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Abstract

This paper presents a new explanation of how preferring the simplest theory compatible
with experience assists one in finding the true answer to a scientific question when the
answers are theories or models. Inquiry is portrayed as an unending game between
science and nature in which the scientist aims to converge to the true theory on the basis
of accumulating information. Simplicity is a topological invariant reflecting sequences
of theory choices that nature can force an arbitrary, convergent scientist to produce.
It is demonstrated that among the methods that converge to the truth in an empirical
problem, the ones that do so with a minimum number of reversals of opinion prior to
convergence are exactly the ones that prefer simple theories. The approach explains
not only simplicity tastes in model selection, but aspects of theory testing and the
unwillingness of natural science to break symmetries without a reason.



0.1 Introduction

In natural science, one typically faces a situation in which several (or even infinitely
many) available theories are compatible with experience. Standard practice is to choose
the simplest theory among them and to cite “Ockham’s razor” as the excuse (figure
1). “Simplicity” is understood in a variety of ways in different contexts. For example,
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Figure 1: Ockham to the rescue.

simpler theories are supposed to posit fewer entities or causes (Ockham’s original for-
mulation), to have fewer adjustable parameters, to be more “unified” and “elegant”,
to posit more uniformity or symmetry in nature, to provide stronger explanations, or
to be more strongly cross-tested by the available data. But in what sense is Ockham’s
razor truly an excuse? For if you already know that the simplest theory compatible
with experience is true, you don’t need any help from Ockham (figure 2). And if you
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Figure 2: A Platonic Dilemma: Case I.

don’t, then the true theory might be complex, so it is unclear how Ockham helps you
find it (figure 3). Indeed, how could a fixed bias toward simplicity indicate the possibly
complex truth any better than a broken thermometer that always reads “zero” can in-
dicate the temperature? You don’t have to be a card-carrying skeptic to wonder what
the tacit connection between simplicity and truth-finding could possibly be.

This essay explains the connection between simplicity and truth by modelling in-
quiry as an unending process, in which the scientist’s aim is to converge to the truth
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Figure 3: A Platonic Dilemma: Case II.

in a way that minimizes, in a worst-case sense, reversals of opinion prior to conver-
gence to the truth. Scientific methods may then be analyzed formally as strategies in
an infinite game of perfect information, which brings to the subject powerful mathe-
matical tools such as D. Martin’s (1975) Borel determinacy theorem. The proposed,
long-run, strategic perspective on inquiry may appear abstract and remote from the
day-to-day nuances of concrete scientific practice. Nonetheless, it is very general and
singles out Ockham’s razor as the best possible strategy to follow at every stage of
inquiry, so its import for short-run practice is both sharp and concrete. Furthermore,
the following review of standard attempts to link simplicity with theoretical truth in
the short run reveals that they are all either irrelevant or based upon wishful thinking
or circular arguments. A relevant, non-circular, long-run explanation may be better
than no explanation at all.

0.2 Some Traditional Explanations of Ockham’s Razor

G. W. Leibniz (1714, §§55-59) explained the elusive connection between simplicity
and truth by means of a direct appeal to the grace of God (figure 4). Since God is
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Figure 4: G. W. Leibniz’ Theological Explanation.

omnipotent and infinitely kind (to scientists, at least), it follows that the actual world
is the most elegant (i.e., simple) universe that could possibly produce such a rich array
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of effects. Hence, simplicity doesn’t track the truth the way a thermometer tracks
temperature; truth, by the grace of God, tracks simplicity. This explanation merely
underscores the desperate nature of the question.

I. Kant confronted the issue in his Kritik der Urtheilskraft (1790).1 According to
Kant, the faculty of judgment must prescribe or presuppose that the diverse laws of
nature may be unified under a small set of causes if nature is to be intelligible at all.
But theories that involve a few extra causes are also intelligible, so intelligibility falls
far short of explaining why one should prefer theories with fewer causes or entities over
those that involve more.

Some latter-day philosophers have emphasized that simple theories have various
“virtues”, most notably, that simpler or more unified theories are more thoroughly
tested or confirmed by a given evidence set (e.g., Popper 1968 pp. 251-281, Glymour
1981, Friedman 1983 pp. 236-250). For if a theory has many free parameters (ways of
being true), then new evidence simply “sets” the parameters and there is no risk of the
theory, itself, being refuted altogether. But a simple theory does carry the risk of being
refuted. It seems only fair to pin a medal of valor on the simple theory for surviving
its self-imposed ordeal. The question, however, is truth, not valor, and the true theory
might not be simple, in which case it wouldn’t be valorous. To assume otherwise
amounts to wishful thinking— the epistemic sin of concluding that the truth is as
pleasing (intelligible, severely testable, explanatory, unified, uniform, symmetrical) as
you would like it to be. Rudolf Carnap (1950 pp. 562-567) sought uniformity of nature
in logic itself. This “logic” amounts, however, to nothing more than the imposition
of greater prior probabilities on more uniform worlds, where uniformity is judged with
respect to an arbitrarily selected collection of predicates. The argument goes like
this (figure 5). Suppose there are but two predicates, “green” and “blue” and that
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Figure 5: R. Carnap’s “Logical” Explanation.

everything is either green or blue. Suppose there are two observable objects, a and
b. Two worlds are isomorphic just in case a one-to-one substitution of names takes
you from one world to the other in a way that preserves the basic predicates in your
language. Hence the uniform world in which a and b are both green is in its own
isomorphism class, as is the uniform world in which a and b are both blue. The two

1Cf. p. 185 in the standard (1908) edition.
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non-uniform worlds in which a and b have different colors can each be reached from the
other by a one-to-one, color-preserving substitution of names, so they end up in the
same isomorphism class. Now Carnap invokes the principle of indifference to put equal
probabilities of one third on each of these three automorphism classes and invokes it
again to split the one third probability on the non-uniform class over the two non-
uniform worlds. The resulting probability distribution is then biased so that uniform
worlds get probability one third and non-uniform worlds get probability one sixth. So
uniform worlds are more probable than non-uniform worlds (by a factor of two in this
tiny example, but the advantage increases as observable individuals are added).

Nelson Goodman (1983, pp. 59-83) objected that whatever is logical ought to
be preserved under translation and that Carnap’s uniformity bias based on languistic
syntax isn’t. For uniformly green and uniformly blue experience are uniform. But one
can translate green and blue into “grue” and “bleen”, where “grue” means “green if
a and blue if b” and “bleen” means “blue if a and green if b” (figure 6). Then in the
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Figure 6: N. Goodman’s “Grue” Argument.

grue/bleen language, the worlds that used to be non-uniform are now uniformly grue or
uniformly bleen, respectively and the worlds that used to be uniform are non-uniform,
for “green” means “grue if a and bleen if b” and “blue” means “bleen if a and grue if
b”. Since logical inferences are based entirely on syntax and syntactically the situation
between green/blue and grue/bleen is entirely symmetrical, uniformity cannot be a
feature of logical syntax. The moral is that Carnap’s story makes uniformity of nature
a mere matter of description. But a guide to truth could not be a mere matter of
description, since truth doesn’t depend upon how it is described.

0.3 Statistical Explanations

So much for philosophy. Surely, the growing army of contemporary statisticians, ma-
chine learning researchers, and industrial “data miners” must have a better explanation
based on rigorous, mathematical reasoning. Let’s check. A major player in the scien-
tific methodology business today is Bayesian methodology. The basic idea is to allow
personal biases to enter into statistical inferences, where personal bias is represented
as a “prior” probability measure over possibilities. The prior probability of hypothesis
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H is then combined with experience Et available at t via Bayes’ theorem to produce an
updated probability of H at t′, which represents your updated opinion concerning H:

Pt+1(H) = Pt(H | Et) =
Pt(H) · Pt(Et | H)

Pt(Et).

It is clear from the formula that your prior opinion Pt(H) is a factor in your posterior
opinion Pt+1(H), so that the simplest theory compatible with the new data ends up
being most probable in the updated probabilities. Ockham’s razor is just a systematic
bias toward simpler theories. So to explain its efficacy by appealing to a prior bias
toward simplicity is patently circular (figure 7).

I assume simplicity!

