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WHY I AM NOT A BAYESIAN*
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cations of them. It ou

ght to do more; in particular, confirmation theory
ought to explain both

methodological truisms and particular judgements
ithin the history of science. By ‘explain’ 1 mean

>

stion-begging as-
sumptions, to reveal particular historical judgements as in conformity
with its principles.

Almost everyone interested in confirmation
confirmation relations ought to be analysed in terms of probability rela-
tions. Confirmation theory is the theory of probability plus introductions

pendices. Moreover, almost everyone believes that confirmation
proceeds through the formation of conditional probabilities of hypotheses
idence. The basic tasks facing confirmation theory are thus just those

of explicating and showing how to determine the probabilities that confir-

ta-scientific notions as
‘simplicity’, and so on in terms of
onal probabilities, and showing that

theory today believes that

‘confirmation’, ‘explanatory power’,
functions of probabilities and conditi
the canons and patterns of scientific inference result. It was not always so.
Probabilistic accounts of confirmation really became dominant only after
the publication of Carnap’s Logical Foundations of Probability (1950),
although of course many probabilistic accounts had preceded Carnap’s.

An eminent contemporary philosopher (Putnam 1967) has compared

Carnap’s achievement in inductive logic with Frege’s in deductive logic:

a small and theoretically uninteresting
¢ inference, but after him the founda-

controversial, as does the interpretation of probability, although, increas-
ngly, logical interpretations of probability are giving way to the doctrine
hat probability is degree of belief.! In very recent-years a few philosophers
have attempted to apply probabilistic analyses to derive and to explain
articular methodological practices and precepts, and even to elucidate
ome historical cases.
Tbelieve these efforts, ingenious and

admirable as many of them are, are
one the less misguided. For one thing,

probabilistic analyses remain at too

' A third view, that probabilities are to be

understood exclusively as frequencies, has been
ost ably defended by Wesley Salmon (1969)
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great a distance from the history of scientific practice to be really informa-
tive about that practice, and in part they do so exactly because they are
probabilistic. Although considerations of probability have played an im-
portant part in the history of science, until very recently, explicit probabil-
istic arguments for the confirmation of various theories, or probabilistic
analyses of data, have been great rarities in the history of science. In the
physical sciences at any rate, probabilistic arguments have rarely.occurred.
Copernicus, Newton, Kepler, none of them give probabilistic arguments
for their theories; nor does Maxwell or Kelvin or Lavoisier or Dalton or
Einstein or Schrodinger or....There are exceptions. Jon Dorling has
discussed a seventeenth-century Ptolemaic astronomer who apparently
made an extended comparison of Ptolemaic and Copernican theories in
probabilistic terms; Laplace, of course, gave Bayesian arguments for astro-
nomical theories. And there are people—Maxwell, for example—who
scarcely give a probabilistic argument when making a case for or against
scientific hypotheses but who discuss methodology in probabilistic terms.
This is not to deny that there are many areas of contemporary physical
science where probability figures large in confirmation; regression analysis
is not uncommon in discussions of the origins of cosmic rays, correlation
and analysis of variance in experimental searches for gravitational waves,
and so on. It is to say that, explicitly, probability is a distinctly minor note
in the history of scientific argument.

The rarity of probability considerations in the history of science is more
an embarrassment for some accounts of probability than for others. Logi-
cal theories, whether Carnap’s or those developed by Hintikka and his
students, seem to lie at a great distance from the history of science. Still,
some of the people working in this tradition have made interesting steps
towards accounting for methodological truisms. My own inclination is
to believe that the interest such investigations have stems more from
the insights they obtain into syntactic versions of structural connections

among evidence and hypotheses than to the probability measures they

mesh with these insights. Frequency interpretations suppose that for each
hypothesis to be assessed there is an appropriate reference class of hypoth-

