

11.1 Simple Sets and Incomplete Degrees

Our original question was whether the Gödel phenomenon is the same as being
non-r.e. We now know that all productive sets are co-r.e.-hard. This sounds like
something different from being non-r.e., since there might be non-r.e.-complete,
non-recursive, co-.r.e. degrees, and these would be non-r.e. sets that fail to be
productive. But are there co-r.e., non-recursive, co-r.e.-incomplete degrees? We
haven’t seen one yet since all of our non-r.e. sets have resulted from reducing K.
So maybe productivity is the same as non-r.e.-ness after all!

But maybe we can turn the issue around. Maybe we can use what we have
learned to find out whether there are incomplete co-r.e. (and hence incomplete
r.e.) degrees. Since such degrees would not reduce K, that would be something
new! Turning matters around, we now know that every complete r.e. set has a
productive complement. Productive complements all contain infinite r.e. sets.
So how about trying to construct an r.e. set S whose complement S contains
no infinite r.e. set? That’s not quite enough, because the complement S might
be finite, and all co-finite sets are recursive (use a finite lookup table for the
complement). But it is enough if we also require that the complement S is
infinite.

S is simple ↔

1. S is r.e.
2.S is infinite
3.S has no infinite r.e. subset.

.
Now I state the obvious:
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Proposition 11.7

1. Simple sets are r.e.

2. Simple sets are not r.e.-complete.

3. Simple sets are not recursive.

Proof:

Exercise 11.2 Make sure that these are obvious.a

So if they exist, simple sets witness the difference between the Gödel phe-
nomenon and mere non-r.e.-ness. More fundamentally, they represent a new
way to prove non-verifiability, since they can’t reduce K. This idea is due to
Emil Post.

Proposition 11.8 Post’s Theorem There exists a simple set.

Proof: using the universal construction, define

φa(x) ≈ φx((µz)(φx(z) > 2x))

We know that ranges of partial recursive functions are r.e., so

Ea is r.e. (11.1)

Next, let S be an infinite r.e. set.
Then for some b, S = Eb.
Then since Eb is infinite, (µz)(φb(z) > 2b) ↓.
So φx((µz)(φx(z) > 2x)) ↓.
Hence, φx((µz)(φx(z) > 2x)) ∈ Ea ∩ Eb.
We have just shown that Ea catches part of each infinite, r.e. set Eb, so

Ea contains no infinite r.e. set. (11.2)

Finally, for each such x, φa(x) > 2x.
Hence,

Ea is infinite. (11.3)

a
Now we know that every complete r.e. set has a productive complement,

which implies that the complement is infinite.

Exercise 11.3 Which of the examples prior to proposition 8.4 are productive?
Prove your answer, including positive and negative claims.

Exercise 11.4 (Rogers exercise 7-25) Show that

(A is productive ∧B is r.e. ∧B ⊆ A) ⇒ A−B is productive.