So I assume simplicity!

Figure 7: The Circular Bayesian Explanation.

Bayesians also have a more subtle story. Yes, it begs the question simply to impose a
prior bias toward simple theories, so let’s be “fair” and impose equal prior probabilities
on competing theories, be they simple or complex. Now suppose, for concreteness,
that we have just two theories, simple theory S and complex theory C(θ) with free
parameter θ which (again for concreteness) can be set to any value from 1 to k (figure
8). Suppose, further, that S consistently entails Et, as does C(1), but that for all other
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Figure 8: The Miracle Explanation.
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parameter values i, C(i) is refuted by Et. Thus, Pt(Et | S) = Pt(Et | C(1)) = 1 but
for all i distinct from 1, Pt(Et | C(i)) = 0. Suppose, again, that you have no prior
idea which parameter value of C(i) would be the case if C(θ) were true (that’s what
it means for the parameter to be “free”). So Pt(θ | C(i)) is uniform.2 Turning the
crank on Bayes’ theorem, one obtains Pt(S | Et)/Pt(C | Et) = k. So even though the
complex theory could save the data just as well as the simple one, the simple theory
that does so without any ad hoc fiddling ends up being “confirmed” much more sharply
by the same data Et (e.g., Rosenkrantz 1983, pp. 74-75). Surely that explains how
severe testability is a mark of truth, for doesn’t the more testable theory end up more
probable after a fair contest?

One must exercise caution when Bayesians speak of fairness, however, for proba-
bilistic “fairness” between “blue” and “non-blue” implies a marked bias toward “blue”
in a choice among “blue, yellow, red”. That is all the more true in the present case:
“fairness” between S and C induces a strong bias for S with respect to C(1), . . . , C(k).
One could just as well insist upon “fairness” at the level of parameter settings rather
than at the level of theories (figure 9). In that case, one would have to impose equal
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simple

Now that’s fair.   

complex
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C(3)

fairness to worlds

3/4 1/4

1/4

1/4
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Figure 9: The Miracle Reversed.

probabilities of 1/(k+1) over the k+1 possibilities {S, C(1), . . . , C(k)}. Now C(0), and
hence C, will remain forever at least as a probable as S in light of evidence agreeing
with S. Classical statisticians explain Ockham’s razor in terms of “overfitting” (cf.
Wasserman 2004, pp. 218-225 for a textbook review). “Overfitting” occurs when you
want to estimate a sampling distribution by setting the free parameters in some statis-
tical model. In that case, the expected squared predictive error of the estimated model
will be higher if the model employed is too complex (e.g., Forster and Sober 1994).
This is a kind of objective, short-run connection between simplicity and truth-finding,
but it doesn’t really address the question at hand, which is how Ockham’s razor helps

2This is a discrete version of the typical restrictions on prior probability in Bayesian model selection
(cf. Wasserman 2004, pp. 220-221). If the parameters are continuous, each parameter setting receives
zero prior probability, but the result is the same because the likelihood of the more complex theory
must be integrated over a higher-dimensional space than that of the simpler theory.
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you find the true theory, which is quite another matter from which theory or model to
use to estimate the underlying sampling distribution. The quickest way to see why is
this: suppose that God were to tell you that the true model has fifty free parameters.
On a small sample, the overfitting argument would still urge you to use a much smaller
model for estimation and prediction purposes (figure 10). So the argument couldn’t be

Behold

the Truth,

little human!

Thanks, God,

but this simplistic

model will  still

predict better.

C(θ1, . . . , θ50) 

S(θ1) 

Figure 10: The “Overfitting” Explanation.

concerned with finding the true theory.
More subtly, the sense of approximate error employed in the overfitting literature

is wrong for theory selection. Getting “close” to the underlying sampling distribution
might not get you “close” to the form of the true model, since distributions arbitrarily
close to the true distribution could be generated by models arbitrarily far from the
true model.3 Thus, distance from the theoretical truth is typically discontinuous with
distance from the true sampling distribution, so minimizing the latter distance may fail
to get you close in the former, as in the case of God informing you that the true model
is very complex. Another point about overfitting is that even to the extent that it does
explain the role of simplicity in statistical prediction, it is tied, essentially, to inference
problems in which the data are stochastically generated, leaving one to wonder why
simplicity should have any role in deterministic inference problems, where it still feels
like a good idea.

Finally, there are theorems of the sort that some method equipped with a prior
bias toward simplicity is guaranteed to converge in some sense to the true model as
experience (or sample size) increases (e.g., Zheng and Loh 1995). That would indeed
link Ockham’s razor with truth-finding if it could be shown that other possible biases
don’t converge to the truth. But they do. The logic of convergence results is not
that Ockham’s advice points at or indicates the truth, but that it is “washed out” or
“swamped”, eventually, by accumulating experience, even if the advice is so misleading
as to throw you off the track for a long time (figure 11). But alternative biases would
also be washed out by experience eventually4 so that’s hardly a ringing endorsement
of Ockham’s razor. What is required is an argument that Ockham’s razor is, in some

3This is particularly true when the features of the model have counterfactual import beyond pre-
diction of the actual sampling distribution, as in causal inference (Spirtes et al. 2000, pp. 47-53).

4Cf. (Halmos 1974, p. 212, theorem A). Also, see the critical discussion of Bayesian convergence
theorems in (Kelly 1996, pp. 302-330).
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Figure 11: The Convergence Explanation.

sense, the best possible bias for finding the true theory.

0.4 Post Mortem

To recapitulate, the standard explanations of the mysterious relationship between sim-
plicity and theoretical truth are either circular, wishful, or irrelevant. Still, they provide
useful information about how the relationship can’t be explained. For indication of the
truth is too strong a connection to establish without begging the question at the outset,
as Leibniz and the Bayesians do. On the other hand, mere convergence in the limit
is too weak to single out simplicity as the right bias. The crux of the puzzle, then,
is to come up with a notion of “helping to find the truth” that is strong enough to
single out simplicity as the right bias to have but that is not so strong as to demand a
question-begging appeal to Ockham’s razor at the outset in order to establish it. Thus,
the appropriate notion of “help” must be stronger than convergence in the limit and
weaker than indication in the short run.

The account developed below steers between these two extremes by considering a re-
fined concept of convergence, namely, convergence with a mininum number of reversals
of opinion prior to arrival at the goal (figure 12). This is stronger than mere conver-

Simple Complex

indication

too strong

convergence

too weak
straightest convergence

just right?

Simple Complex Simple Complex

Figure 12: Three Kinds of “Help”.

gence in the limit, which says nothing about minimizing reversals of opinion along the
path to the truth, and is weaker than indication, which allows for no reversals of opinion
whatever. It will be demonstrated that an ongoing bias toward simplicity minimizes
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kinks in your course to the truth in a certain precise sense. But first, I illustrate the
general flavor of the approach by showing that something similar happens almost every
time you ask for directions.

0.5 Asking for Directions

Suppose you are headed home on a road trip and get lost in a small town. In frustration,
you stop to ask a local resident how to get home (figure 13). Before you can even say

Which way to...?

Go back two blocks.

The freeway is

on the right.

Figure 13: Asking For Directions.

where you are headed, he gives you the usual sort of advice: directions to the nearby
freeway entrance ramp, which happens to be a few blocks back toward where you just
came from. Now suppose that, in a fit of hubris, you disregard the resident’s advice in
favor of some intuitive feeling that your home is straight ahead (figure 14). That ends

How could he answer without knowing our destination?

The sun was on the right, so Pittsburgh must be straight ahead.  