eses to which to mm&mn, it, and the prior probability of the hypothesis is the

frequency of true hypotheses in this reference class. The same is tru
for statements of evidence, whether they be singular or general. Th
matter of how such reference classes are to be determined, and determine
so that the frequencies involved do not come out to be zero, is a questio
that has only been touched upon by frequentist writers. More to the point
for many of the suggested features that might determine reference classes.
we have no statistics, and cannot plausibly imagine those who figure in th
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posed by the first kind of Bayesian are either implausible or incoherent,
and that, for want of such principles, the explanations the second kind of
Bayesians provide for particular historical cases and for truisms of method
are chimeras. Finally, I claim that there are elementary but perfectly
common features of the relation of theory and evidence that the Bayesian
scheme cannot capture at ail without serious—and perhaps not very plau-
sible—revision.

It is not that I think the Bayesian scheme or related probabilistic ac-
counts capture nothing. On the contrary, they are clearly pertinent where
the reasoning involved is explicitly statistical. Further, the accounts devel-
oped by Carnap, his predecessors, and his successors are impressive sys-
tematizations and generalizations, in a probabilistic framework, of certain
principles of ordinary reasoning. But so far as understanding scientific
reasoning goes, I think it is very wrong to consider our situation to be
analogous to that of post-Fregean logicians, our subject-matter trans-
formed from a hotchpotch of principles by a powerful theory whose out-
lines are clear. We flatter ourselves that we possess even the hotchpotch.
My opinions are outlandish, I know; few of the arguments I shall present in
their favour are new, and perhaps none of them is decisive. Even so, they
seem sufficient to warrant taking seriously entirely different approaches to
the analysis of scientific reasoning.

The theories I shall consider share the following framework, more or
less. There is a class of sentences that express all hypotheses and all actual
or possible evidence of interest; the class is closed under Boolean oper-
ations. For each ideally rational agent, there is a function defined on all
sentences such that, under the relation of logical equivalence, the function
is a probability measure on the collection of equivalence classes. The
probability of any proposition represents the agent’s degree of belief in
that proposition. As new evidence accumulates, the probability of a prop:
osition changes according to. Bayes’s rule: the posterior probability of a
hypothesis on the new evidence is equal to the prior conditional prob-

ability of the hypothesis on the evidence. This is a scheme shared

by diverse accounts of confirmation. I call such theories ‘Bayesian’, or.

sometimes ‘personalist’.

i

We certainly have grades of belief. Some claims I more or less believe ‘_
some I find plausible and tend to believe, others I am agnostic about, some:

Ifind implausible and far-fetched, still others I regard as positively absurd
I think everyone admits some such gradations, although descriptions o
them might be finer or cruder. The personalist school of probability the
orists claim that we also have degrees of belief, degrees that can have an
value between 0 and 1 and that ought, if we are rational, to be represent
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able by m.?ogc::% function. Presumably, the degrees of belief are to
co-vary with everyday gradations of belief, so that one regards a prop-
osition as preposterous and absurd just if his degree of belief in it is
somewhere near zero, and he is agnostic just if his degree of belief
is moaosr.maw near a half, and so on. According to personalists, then, an
am.m:u\ rational agent always has his degrees of belief &macﬁmm_ SO mw to
mm:.m@ the axioms of probability, and when he comes to accept a new
belief, he also forms new degrees of belief by conditionalizing on the newly
wnnﬂzoa belief. There are any number of refinements, of course; but that
is the basic view. u v

. Why should we think that we really do have degrees of belief? Personal-
ists have an ingenious answer: people have them because we can measure
the degrees of belief that people have. Assume that no one (rational) will
accept a wager on which he expects a loss, but anyone (rational) will accept
any wager on which he expects a gain. Then we can measure a person’s

degree of belief in proposition P by finding, for fixed amount v the highest

amount ¥ such that the person will pay u in order to receive ,: +Vvif Pis

true, E: «m.om?o nothing if P is not true. If is the mwmmnmmﬁ amount the

agent is willing to pay for the wager, his expected gain on paying u must be

Na%m The agent’s gain if P is the case is v; his gain if P is not the case is —

u. Thus

v prob(P)+(-u)- prob(~ P)=0.
Since prob (~P) =1 —~prob(P), we have
prob(P)=u/(u+v).