Figure 14: Hubris!

up being a bad idea (figure 15). You leave town on a small rural route that winds its
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Figure 15: The U-turn Argument.

wild way over the Allegheny mountains. At some point, you concede the error of your
ways and turn around to follow the resident’s directions to the freeway. The freeway
then follows as straight a route home as is practicable through mountainous terrain.
As you speed your way homeward, you have ample time to regret: if you hadn’t ignored
the local resident’s advice, you wouldn’t have added that useless, initial U-turn to your
otherwise optimal journey home. Let’s take stock of a few striking features of this
mundane tale. First, the local resident’s advice was indeed helpful, since it would have
put you on the straightest possible path home. Second, by disregarding the advice, you
incurred an extra U-turn or kink in your route. What is particularly vexing about the
initial U-turn is that it occurs even before you properly begin your journey. It’s a sort
of navigational “original sin” that you can never be absolved of. Third, the resident
didn’t need to know where you were going in advance in order to give you helpful advice.
Any stranger asking for directions in a small, isolated town would do best to get on the
freeway. Hence, the resident’s ability to provide useful information without knowing
where your home is doesn’t require an occult or circular explanation. Suppose, on the
other hand, that the resident could give you a compass course home before knowing
where you are headed. That would require either a circular or an occult explanation
(an Ouija board or divining rod). Fourth, even the freeway is not perfectly straight,
so the resident’s advice provides no guarantee against future course reversals, even if
it is the best possible advice. Finally, the resident’s advice is the best possible advice
even though it points you away from your goal at the outset. If help required that you
be aimed in the right direction, then the resident would have to give you a compass
heading home, which wouldn’t be possible unless he already knew where your goal was
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or had an Ouija board or divining rod.
So the typical situation in which you ask for directions home from a distant, small

town has all the fundamental features that an adequate explanation of the truth-finding
efficacy of Ockham’s razor must have. Perhaps Ockham also provides fixed advice that
puts you on the best possible route to the truth without pointing you at the truth and
without guarantees against future course reversals along the way. It remains, then, to
explain what the freeway to the truth is and how Ockham’s advice leads you to it.

0.6 The Freeway to the Truth

Even lexicography suggests an essential connection between freeways and truth-finding,
for both changes in course and changes in opinion are called changes in attitude. Ac-
cording to this analogy, Ockham’s advice should somehow minimize changes of opinion
prior to convergence to the right answer.5 Let’s consider how the story goes in the case
of a very, very simple truth-finding problem.

Suppose that there is an emitter of discrete, readily detectable particles at arbitrary
intervals and that you know that it can emit at most finitely many particles altogether
(figure 16). The question is how many particles it will ever emit. What makes the

Burp!

?!

Figure 16: Counting Particles (Effects).

problem interesting is that an arbitrarily long interval without new particles can eas-
ily be mistaken for total absence of future particles. This problem has more general
significance than might be apparent at first, for think of the particles as detectable
effects that are arbitrarily hard to detect as parameters in the true theory are tuned
toward zero. For example, in curve fitting, the curvature of a quadratic curve may be
so slight that it requires a huge number of data to notice that the curve is non-linear.6

5The idea of counting mind-changes already appears in (Putnam 1965). Since then, the idea has
been studied extensively by computer scientists interested in computational learning (cf. Jain et al.
1999 for a review). The focus, however, is on categorizing the complexities of problems rather than on
singling out Ockham’s razor as an optimal method. Oliver Schulte and I began looking at retraction
minimization as a way to severely constrain one’s choice of hypothesis in the short run in 1996 (cf.
Schulte 1999a, 1999b). Schulte has also applied the idea to the inference of conservation laws in particle
physics (Schulte 2001). The ideas in this essay build upon and substantially simplify and generalize
the initial approach taken in (Kelly 2002), (Kelly and Glymour 2004) and (Kelly 2004). While the
present manuscript was in press, the approach was developed further in (Kelly 2005). Some differences
between the two approaches are mentioned in subsequent footnotes.

6It is assumed that he data are increasingly precise but inexact; else three points would settle the
question (Popper 1968, pp. 131-131). The same point holds if the data are noisy. In that case, tuning
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So the theory that the curve is quadratic but not linear predicts the eventual detection
of effects that would never appear under the linear theory. Similarly, the curvature of a
cubic curve may be so slight that it is arbitrarily hard to distinguish from a quadratic
curve. The point generalizes to typical model selection settings regardless of the inter-
pretation of the parameters. So deciding among models or theories with different free
parameters is quite similar, after all, to counting particles.

Ockham’s original formulation of “Ockham’s razor” is to not multiply entities with-
out necessity. It is “necessary” (on pain of outright inconsistency) to assume as many
particles as you have seen, but it is not necessary to assume more, so that if you
conclude anything, you should conclude exactly as many particles as you have seen
so far (figure 17). The most aggressive Ockham method is the counting method that

Burp!

4
What is the least

possible number?

Figure 17: Ockham in Action.

simply concludes that every particle has been seen at every stage. More realistic Ock-
ham methods refuse to commit themselves to any answer at all until a long time has
passed with no novel effects. Ockham’s razor, itself, says nothing about how long this
“confidence-building” time should last and the following argument for Ockham’s razor
doesn’t imply anything about how long it should be either; it simply requires you to
adopt some Ockham method, whether the method waits or not. That is as it should be,
since even believers in short-run evidential support (e.g. R. Carnap and the Bayesians)
allow for arbitrary individual differences concerning the time required for confidence
buildup.

Other intuitive formulations of empirical simplicity conspire with the view that
the Ockham answer should be the exact count. First, the Ockham theory that there
are no more particles than you have seen is the most uniform theory compatible with
experience, for it posits a uniformly particle-free future. Second, the Ockham theory is
the most testable theory compatible with experience, for if it is false, you will see another
particle and it will be decisively refuted. Any theory that anticipates more particles
than have been seen might be false, because there are fewer particles than anticipated,
in which case it will never be refuted decisively, since the anticipated particles might
always appear later. Third, the Ockham theory is most explanatory, since the theory
that posits extra particles fails to explain the times at which those particle appear.
The theory that there are no more particles fails to posit extra, unexplained times of

the parameters toward zero makes the effects statistically undetectable at small sample sizes (cf. Kelly
and Glymour 2004, Kelly 2004) for an application of the preceding ideas to stochastic problems.
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appearance. Fourth, the Ockham theory is most symmetrical, since the particle-free
future is preserved under permutation of times, whereas a future punctuated by new
particle appearances would be altered by such permutations. Fifth, the Ockham theory
has the fewest free parameters, because each time of appearance of a new particle is
a free parameter in a theory that posits extra particles. So in spite of its apparent
triviality, the problem of counting things that are emitted from a box does illustrate a
wide range of intuitive aspects of empirical simplicity. That isn’t so surprising in light
of the analogy between particles and empirical effects tied to free parameters.

If you follow an Ockham solution to the particle-counting problem, then you change
your mind in light of increasing data at most once per particle. If the true count is
k, then you change your mind at most k times. By way of comparison, suppose that
you have a hankering to violate Ockham’s razor by producing a different answer (figure
18). You might reason as follows. The particle emitter has overturned every successive

5

Figure 18: Ockham Violation!

Ockham answer in the past (i.e., “zero”, “one”, “two”, and “three”), so you expect it
will overturn the current Ockham answer “four” as well. So by induction on Ockham’s
unbroken losing streak in the past, you anticipate failure again and guess “five” (or some
greater number of your choosing) rather than the Ockham answer “four”. Philosophers
of science call this the “negative induction from the history of science” (Laudan 1981).
Why side with Ockham, rather than with the negative induction against him?

Efficiency is future-directed. Slush funds or debts may have been accumulated in the
past, but efficiency optimation in the present concerns future costs incurred by future
acts over which you have some control. So think of inquiry as starting from scratch at
each moment. Accordingly, the subproblem entered at a given stage of inquiry consists
of the restriction of possibilities to those consistent with current experience and only
mind-changes incurred after entering the subproblem are counted in that subproblem.7

Consider the subproblem entered when you first say “five”, upon having seen only
four particles. There is no deadline by which the fifth particle you anticipate has
to show up, so you may have to wait a long time for it, even if you are right. You
wait and wait (figure 19). Your graduate students exhaustively examine the particle
emitter for possible malfunctions. Colleagues start talking about the accumulation of
“null results” and discuss the “anomalous” failure of the anticipated marble to appear.
True, the posited particle could appear (to your everlasting fame) at any time, so your

7One might object that a sub-problem should hold past information and past theory choices fixed
and sum the total cost from the outset of inquiry. That approach is developed in detail in (Kelly 2005).
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5

Figure 19: The Pressure Builds.

theory isn’t strictly refuted. Nonetheless, you feel increasing pressure to switch to the
four-particle theory as the anomaly evolves into a full-blown “crisis”. This increasing
pressure comes not from the “weight of the evidence”, as philosophers are wont to say,
but from your strategic aim to converge to the truth, regardless of what it happens
to be. For if you never change your mind from “five” to “four” and the fifth particle
never appears, you will converge for eternity to “five” when the truth is “four”. So
at some time of your choosing, you must (on pain of converging to the wrong answer)
cave in to the pressure from nature’s strategic threat and switch back to the (Ockham)
theory that the machine will produce just four particles (figure 20). Won’t that make

5 4Told ya!

Figure 20: The Agony of Retreat.

for interesting gossip in the Particle Counting Association, where you are feted as the
sole defender of the five particle theory?8

To summarize, in the subproblem entered when you first say “five”, nature can
force you to change your mind at least once (from “five” to “four”), in the manner just
described, without presenting a fourth particle. The same is not true of Ockham, who
enters the same subproblem saying “four” (or nothing at all) and who never changes
his mind until the next particle appears. Thereafter, Ockham changes his mind exactly

8I am alluding, of course, to Thomas Kuhn’s (1962) celebrated historical theory of the structure
of scientific revolutions. Null experiments generate anomalies which evolve after careful consideration
into crises that ultimately result in paradigm change. Kuhn concludes, hastily, that the change is an
unlawful matter of politics that has little to do with finding the truth. I respond that it is a necessary
consequence of the logic of efficient convergence to the truth after a violation of Ockham’s razor, as will
become clear in what follows. Many of the celebrated scientific revolutions in physics have been the
results of Ockham violations (e.g., Ptolemy vs. Copernicus, Fresnel vs. Newton, Einstein vs. Newton,
and Darwin vs. creationism). In each of these cases, a theory positing extra free parameters (with
attendent empirical effects) was chosen first and a simpler theory was thought of later and came to
replace the former, often after an accumulation of null experiments.
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one time per extra particle. But you can be forced by nature to change your mind
at least once per extra particle (on pain of not converging to the truth) in the same
manner already described; for a long period during which there are exactly i particles
forces you to say “i” on pain of not converging to the truth, after which nature can
present the i + 1th particle, etc. (figure 21). Hence, if a solution violates Ockham’s

545 6 ...

54 6 ...

Burp!

initial U-turn

Figure 21: Ockham Avoids Your Initial U-turn.

razor in the particle counting problem, then in the subproblem entered at the time of
the violation, whatever sequence of outputs the Ockham solution produces, the violator
can be forced by nature to produce a sequence including at least the same mind-changes
plus another one (the initial U-turn from “five” to “four”). You should have listened
to Ockham!

The same argument works if you violate Ockham’s razor in the other possible way,
by saying “three” when four particles have been seen. For nature can refuse to present
more particles until you change your mind to “four” on pain of never converging to the
right answer if the right answer is “four”. But in the same subproblem, Ockham would
already have said “four” if he said anything at all and, in either case, you can be forced
into an extra mind-change in each answer. So the U-turn argument also explains the
need for maintaining consistency with the data.

So there is, after all, a close analogy between particle counting and getting on the
freeway. Your initial mind change from “five” to “four” is analogous to your initial U-
turn back to the local resident’s house en route to the highway. Thereafter, no matter
what the true answer is, you can be forced to change your mind at least once for
each succssive particle, whereas Ockham changes his mind at most once per successive
particle. These mind-changes are analogous to the unavoidable curves and bends in
the freeway. So no matter what the truth is, you start with a U-turn Ockham avoids
and can be forced into every mind-change Ockham performs thereafter. As in the
freeway example, you have botched the job before you even properly get started. In
both stories, the advice is the best possible. Nonetheless, it does not impose a bound
on future course reversals; nor does it point you toward your goal by some occult,
unexplained mechanism.

A striking feature of the explanation is that it is entirely game-theoretic. There is no
primitive notion of “support” or “confirmation” by data of the sort that characterizes
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much of the philosophical literature on induction and theory choice (figure 22).9 Nor

“support”

Figure 22: Pulling the Rug Out.

are there prior probabilities that foster the illusion of “support” of general conclusions
by a few observations. The phenomenology of “support” by evidence emerges entirely
from the aim of winning this truth-finding game against nature. Furthermore, the game
is essentially infinite. For if there were an a priori bound on the time by which the
next particle would arrive if it arrives at all, then you could simply “out-wait” nature
and avoid changing your mind altogether. So the argument is situated squarely within
the theory of infinite, zero-sum games, which is the topic of this volume.

Here is why the reference to subproblems is essential to the U-turn argument.
Suppose that you are asleep when you see the first particle and that when you see
the second particle you wake up and guess “three”, expecting that you will also sleep
through the third (figure 23). Thereafter, you always agree with Ockham. If the third

...3 2

2 2 ...

subproblem

Figure 23: Ockham Still Wins in Subproblem

particle doesn’t appear right away, you can be forced to change your mind to “two”,
but that’s only your second retraction— Ockham wouldn’t have done better. Now that
you have “caught up” with Ockham, you match him no matter how many particles
you see in the future. But that is only because you “saved” a retraction in the past by
sleeping through the first particle. That is like hoarding a “slush fund” to hide future
mismanagement from the public. In the subproblem entered when you say “three”,
the slush fund is emptied and you have to demonstrate your efficiency from scratch.
In that subproblem, your first reversal of opinion back to “two” gets added to all your
later mind-changes and you never catch up, so Ockham wins. The moral: an arbitrary

9In this respect, my approach is a generalization and justification of the “anti-inductivism” of K.
Popper (1968, pp. 27-30).
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Ockham solution beats you in the subproblem in which you violate Ockham’s razor,
but the Ockham solution does as well as you in every subproblem, so the Ockham
solution is better. In the best case for the violator, the anticipated fifth particle might
appear immediately after the violation, before the method even has a chance to become
queasy about over-estimating (figure 24). In that case, the violator’s output sequence

5 ...

54 ...

Burp!

5

Looking for this?

Figure 24: Best Case Fairy to the Rescue

in the subproblem entered at the violation begins with “five”, “five”, whereas Ockham’s
output sequence in the same subproblem begins with “four”, “five”, which is worse.
Hence, the Ockham method doesn’t weakly dominate the violator’s mind-changes in
the subproblem in question. But that merely explains why the U-turn argument, which
does establish the superiority of an arbitrary Ockham solution over an arbitrary non-
Ockham solution, is not a weak dominance argument. The U-turn argument essentially
involves a worst-case dimension lacking in weak dominance, for nature can force the
non-Ockham solution from “five” back to “four” (on pain of convergence to the wrong
answer) by withholding particles long enough and can then reveal another particle to
make it say “five”, “four”, “five”, which is never produced by any Ockham method and
which properly extends the Ockham sequence “four”, “five”.10 Nor, for that matter,
is the U-turn argument a standard worst-case or “minimax” argument, for there is no
fixed bound on mind-changes for any solution to the counting problem (nature can
force an arbitrary solution through any number of mind-changes).

0.7 A General Conception of Scientific Problems

A scientific problem specifies a set Ω of possible worlds the scientist must succeed
in together with a question Q which partitions Ω into mutually exclusive potential
answers. The aim is to find the true answer for w no matter which world w in Ω you
happen to live in. If Q is a binary partition, one thinks of a decision or test problem

10Indeed, Ockham methods are weakly dominated by methods that hang on to their original count
for an arbitrarily long period of time (T. Seidenfeld, personal communication). That isn’t so bad, after
all, because there are compelling reasons not to under-count (e.g., the undercount couldn’t possibly be
true). The crux of Ockham’s razor is to motivate not over-counting, and over-counters do not dominate
the retractions of Ockham methods in this way. More to the point, the alternative theory developed in
(Kelly 2005) is not subject to this objection, because tardiness of retractions is also penalized, so the
delayers do not end up ahead. The present theory has the advantage of greater mathematical elegance,
however.
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for one of the two cells vs. the other. If it is a fixed range of alternatives extensionally
laid out in advance, one speaks of theory choice. If it is an infinite partition latently
specified by some criterion determining the kind of theory that would count as success,
the situation might be described as discovering the truth.