H.sm reasoning is clear: any sensible person will act so as to maximize
his expected gain; thus, presented with a decision whether or not to pur-
chase a bet, he will make the purchase just if his expected gain is greater
Em.: zero. So the betting odds he will accept determine his degr f
belief.2 Bee o

I'think that this device really does provide evidence that we have, or can
waoa_.uow, degrees of belief, in at least some propositions, but at H:w same
fime it is evident that betting odds are not an unobjectionable device for
the measurement of degrees of belief. Betting odds could fail to measure
degrees of belief for a variety of reasons: the subject may not believe that

? More detailed accounts of means for determining de i i
; A grees of belief may be fo
Momm. Itisa curjous .QQ that the procedures that Bayesians use for %Waﬂ?ﬁ“ﬁﬂﬂwmmw
egrees of belief empirically are an instance of the general strategy described in Glymour 1981
:..u. Indeed, m:o strategy typically used to determine whether or not actual people behav '
ational Bayesians involves the bootstrap strategy described in that chapter. P o
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the bet will be paid off if he wins, or he may doubt that it is clear what
constitutes winning, even though it is clear what constitutes losing. Things
he values other than monetary gain (or whatever) may enter into his
determination of the expected utility of purchasing the bet: for example, he
may place either a positive or a negative value on risk itself. And the very
fact that he is offered a wager on P may somehow change his degree of
belief in P. ,
Let us suppose, then, that we do have degrees of belief in at least some
propositions, and that in some cases they can be at least approximately
measured on an interval from 0 to 1. There are two questions: why should
we think that, for rationality, one’s degrees of belief must satisfy the
axioms of probability, and why should we think that, again for rationality,
changes in degrees of belief ought to proceed by conditionalization?
One question at a time. In using betting quotients to measure degrees of
belief, it was assumed that the subject would act so as to maximize expected
gain. The betting quotient determined the degree of belief by determining
the coefficient by which the gain is multiplied in case that P is true in
the expression for the expected gain. So the betting quotient determines
a degree of belief, as it were, in the role of a probability. But why should
the things, degrees of belief, that play this role be probabilities? Supposing
that we do choose those actions that maximize the sum of the product
of our degrees of belief in each possible outcome of the action and the
gain (or loss) to us of that outcome. Why must the degrees of belief that
enter into this sum be probabilities? Again, there is an ingenious argu-
ment: if one acts so as to maximize his expected gain using a degree-of-
belief function that is not a probability function, and if for every
proposition there were a possible wager (which, if it is offered, one
believes will be paid off if it is accepted and won), then there is a circum-
stance, a combination of wagers, that one would enter into if they were
offered, and in which one would suffer a net loss whatever the outcome.
That is what the Dutch-book argument shows; what it counsels is
prudence.

Some of the reasons why it is not clear that betting quotients are accu-
rate measures of degrees of belief are also reasons why the Dutch-book
argument is not conclusive: there are many cases of propositions in which
we may have degrees of belief, but on which, we may be sure, no accept-
able wager will be offered us; again, we may have values other than the
value we place on the stakes, and these other values may enter into our
determination whether or not to gamble; and we may not have adopted the
policy of acting so as to maximize our expected gain or our expected utility:

that is, we may save ourselves from having book made against us by
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obtains. The theorem does not tell us that in the limit any rational
Bayesian will assign probability 1 to the true hypothesis and probability 0
to the rest; it only tells us that rational Bayesians are certain that he will. It
may reassure those who are already Bayesians, but it is hardly grounds for
conversion. Even the reassurance is slim. Mary Hesse points out (1974:
117-19), entirely correctly I believe, that the assumptions of the theorem
do not seem to apply even approximately in actual scientific contexts.
Finally, some of the assumptions of stable estimation theorems can be
dispensed with if one assumes instead that all of the initial distributions
considered must agree regarding which evidence is relevant to which hy-
potheses. But there is no evident a priori reason why there should be such
agreement.
I think relatively few Bayesians are actually persuaded of the correct-
ness of Bayesian doctrine by Dutch-book arguments, stable estimation
theorems, or other a priori arguments. Their frailty is too palpable. I think
that the appeal of Bayesian doctrine derives from two other features. First,
with only very weak or very natural assumptions about prior probabilities,
or none at all, the Bayesian scheme generates principles that seem to
accord well with common sense. Thus, with minor restrictions, one obtains
the principle that hypotheses are confirmed by positive instances of them;
and, again, one obtains the result that if an event that actually occurs is, on
some hypothesis, very unlikely to occur, then that occurrence renders the
hypothesis less likely than it would otherwise have been. These principles,
and others, can claim something like the authority of common sense, and
Bayesian doctrine provides a systematic explication of them. Second, the
restrictions placed a priori on rational degrees of belief are so mild, and the
device of probability theory at once so precise and so flexible, that Bayes-
ian philosophers of science may reasonably hope to explain the subtleties
and vagaries of scientific reasoning and inference by applying their scheme
together with plausible assumptions about the distribution of degrees of
belief. This seems, for instance, to be Professor Hesse’s line of argument.
After admitting the insufficiency of the standard arguments for
Bayesianism, she sets out to show that the view can account for a host of
alleged features of scientific reasoning and inference. My own view is
different: particular inferences can almost always be brought into accord
with the Bayesian scheme by assigning degrees of belief more or less ad

hoc, but we learn nothing from this agreement. What we want is an -
explanation of scientific argument; what the Bayesians give us is a theory -
of learning—indeed, a theory of personal learning. But arguments are:

more or less impersonal; I make an argument to persuade anyone in-

autobiography. To ascribe to me degrees of belief that make my slide from

- simplicity, but only to argue that it is overval

formed of the premisses, and in doing so I am not reporting any bit of
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some definite set of alternative hypotheses between which we are trying to
decide. In such cases we naturally prefer the body of evidence that will be
most helpful in eliminating false competitors. This aspect of variety is an
easy and natural one for Bayesians to take account of, and within an
account such as Shimony’s it is taken care of so directly as hardly to require
comment. But there is more to variety. In some situations we have some
reason to suspect that if a theory is false, its falsity will show up when
evidence of certain kinds is obtained and compared. For example, given
the tradition of Aristotelian distinctions, there was some reason to demand
both terrestrial and celestial evidence for seventeenth-century theories of
motion that subjected all matter to the same dynamical laws. Once again,
I see no special reason why this kind of demand for a variety of evidence
cannot be fitted into the Bayesian scheme. But there is still more. A
complex theory may contain a great many logically independent hypoth-
eses, and particular bodies of evidence may provide grounds for some of
those hypotheses but not for others. Surely part of the demand for a
variety of evidence, and an important part, derives from a desire to see to
it that the various independent parts of our theories are tested. Taking
account of this aspect of the demand for a variety of evidence is just taking
account of the relevance of evidence to pieces of theory. How Bayesians
may do this we shall consider later.

Simplicity is another feature of scientific method for which some
Bayesians have attempted to account. There is one aspect of the scientific
preference for the simple that seems beyond Bayesian capacities, and that
is the disdain for ‘de-Occamized’ hypotheses, for theories that postulate
the operation of a number of properties, determinable only in combina-
tion, when a single property would do. Such theories can be generated by
taking any ordinary theory and replacing some single quantity, wherever it
occurs in the statement of the theory, by an algebraic combination of new
quantities. If the original quantity was not one that occurs in the statement
of some body of evidence for the theory, then the new, de-Occamized
theory will have the same entailment relations with that body of evidence
as did the original theory. If the old theory entailed the evidence, so will
the new, de-Occamized one. Now, it follows from Bayesian principles that
if two theories both entail e, then (provided the prior probability of each
hypothesis is neither 1 nor 0), if ¢ confirms one of them, it confirms the
other. How then is the fact (for so I take it to be) that pieces of evidence