The most characteristic thing about empirical science is that you don’t get to see
w in its entirety. Instead, you get some incomplete evidence or information about w,
represented by some subset of Ω containing w. The set of all possible information states
you might find yourself in is modelled as the collection of open sets V in a topological
space over Ω. A scientific problem is just a triple (Ω,V,Q), where (Ω,V) is a topological
space and Q partitions Ω (figure 25). The idea is that, although the scientist never gets

answer to Q  true in w

w

information state in V  encountered in w

Ωworld in

Figure 25: A Scientific Problem.

to see the actual world w itself, he does get to see ever smaller open neighborhoods of
w.

The use of topology to model information states is not a mere stipulation, for in-
formation concerns verifiable effects and topology is perhaps best understood as the
mathematical theory of verifiability.11 The point is seen most directly as follows. Iden-
tify each proposition with the set of possible worlds or circumstances in which it would
be true, so propositions may be modelled as subsets of the set Ω of possible worlds.
Say that a proposition is verifiable if and only if there exists a method or procedure
that examines experience and that eventually illuminates a light if the proposition is
true and that never illuminates the light otherwise. For example, illuminating the light
when a particle appears yields a verification procedure for the proposition that at least
one particle will appear.

The contradiction is the empty set of worlds (it can’t possibly be true) (figure
26). It is verifiable by the trivial verification procedure that never illuminates its light.
Similarly, the tautologous proposition consists of the whole set Ω of worlds and is
verifiable by the trivial procedure that turns on its light a priori. Suppose that two
verifiable propositions A,B are given. Their conjunction A ∩ B is verifiable by the
procedure that turns on its light if and only if the respective verification procedures
for A and for B have both turned on their lights. Finally, suppose a collection D ⊂ Ω
of verifiable propositions is given. Their disjunction

⋃D is verifiable by the procedure
11Topology is also used to model partial informaton states in denotational semantics (Scott 1982).
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. . .

arbitrary disjunction

contradiction tautology

finite conjunction

Figure 26: Verifiable Propositions are Open Sets.

that turns on its light just in case the procedure for some proposition A ∈ D turns on
its light (you will see that light eventually as long as each respective procedure is only
a finite distance away). Hence, the verifiable propositions V over Ω constitute the open
sets of a topological space (Ω,V). So every theorem about open sets in a topological
space is also true of ideal empirical verifiability. One of the most characteristic features
of topology is that open sets are closed under arbitrary union but only under finite
intersection. That is also explainable in terms of verifiability. Suppose you are given
an infinite collection C of verifiable propositions. Is there a verification procedure for⋂ C? Not always. For the respective verification procedures for the elements of C may
all turn on their lights, but at different times, so that there is no time by which you can
be sure that it is safe to to turn on your light for

⋂ C (figure 27). That is an instance

Arbitrary

conjunction
on

. . .

Gotta decide sometime!

Figure 27: The Demon of Arbitrary Conjunction.

of the classical problem of induction: no matter how many lights you have seen go on,
the next light might never do so. So not only are the axioms of topology satisfied by
empirical verifiability; the characteristic asymmetry in the axioms reflects the problem
of induction.

In a given topological space (Ω,V), the problem of induction arises in a world w ∈ Ω
with respect to proposition H just in case every information state (open proposition)
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true in w is compatible both with H and with ¬H (figure 28).12 In standard, topological

H not-H

...

Figure 28: Demons Live in Boundaries.

parlance, the problem of induction arises with respect to H in w just in case w is a
boundary point of H. So the demons of induction live in the boundaries of propositions
one would like to know the truth values of. In a world that is an interior point of
H, one eventually receives information verifying H (since an interior point of H has a
neighborhood contained in H). Hence, not every verified proposition is verifiable, since
a verified proposition merely has non-empty interior, whereas a verifiable proposition
is open. But if a non-verifiable proposition is verified, some open proposition entailing
it is verified, so information states can still be identified with open sets.

Less abstractly, recall the particle-counting problem. A possible world determines
how many particles emerge from the machine for eternity and when each such particle
emerges. Thus, one may model possible worlds as ω-sequences of bits, where 1 in
position n indicates appearance of a new particle at stage n and 0 indicates that no
new particle appears at n. Consider the situation in which you have seen the finite bit
string (b0, . . . , bn−1). The corresponding information state is the set of all ω-sequences
of bits that extend the finite bit string observed so far. Call this proposition the fan
with handle (b0, . . . , bn−1), since all the worlds satisfying the fan agree up to n and then
“fan out” in all possible ways from n onward (figure 29). Any disjunction of verifiable
events is verifiable (see above), so any union of fans is also verifiable and, hence, open
(just wait for the handle of one of the fans to appear before turning on the light). The
resulting space over arbitrary, ω-sequences of bits is very familiar in topology, where it
is known as as the Cantor space. In the particle-counting problem, it is assumed that
at most finitely many particles will appear, so one must restrict Cantor space down to
the ω-sequences that converge to 0.

Consider the proposition that exactly two particles will be observed for eternity.
This proposition is impossible to verify (no matter what you see, another particle may
appear later). Hence, its interior is empty and every element is a boundary point, where
the problem of induction arises. In this space, the boundary points are particularly
suggestive of the problem of induction (figure 30). For example, consider the world
(1, 1, 0, . . .) where the dots indicate an infinite tail of zeros. No matter how far you
travel down this sequence (i.e., no matter what information you receive in this world),

12Let ¬H denote Ω−H.
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Figure 29: A Fan of Sequential Worlds.

H

...

not-H

Figure 30: Boundary Points in Cantor Space.

there exist worlds in which more than two particles appear later than you have observed
so far. So nature is in a position to drag you down the sequence (1, 1, 0, . . .) until you
cave in and say “two” and is still free to show you another particle, as in the U-turn
argument. The U-turn argument hinges, therefor, upon the topologically invariant
structure of boundary points between answers to a question.

0.8 The Unending Game of Science

Each scientific problem determines an infinite, zero-sum game of perfect information
(cf. Kechris 1991, pp. 137-148, Kelly 1996 121-137) between the scientist, who responds
to each information state by selecting an answer (or by refusing to choose), and the
impish inductive demon, who responds to the scientist’s current guess history with
a new information state. The demon is not a malicious force in nature; he merely
personifies the difficulty of the challenge the scientist poses for himself by addressing a
given scientific problem.

In this truth-finding game, the demon and the scientist take turns, starting with
the scientist (figure 31). Together, the demon and the scientist produce a pair of ω-
sequences, an information sequence produced by the demon and an answer sequence
produced by the scientist. Life would be too easy for the demon if he were allowed to
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Figure 31: The Players.

withhold some crucial information for eternity, so the scientist is the victor by default
if the demon fails to present complete, true information about some world in Ω in
the limit.13 In other words, an information sequence {Ei : i ∈ ω} for the problem
should be a downward-nested sequence of open sets whose intersection is non-empty
and contained in some answer A. Then say that the information sequence is for A.

The scientist wins the convergence game by default if the demon fails to present an
information sequence for some world in the problem and by merit if his outputs stabilize
eventually, to the answer true in some world w the demon presents true information
for. In other words, if the demon presents a legitimate information sequence, there
must exist a stage in the play sequence after which the scientist’s answer is correct of
w. A winning strategy for the scientist in the convergence game is called a solution to
the underlying empirical problem. For example, the obvious counting strategy solves
the particle-counting problem.14 A problem is solvable just in case it has a solution.

0.9 Comparing Mind-Changes

Consider two possible sequences of answers, σ and τ . Say that σ maps into τ (written
σ ≤ τ) just in case there is an answer and order preserving mapping (not necessarily
one-to-one) from positions in σ to positions in τ , where suspension of judgement is a
wild-card in the former sequence that matches any answer in the latter (figure 32).15

13One might reply that if it is impossible for the demon to fulfil his duty, the scientist loses since
even the total experience received in the limit of inquiry doesn’t settle the question. The game could
be set up to reflect either viewpoint.

14It is interesting to inquire into the topological nature of solvability, since solvability is a topological
invariant and must, therefore, be grounded in a problem’s topological structure. For example, if the
space is separable and the question is a countable partition, then solvability is equivalent to each cell
being ∆0

2 Borel (cf. Kelly 1996, cor. 9.10, p. 228). Such questions are not strictly necessary for
understanding Ockham’s razor, and are therefore omitted from this essay.

15In fact, an Ockham method’s output sequences map injectively into output sequences the demon
can force out of an arbitrary method. In (Kelly 2005), methods are compared in terms of Pareto-
dominanace with respect to number and timing of retractions, where a retraction occurs whenever
an informative answer is dropped. The streamlined account of costs just presented does not penalize
gratuitous question marks or tardiness of retractions, since question marks are wild cards and the
mappings employed are many-one.
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Since the mapping preserves answers and order, it also preserves mind-changes (not

1 ? ?0 1 2?

0 0 0 ? 1? 1 1 ? 2 2 . . .

. . .

Ockham violation

Figure 32: Top Output Sequence Better Than Bottom.

counting mere suspension as a mind-change). So when σ maps into τ , one may say
that σ is as good as τ so far as mind-changes are concerned. Say that σ maps properly
into τ (written σ < τ) if, in addition, the latter fails to map into the former, as in
figure 32. Then σ is better than τ .

One can also say of two sets of output sequences that the former is as good as the
latter just in case each element of the former is as good as some element of the latter
(figure 33) and is better than the latter if, in addition, the latter is not as good as

Figure 33: Top Set Better Than Bottom.

the former.16 The former set is strongly better than the latter just in case each of the
former’s elements is better than some element of the latter that is not as good as any
element of the former (figure 34).17 Extend the symbols ≤ and < to sets of output
sequences accordingly.

The set of output sequences of a solution to a problem is the set of all output
sequences σ such there exists some information sequence for some answer along which

16This is not the same as weak dominance, since the existential quantifier allows for a worst-case
pairing of output sequences by the mapping.

17The requirement that the sequence mapped to is not as good as any of the former method’s output
sequences precludes cases in which a method is strongly better than itself. For example, if there are
only two answers in the particle problem, “even” and “odd”, then each output sequence of the obvious
method that answers according to whether the number of observed particles is even or odd is better
than some other output sequence of the same method (e.g., (E, O, E, O, . . .) < (O, E, O, E, O, . . .)).
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Figure 34: Top Set Strongly Better Than Bottom.

the method produces σ. Then one can say of two methods that the former is as good,
better, or strongly better than the latter just in case their respective sets of output
sequences bear the corresponding relation. Finally, say that a solution is efficient in
a problem just in case it as good as any other solution in each subproblem. Again,
the idea is that inefficiency is forward-looking and should not be offset by foibles or
stockpiles of credit (slush funds) earned in the past.

By way of illustration, the counting solution is efficient in the particle-counting
problem, as is any Ockham solution to this problem (remember that Ockham solutions
can suspend belief for artibrary periods of time). That is because the demon can
force any solution through any ascending sequence of answers and Ockham methods
produce only ascending sequences of answers. Furthermore, any non-Ockham solution
is worse than any Ockham solution in the subproblem entered when the violation occurs.
Indeed, it was shown that the violator is strongly worse than any Ockham solution in
that subproblem, because the demon can force the violator into any ascending sequence
after the U-turn back to the Ockham answer. Hence, the counting problem has the
remarkable property that its efficient solutions are exactly its Ockham solutions. That
is surely a result worth pressing as far as possible! But first, Ockham’s razor must be
defined, with corresponding generality.

0.10 What Simplicity Isn’t

The concept of simplicity appears, at first, to be a hodge-podge of considerations,
including uniformity of nature, theoretical unity, symmetry, testability, explanatory
power, and minimization of entities, causes, and free parameters. But in spite of
these manifold aspects, it remains possible that simplicity is a deep, unified, concept
with multiple manifestations, depending on the particular structure of the problem
addressed. It is suggestive in this regard that the trivial particle-counting problem
already illustrates all of the intuitive aspects of simplicity just mentioned and that
they seem to cluster around the nested problems of induction posed by the repeated
possibility that a new particle might appear.

It is easy, at least, to say what simplicity couldn’t be. It couldn’t be anything fixed
that does not depend on the structure of the problem. For it is a commonplace in
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the analysis of formal procedures that different algorithmic approaches are efficient at
solving different problems. So if simplicity did not depend, somehow, on the structure
of the particular problem addressed, Ockham’s razor couldn’t possibly be necessary
for efficient convergence to the truth in a wide range of distinct problems possessing
different structures.

That is the trouble with concepts of simplicity like notational brevity (Li and Vi-
tanyi 1997 pp. 317-337), uniformity of worlds (Carnap 1950 pp.562-567), prior prob-
abilistic biases, and historical “entrenchment” (Goodman 1983 pp. 90-100). Left to
themselves, none of these ideas conforms to the essential structural interplay between
a problem’s question and its underlying informational topology, so none of them could
contribute objectively to truth-finding efficiency over a range of different problems.
All of them could be made to do so by selecting notation that reflects the relevant
structure of the problem addressed (Mitchell 1997, pp. 174). But then the essence of
simplicity is captured by the rules for selecting appropriate notation, rather than by
brevity, uniformity, or the like.

0.11 Simplicity and Ockham’s Razor Defined

The task of defining simplicity is facilitated by knowing in advance how Ockham’s
razor is justified. We can, therefore, “solve backwards” for simplicity, by generalizing
the features of particle counting that give rise to the the U-turn argument. The key to
the U-turn argument is the demon’s ability to force a given sequence of mind-changes
out of an arbitrary solution. In the particle-counting problem, the demon can present
information from the zero-particle world until the scientist caves in and concludes that
there will be zero particles (on pain of not converging to the true answer) (figure 35).
Then the demon can present a particle followed by no further particles until the scientist

0, 1, 2, 3, ?, ?, ?, ?

If you never say 4,

you’ll miss the truth forever!

Figure 35: Demon Forcing a Sequence of Answers.

concludes “one particle”, again on pain of not converging to the true answer, and so
forth. This can’t go on forever, though, because the demon must present data from
some world in Ω, and all such worlds present at most finitely many particles. Hence, for
each finite ascending sequence σ of answers, the demon can force an arbitrary solution
to the particle-counting problem into an output sequence that σ maps into. But the
demon has no strategy for dragging an arbitrary solution through any non-ascending
sequence, say, (1, 0). For the obvious counting method will wait to see the first particle
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before concluding “one” and, thereafter, the demon can no longer trick it into thinking
that there are no particles, since the particle has already been presented. That is a
fundamental asymmetry in the problem.

More generally, if σ is a finite, non-repetitive sequence of answers, then the σ-
avoidance game for a problem is won by the scientist just in case the demon fails to
present an appropriate information sequence or the scientist wins the truth-finding
game and fails to produce a sequence of conjectures as bad as σ. The demon wins if he
presents appropriate information that makes the scientist lose the truth-finding game
or that somehow lures the scientist into producing an output sequence as bad as σ.
When the demon has a winning strategy in the σ-avoidance game, one may say that
the demon can force σ from an arbitrary solution to the problem. For example, it was
shown that the demon has a winning strategy in the (0, 1, 2, . . . , n)-avoidance game
in the particle-counting problem, since every method can be induced to produce that
output sequence (or a sequence that is at least as bad). Then say that σ is demonic in
a problem just in case the demon can force it in the problem.

The demonic sequences in a problem reflect a deep relationship between the question
Q and the underlying topology V. The ability of the demon to force demonic sequence
(0, 1, 2, . . . , n) implies that there is a zero particle world that is a limit point of one
particle worlds each of which is a limit point of two particle worlds and so forth. So
demonic sequences represent iterated problems of induction within the overall problem
(figure 36). According to intuition, simpler answers are associated with the most deeply
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Figure 36: Demonic Sequence in the Particle-Counting Problem.

embedded problems of induction, for starting from 0, the demon can drag a solution
through every ascending sequence, but after presenting some particles, he can never
drag the counting solution back to 0. That suggests a natural definition of empirical
simplicity. If A is a potential answer, then say that the A-sequences are the demonic
sequences starting with A. Say that answer A is as simple as B just in case the A-
sequences are as bad as the B-sequences and that A is simpler than B just in case the
A-sequences are worse than the B-sequences. This definition agrees with intuition in
the counting problem and, hence, in parameter-freeing problems of the usual sort, such
as curve-fitting.
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The proposed explication of simplicity has a striking, intuitive advantage over the
familiar idea that simplicity has something to do with dimensionality of an answer in a
continuous parameter space. For if you were to learn that the true parameter values are
rational, then the topological dimension of each answer would drop to zero, flattening
all simplicity distinctions. But since the rational-valued subspace of the parameter
space preserves demonic sequences, it also preserves simplicity in the proposed sense.