just don’t seem to count for de-Occamized theories to be explained? Not
by supposing that de-Occamized theories have lower prior probabilities:

than un-de-Occamized theories, for being ‘de-Occamized’ is a feature that

a theory has only with respect to a certain body of evidence, and it is not
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. 303
stood continued investigation, and often simple relations are replaced by Ing these particular points rather th
relations that are infinitely complex: consider the fate of Kepler's laws. general law s trye, . . Ummn:gozmmw ﬁwumsmcn:aan 1n which the corresponding
Surely it would be naive for anyone to suppose that a set of newly may therefore be regarded as another m%mom ow mz mogonei. 0T of parameters

measured quantities will truly stand in a simple relation, especially in the
absence of a well-confirmed theory of the matter. Jeffreys® strategy re-

quires that we proceed in ignorance of our scientific experience, and that [ ering postulate then requires that i -fitting case, for
can hardly be a rational requirement. satisty the predicate Y=ax+b, th atif two paired values of x and y

Consider another Bayesian attempt, this one due to Mary Hesse. Hesse third pair of values wij mmmm@w:g © It Is more probable than not that a
puts a ‘clustering’ constraint on prior probabilities: for any positive r, the linear hypothesis in the next i € predicate. So the preference for the

conjunction of r + 1 positive instances of a hypothesis is more probable tulate and the probabilit
than a conjunction of r positive instances with one negative instance. This
postulate, she claims, will lead us to choose, ceteris paribus, the most
economical, the simplest, hypotheses compatible with the evidence. Here
is the argument:

. clustering pos-
with trivial additiona]
=a+bxisa legitimate
values of a; and b,. Now
escribed by (x,, a, + byx3)

predicate, then so js Y=a;+bx? for any definite

Emmm@.mma QcoamH .
a points can b
and (x,, @ + b1x3), where ¢ equally well d

Consider first evidence consisting of individuals a,, a,,. .., a,, all of which have
properties P and Q. Now consider an individual a,,, with property P. Does a,,, have
Q or not? If nothing else is known, the clustering postulate will direct us to predict
Q... since, ceteris paribus, the universe is to be postulated to be as homogeneous as
possible consistently with the data. . . . But this is also the prediction that would be
made by taking the most economical general law which is both confirmed by the
data and of sufficient content to make a prediction about the application of Q to a,,,.
For h = *All P are @ is certainly more economical than the ‘gruified’ conflicting
hypothesis of equal content /" ‘All x up to a, that are P and Q, and all other x that
are P are ~Q.

If follows in the [case] considered that if a rule is adopted to choose the prediction
resulting from the most probable hypothesis on grounds of content, or, in case of a
tie in content, the most economical hypothesis on those of equal content, this rule
will yield the same predictions as the clustering postulate.
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Here is the argument applied to curve-fitting:

Let f be the assertion that two data points (x,, y;), (x,, y,) are obtained from
experiments. . . . The two points are consistent with the hypothesis y = a + bx, and
also of course with an indefinite number of other hypotheses of the form y = a, + g,
+...+ ax, where the values of a,. .., a, are not determined by (x,, y,), (x,, y,)-
What is the most economical prediction of the y-value of a further point g, where the
x-value of g is x,;? Clearly it is the prediction which uses only the information already
contained in f, that is, the calculable values of a, b rather than a prediction which
assigns arbitrary values to the parameters of a higher-order hypothesis. Hence the
most economical prediction is about the point g = (x;, a + bx;), which is also the
prediction given by the ‘simplest’ hypothesis on almost all accounts of the simplicity
of curves. Translated into probabilistic language, this is to say that to conform to
intuitions about economy we should assign higher initial probability to the assertion
that points (x;, a + bx,), (¥, a + bx,), (x5, a+ bx,) are satisfied by the experiment than
to that in which the third point is inexpressible in terms of ¢ and b alone. In this
formulation economy is a function of finite descriptive lists of points rather than
general hypotheses, and the relevant initial probability is that of a universe contain-
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in H, take its maximum :w&?oom value, then if we average the likelihood 305