Now say, quite naturally, that an answer A is Ockham in a problem just in case
A has an information sequence and is as simple in the problem as any other answer.
This is a way of saying that A is the simplest answer compatible with experience,
where compatibility with experience includes the assumption that complete evidence
can be presented at all; else there is no use debating whether simplicity helps one find
the truth. Ockham’s razor is then: never say an answer unless it is Ockham for the
current subproblem. Finally, a solution is Ockham if it solves the problem and always
heeds Ockham’s razor. “The” Ockham answer is typically unique, but not always.
If there is no Ockham answer, an Ockham method must suspend judgment. If there
is more than one, an Ockham method may produce any one of them. It may sound
odd to allow for an arbitrary choice among Ockham answers,18 but keep in mind that
two hypotheses could be maximally simple (no other answer’s demonic sequences are
worse) without being Ockham (every other answer’s demonic sequences map in). The
truly objectionable choices turn out to be among maximally simple answers that are
not Ockham, as will be explained below.

Here is a handy re-formulation of the Ockham answer concept, where ∗ denotes
concatenation. The proofs of all propositions are presented in the Appendix.

Proposition 1 (Ockham characterization) If the problem is solvable, A is Ock-
ham if and only if for every demonic sequence σ for the problem, A ∗ σ is demonic for
the problem.

0.12 Efficiency, Games and Determinacy

Lifting the U-turn argument to the general version of Ockham’s razor just defined re-
quires a short digression into the nature of efficient solutions. A method is as good
as a set of sequences just in case the method’s set of output sequences is as good as
the given set, and similarly for the other ordering relations defined above. Then it is
immediate that the demonic sequences are as good as an arbitrary, efficient solution to
the subproblem, since each solution can be forced to produce each demonic sequence.
It is far less trivial whether an efficient solution must be as good as the set of demonic
sequences. This is where Ockham’s razor interfaces with recent developments in de-
scriptive set theory (cf. Kechris 1991, pp. 137-146 for a succinct development of the
following material).

Say that a game is determined just in case one player or the other has a winning
strategy and that a scientific problem is forcing-determinate just in case for each finite

18The theory presented in (Kelly 2005) does not have this property.
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answer sequence σ, the σ-avoidance game is determined. Forcing-determinacy turns
out to be a surprisingly mild restriction. Say that a problem is typical just in case
the set Q of possible answers is countable and the set of possible information streams
for worlds in Ω is Borel. Then it is an easy consequence of D. Martin’s (1975) Borel
determinacy theorem that

Proposition 2 Typical, solvable problems are forcing-determinate.

The following results all concern solutions and, hence, are vacuously true if the problem
in question is unsolvable. Therefore:

Proposition 3 Each of the following propositions remains true if “forcing-determinate”
is replaced with “typical”.

Now it is easy to show that:

Proposition 4 (Efficiency Characterization) Let the problem be forcing-determinate.
An arbitrary solution is efficient if and only if it is no worse than the demonic sequences
in each subproblem.

So not only is an efficient solution as good as any solution, it is as good because it is as
good as the demonic sequences, which are as good as any solution.19

0.13 Efficient Solutions = Ockham Solutions

Here is the main result. Ockham is indeed necessary and sufficient for efficiency in an
extremely broad range of problems. The hypothesis of forcing-determinacy makes the
proof surprisingly easy.

Proposition 5 (Ockham Equivalence Theorem) Let the problem be forcing-determinate.
Then the efficient solutions are exactly the Ockham solutions.

More can be shown for the particle-counting problem and for others of its attractive
kind. For such problems have the special feature that in each subproblem, if A is an
Ockham violation upon entering the subproblem, then there exists an Ockham answer
U upon entering the subproblem such that the binary sequence A ∗ U does not map
into any demonic sequence for the subproblem. Say that such problems are stacked.20

Examples of non-stacked problems illustrate intuitive ideas about empirical symmetry
and will be considered in the next section. The result is:

19Such a result is called a universal factorization (MacLane 1971, pp. 1-2).
20To see that the particle-counting problem is stacked, suppose that A is not Ockham upon seeing,

say, four particles. Let U be the Ockham answer “four”. Then the binary sequence A ∗ U maps into
no demonic sequence in the subproblem. For if A posits fewer than four particles, A maps into no
demonic sequence since the demon can’t force an arbitrary solution into a refuted answer. If A posits
more particles, then (A, U) maps into no demonic sequence since all such sequences are ascending.
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Proposition 6 (Strong Ockham Necessity for Stacked Problems) In a stacked,
forcing-determinate problem, if a solution violates Ockham’s razor upon entering a
sub-problem, the solution is stongly worse than each efficient solution in the same sub-
problem.

This fits closely with the spirit of the freeway example and with what is going on in
particle counting and curve fitting. The property of being “stacked” can be viewed as
the topological essence underlying the very strong Ockham intuitions attending such
problems.

0.14 Testing as an Instance of Ockham’s Razor

Suppose that you want to decide whether some theory is true or not. That poses a
binary question: the theory vs. the theory’s denial. Typically, the theory is refutable
and, hence, closed. Everyone chooses the refutable (e.g., point) hypothesis as the null
hypothesis and its denial as the alternative. On the proposed account of simplicity, the
decision to accept the refutable hypothesis until it is refuted is an instance of Ockham’s
razor and is underwritten by the U-turn argument, so that the proposed account of
efficient theory choice subsumes this aspect of testing practice as a special case.

First, observe that the demon can force you to conclude the refutable hypothesis
H (by showing you a boundary point in the hypothesis, since closed sets contain all
of their boundary points). Then he can show you data refuting the theory. So only
(H,¬H) and its subsequences are demonic. Hence, only H is Ockham (proposition 1),
so (by proposition 5) every efficient solution says H (or suspends) until H is refuted,
which reflects practice. Finally, that practice is efficient (since its output sequences are
all demonic), so Ockham’s razor bites and you should heed his advice.

The trouble with standard conceptions of hypothesis testing is that they ignore the
possibility of extra mind-changes. Yes, it is refutable to say that the bivariate mean of
a normal distribution is precisely (0, 0), since {(0, 0)} is closed (and hence refutable)
in the underlying parameter space. But what if you want to test the non-refutable
and non-verifiable hypothesis that exactly one component of the mean is zero? Solving
this binary question requires multiple mind-changes, as in particle-counting and other
model selection problems. For the demon can make it appear that both components
are zero until you probably say “no” (as sample size increases) and can then reveal
deviation of one component from zero until you probably say “yes” and then can reveal
deviation of the other component from zero until you probably say “no” again, for a
total of two mind-changes (in probability). Essentially, you are just counting deviations
of mean components from zero as you were counting particles before. So the demonic
sequences are all the sequences that map into “yes, no, yes”, so the obvious method of
counting nonzero mean components is efficient and the unique Ockham hypothesis at
each stage is the one that agrees with the current nonzero mean count. So you should
heed Ockham’s advice, (as you naturally would in this example).

Since testing theory usually isn’t applied until all the parameters in a model are
fixed by point estimates, it appears as though a testing theory for refutable (closed)
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hypotheses is good enough. Hence, the essential involvement of Ockham’s razor in
testing theory is missed and so the strong analogy between model selection and testing
with multiple mind-changes is missed as well. The proposed account of Ockham’s
razor, therefore, suggests a new, more unified foundation for classical statistics, whose
development lies beyond the scope of this explorative essay.