of getting evidence that fits each hypothesis well enough over all the
possible parameter values, the average likelihood of H; will be greater
than the average likelihood of H,. The conclusion Rosencrantz suggests is
that the simpler the theory, the greater the average likelihood of data that
fit it sufficiently well. Hence, even if a simple theory has a lower prior
probability than more complex theories, because the average likelihood is
higher for the simple theory, its posterior probability will increase more consequences. A theory i
rapidly than that of more complex theories. When sufficient evidence has ¢ on of its observational W I8 never any better
accumulated, the simple theory will be preferred. Rosencrantz proposes to : A ries at all? On the prob %ﬁmmmm:ﬁ@ Why,
identify average likelihood with support. probabilist view, it seems,
Rosencrantz’s approach has many virtues; I shall concentrate on its

vices. First, observed sample coverage does not correlate neatly with sim-

plicity. If His a hypothesis, T another utterly irrelevant to H and to the

phenomena about which H makes predictions, then H & T will have the

same observed sample coverage as does H. Further, if H* is a de-

Occamization of H, then H* and H will have the same observed sample

coverage. Second, Rosencraniz’s theorem does not establish nearly

enough. It does not establish, for example, that in curve-fitting the average

likelihood of a linear hypothesis is greater than the average likelihood of a

quadratic or higher-degree hypothesis. We cannot explicate support in

terms of average likelihood unless we are willing to allow that evidence -

supports a de-Occamized hypothesis as much as un-de-Occamized ones,

and a hypothesis with tacked-on parts as much as one without such super-

fluous parts.

Finally, we come to the question of the relevance of evidence to theory

When does a piece of evidence confirm a hypothesis according to the

Bayesian scheme of things? The natural answer is that it does so when the : . ween theory and evidence is pla
posterior probability of the hypothesis is greater than its prior probability A second diffi P
that is, if the conditional probability of the hypothesis on the evidence i mong th culty has to do with

greater than the probability of the hypothesis. That is what the conditionof :

positive relevance requires, and that condition is the one most commonl

advanced by philosophical Bayesians. The picture is a kinematic one

Bayesian agent moves along in time having at each moment a coherent s¢

of degrees of belief; at discrete intervals he learns new facts, and each tim¢

he learns a new fact, e, he revises his degrees of belief by conditionalizi

on e. The discovery that e is the case has confirmed those hypothe:

whose probability after the discovery is higher than their probability _

fore. For several reasons, I think this account is unsatisfactory; moreoy

I doubt that its difficulties are remediable without considerable changes

the theory.
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distributed—so that conditionalizing on evidence about one planet may
change our degrees of belief in the first and second laws, but not our degree
of belief in the third law.’ I don’t see that this is an explanation for our
intuition at all; on the contrary, it seems merely to restate (with some
additional claims) what it is that we want to be explained. Are there any
reasons why people had their degrees of belief so distributed? If their
beliefs had been different, would it have been equally rational for them to
view observations of Mars as a test of the third law, but not of the first? It
seems to me that we never succeed in explaining a widely shared judge-
ment about the relevance or irrelevance of some piece of evidence merely
by asserting that degrees of belief happened to be so distributed as to
generate those judgements according to the Bayesian scheme. Bayesians
may instead try to explain the case by appeal to some structural difference
among the hypotheses; the only gadget that appears to be available is the
likelihood of the evidence about a single planet on various combinations of
hypotheses. If it is supposed that the observations are such that Kepler’s
first and second laws entail their description, but Kepler’s third law does
not, then it follows that the likelihood of the evidence on the first and
second laws—that is, the conditional probability of the evidence given
those hypotheses—is unity, but the likelihood of the evidence on the third
Jaw may be less than unity. But any attempt to found an account of the case
on these facts alone is simply an attempt at a hypothetico-deductive ac-
count. The problem is reduced to one already unsolved. What is needed to
provide a genuine Bayesian explanation of the case in question (as well as
of many others that could be adduced) is a general principle restricting
conditional probabilities and having the effect that the distinctions about
the bearing of evidence that have been noted here do result. Presumably,
any such principles will have to make use of relations of content or struc-
ture between evidence and hypothesis. The case does nothing to establish
that no such principles exist; it does, I believe, make it plain that without
them the Bayesian scheme does not explain even very elementary features
of the bearing of evidence on theory.

A third difficulty has to do with Bayesian kinematics. Scientists com-
monly argue for their theories from evidence known long before the
theories were introduced. Copernicus argued for his theory using observa
tions made over the course of millennia, not on the basis of any startlin
new predictions derived from the theory, and presumably it was on th
basis of such arguments that he won the adherence of his early disciple:
Newton argued for universal gravitation using Kepler’s second and thir

s This is the account suggested by Horwich 1978.
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Bayesians, and we have before us a feature of scientific argument that
seems incompatible with that assumption.

A natural line of defence lies through the introduction of counterfactual
degrees of belief. When using Bayes’s rule to determine the posterior
probability of a new theory on old evidence, one ought not to use one’s
actual degree of belief in the old evidence, which is unity or nearly so; one
ought instead to use the degree of belief one would have had in eif. . . . The
problem is to fill in the blanks in such a way that it is both plausible that we
have the needed counterfactual degrees of belief, and that they do serve to
determine how old evidence bears on new theory. I tend to doubt that
there is such a completion. We cannot merely throw e and whatever entails
e out of the body of accepted beliefs; we need some rule for determining a
counterfactual degree of belief in e and a counterfactual likelihood of e on
T. To simplify, let us suppose that T does logically entail e, so that the
likelihood is fixed.

If one flips a coin three times and it turns up heads twice and tails once,
in using this evidence to confirm hypotheses (e.g. of the fairness of the
coin), one does not take the probability of two heads and one tail to be
what it is after the flipping—namely, unity—but what it was before the
flipping. In this case there is an immediate and natural counterfactual
-degree of belief that is used in conditionalizing by Bayes’s rule. The
trouble with the scientific cases is that no such immediate and natural
alternative distribution of degree of belief is available. Consider someone
trying, in a Bayesian way, to determine in 1915 how much Einstein’s
derivation of the perihelion advance confirmed general relativity. There is
no single event, like the coin flipping, that makes the perihelion anomaly
virtually certain. Rather, Leverrier first computed the anomaly in the
middle of the nineteenth century; Simon Newcomb calculated it again
around 1890, using Leverrier’s method but new values for planetary
masses, and obtained a substantially higher value than had Leverrier. Both
Newcomb and Leverrier had, in their calculations, approximated an infi-
nite series by its first terms without any proof of convergence, thus leaving
open the possibility that the entire anomaly was the result of a mathemati-
cal error. In 1912 Eric Doolittle calculated the anomaly by a wholly differ-
ent method, free of any such assumption, and obtained virtually the same
value as had Newcomb.” For actual historical cases, unlike the coin-flipping
case, there is no single counterfactual degree of belief in the evidence
ready to hand, for belief in the evidence sentence may have grown gradu-
ally—in some cases, it may have even waxed, waned, and waxed again. So

7 The actual history is still more complicated. Newcomb and Doolittie obtained values for the
anomaly differing by about 2 seconds of arc per century. Early in the 1920s. Grossmann
discovered that Newcomb had made an error in calculation of about that magnitude.
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But because T is supposed inconsistent with 7, v ...v T, and P(T, ¢) is not
zero, this is incoherent.

Let us return to the proposal that when new theory confronts old evi-
dence, we should look backwards to the time when the old evidence e had
not yet been established and use for the prior probability of e whatever
degree of belief we would have had at that time. We cannot just stick in
such a counterfactual value for the prior probability of e and change
nothing else without, as before, often making both prior and con-
ditionalized probabilities incoherent. If we give all of our sentences the
degree of belief they would have had in the relevant historical period
(supposing we somehow know what period that is) and then conditionalize
on e, incoherence presumably will not arise; but it is not at all clear how to
combine the resulting completely counterfactual conditional probabilities
with our actual degrees of belief. It does seem to me that the following
rather elaborate procedure will work when a new theory is introduced.
Starting with your actual degree of belief function P, consider the degree
of belief you would have had in e in the relevant historical period, call it
H{(e). Now change P by regarding H(e) as an arbitrary change in degree of
belief in e and using Richard Jeffrey’s (1965) rule,

P'(S)=H(e) P(S. e)+(1- H(e) ) P(S, ~e).

Jeffrey’s rule guarantees that P’ is a probability function. Finally, con-
ditionalize on e:

P"(S)=P’(S, e),
and let P” be your new actual degree of belief function. (Alternatively, P*
can be formed by using Jeffrey’s rule a second time.)

There remain a number of objections to the historical proposal. It is not
obvious that there are, for each of us, degrees of belief we personally
would have had in some historical period. It is not at all clear which
historical period is the relevant one. Suppose, for example, that the gravi-
tational deflection of sunlight had been determined experimentally around

1900, well before the introduction of general relativity.® In trying to assess
the confirmation of general relativity, how far back in time should a twen-

& Around 1900 is fanciful, before general relativity is not. In 1914 E. Freundlich mounted an
expedition to Russia to photograph the eclipse of that year in order to determine the gravita-
tional deflection of starlight. At that time, Einstein had predicted an angular deflection for light
passing near the limb of the sun that was equal in value to that derived from Newtonian
principles by Soldner in 1801. Einstein did not obtain the field equations that imply a value for
the deflection equal to twice the Newtonian value until late in 1915. Freundlich was caught in

Russia by the outbreak of World War I, and was interned there. Measurement of the deflection

had to wait until 1919.
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theory, and it is in virtue of that connection that the evidence, if believed
to be true, is thought to be evidence for the bit of theory. What I do not
believe is that the relation that matters is simply the entailment relation
between the theory, on the one hand, and the evidence, on the other. The
reasons that the relation cannot be simply that of entailment are exactly
the reasons why the hypothetico-deductive account (see Glymour 1981, ch.
2) is inaccurate; but the suggestion is at least correct in sensing that our
judgement of the relevance of evidence to theory depends on the percep-
tion of a structural connection between the two, and that degree of belief
is, at best, epiphenomenal. In the determination of the bearing of evidence
on theory, there seem to be mechanisms and stratagems that have no
apparent connection with degrees of belief, which are shared alike by
people advocating different theories. Save for the most radical innova-
tions, scientists seem to be in close agreement regarding what would or
would not be evidence relevant to a novel theory; claims as to the rel-
evance to some hypothesis of some observation or experiment are fre-
quently buttressed by detailed calculations and arguments. All of these
features of the determination of evidential relevance suggest that that
relation depends somehow on structural, objective features connecting
statements of evidence and statements of theory. But if that is correct,
what is really important and really interesting is what these structural
features may be. The condition of positive relevance, even if it were
correct, would simply be the least interesting part of what makes evidence
relevant to theory.

None of these arguments is decisive against the Bayesian scheme of
things, nor should they be; for in important respects that scheme is un-
doubtedly correct. But taken together, I think they do at least strongly
suggest that there must be relations between evidence and hypotheses that
are important to scientific argument and to confirmation but to which the
Bayesian scheme has not yet penetrated.
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