0.15 Ockham and Respect for Symmetry

When there are two maximally simple answers compatible with the data, Ockham can’t
help you decide among them and the strong intuition is to wait for nature to “break
the symmetry” prior to choosing. For example, modify the particle-counting problem
so that particles come in two colors, green and blue and you have to specify the total
number of each that will ever be emitted. Assume also that you can hear particles
rattle down the faucet before they emerge from the machine (figure 37). Having seen

Bonk!

Bonk!

?

Figure 37: Breaking Symmetry.

no particles, you hear the first one coming. What do you conclude? It is hard to
say, for both colors of marbles will stop appearing, eventually, so there is no general
“pattern” to detect in the data, and there is no obvious primacy of one color over the
other so far as the underlying problem is concerned. This is not mere skepticism, since
after the next marble is observed, you will eventually have to leap to the bold Ockham
hypothesis that no more particles are coming. Instead, it is respect for symmetry, one of
the strongest intuitions in science since Greek times. That leads to an intriguing idea.
Perhaps the U-turn argument also explains our strong hesitance to break symmetries
in experience. Then respect for symmetry would simply be Ockham’s razor conforming
itself to the structure of symmetrical problems. That is correct.

Consider how Ockham’s razor applies to the case at hand. When you hear the
rattling that announces the first particle, you have entered a new subproblem. There
are two equally simple answers at that point, “one green, zero blue” or symmetrically
“zero green, one blue”. But neither of these answers is Ockham. For each answer
constitutes a unit demonic sequence, but neither binary sequence consisting of the two
symmetrical competitors is demonic in the subproblem, since the demon can’t take
back the first particle after its color is observed. So Ockham demands silence, and
we already know from proposition 5 that every efficient solution to the problem must
heed this advice. Is there an efficient solution? Indeed, just heed Ockham’s advice
by counting the total number of particles whose colors are seen and by suspending
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judgment when the next rattle is heard. Respect for symmetry follows from Ockham’s
razor.

The symmetrical problem under discussion is a nice example of a non-stacked prob-
lem. For consider the answer “zero green, one blue”. There is no Ockham answer one
can concatenate to this answer in the subproblem entered with the first rattle because
there is no Ockham answer at all. And the violator is not strongly worse than the Ock-
ham method just described in that subproblem, because the demon can force even an
optimal method to say the same answer the violator chose in advance and the violator
produces no output sequence worse than that.

The same argument works even after a run of a thousand exclusively green particles,
in which case it might be objected that past experience does break symmetry between
blue and green. But the subproblem so entered is topologically equivalent to the original
problem prior to seeing any marbles. Hence, no non-circular, efficiency-based account
of Ockham’s razor could possibly explain why it is more efficient to say “green” rather
than “blue” upon entering the subproblem.

In the preceding problem, the counting question slices the problem into topologi-
cally invariant simplicity degrees corresponding to particle counts in spite of occasional
symmetries (e.g., when the particle rattles and has not yet been seen). In other prob-
lems, symmetry is so pervasive that Ockham’s razor doesn’t bite at all (figure 38). For

Tonk!

Figure 38: Overly Symmetrical Problems.

example, suppose you have to report not only how many particles will appear, but
when each one will appear (forgetting about color). It might seem, at first, that the
simplest answer is to say that you have seen all the particles already and that they
appear exactly when they were observed to, since if you were asked only how many
particles there are, you would only be permitted to say the number seen so far. That is
so, if you choose to conceive of the sequence identification problem as a refinement of
the particle counting problem. The trouble is that the sequence identification problem
also refines alternative problems that lead to incompatible simplicity judgments. For
example, oneicles are non-particles up to stage one and particles thereafter. There are
finitely many particles if and only if there are finitely many oneicles, so the underlying
space Ω is unaltered by the translation. But the answers to the two counting problems
are different and the U-turn argument leads to correspondingly different recommen-
dations (i.e., to count particles or to count onecles, respectively). Since the sequence
identification problem refines the problems of counting particles, oneticles, twoticles,
threeticles, etc., it can’t consistently favor one kind of counting over another without
making a global, symmetry-breaking choice in favor of one of its possible coarsenings.

31



The only sensible resolution of this Babel of alternative coarsenings is for Ockham to
hold his tongue.

And that’s just what the proposed theory says. First of all, no answer is Ockham
in this problem, since every demonic sequence is of unit length. For consider a single
answer. The answer is true in just one world, which the demon can present until you
take the bait. So each unit sequence of answers can be forced. For each alternative
answer (satisfied by an alternative world), there is a least stage by which the two cease
agreeing and diverge. But some solution refuses to be convinced of the first answer
(on pain of converging to the wrong answer) until the divergence point is already
passed (figure 39). So the demon can force no binary sequence of answers from an

already

ruled

out

Hasta la vista, baby!

Figure 39: The Trouble With Singleton Answers.

arbitrary solution. Hence (proposition 4), there can be no efficient solution, since no
solution to this problem succeeds without mind-changes. So there are lots of solutions
to this problem, but no efficient ones. Hence, even if there were an Ockham answer,
there would be no efficient method to put normative teeth into the U-turn argument!
Ockham is both mute and toothless in this problem.

Again, that is the correct answer. The sequence-identification problem is completely
symmetrical in the sense that any homeomorphism of the space into itself results in
the very same problem (since each permuted world still ends up in a singleton answer
over the same topological space). So there is no objective, structural sense in which
one answer is simpler than another any more than there is any objective physical
sense about where zero degrees longitude is. Coordinate systems are not physically
real because they aren’t preserved under physical symmetries; philosophical notions of
simplicity (e.g., brevity, sequential uniformity, entrenchment) are not real because they
aren’t preserved under problem symmetries. To seek objective, truth-finding efficiency
in distinctions that really aren’t in the problem is like trying to generate electricity by
formally spinning coordinate axes. The situation is different in the counting problem.
There exist homeomorphisms of the underlying topological space that materially alter
the original problem (e.g., the unique Ockham hypothesis “no particles” would become
“no oneicles”, which means “one particle at stage 1”). It is precisely this lack of
symmetry in the particle-counting problem that allows Ockham to slice it into objective
simplicity degrees.
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The usual attempts to use coding, “entrenchment”, or prior probability to force
a foliation of the sequence identification problem into simplicity degrees must involve
the imposition of extraneous considerations lacking in the problem’s intrinsic structure
as presented. Therefore, such considerations couldn’t possibly have anything objec-
tive to do with solving the problem (as stated) efficiently. So the proposed account
yields precisely the right judgment in this example when its true nature is properly
understood.

One can also arrive at overly-symmetrical problems by coarsening the particle-
counting problem. For example, consider the question whether there is an even or an
odd number of particles. Since this coarsens the particle-counting problem, one again
expects “even” to be the Ockham answer when an even number of particles have been
observed and “odd” to be the right answer otherwise (figure 40). But the proposed
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Figure 40: Even/Odd as Particle Counting

theory of Ockham’s razor doesn’t agree. Ockham is once again silenced, but this time
the difficulty is exactly reversed: every solution is efficient and every answer is Ockham
in every subproblem so every method satisfies Ockham’s razor and the U-turn argument
can’t even begin (figure 41).21

The theory is right. Yes, if one thinks of the problem as a coarsening of particle
counting, “even” must come first. But one could also think of it as a coarsening
of counting oneicles instead of particles. Then the zero oneicle world is an “odd”
world. The one oneicle worlds include the zero particle world as well as all the two
particle worlds in which the first appears right away. These are all “even particle”
worlds. Continuing in this way one obtains a oneicle-counting simplicity foliation (figure
42) in which the obvious “first” conjecture is “odd”. But the oneicle translation is
a homeomorphism of the space that reflects each answer onto the other, so a prior

21In the theory presented in (Kelly 2005), there is no Ockham solution to this problem. Either way,
Ockham refuses to choose among potential solutions to the problem.
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Figure 41: Ockham Under Refinement
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Figure 42: Even/Odd as Oneicle Counting

preference for “even” couldn’t have anything to do with the objective efficiency of
solutions to the even/odd problem as stated.

The urge to extend Ockham’s advice to symmetrical problems is understandable—
guidance is most precious when there is none. And even in light of the proposed
account, nothing prevents us from saying that we are really interested in counting
marbles rather than merely saying whether they are even or odd, in which case the
problem is no longer symmetrical. But it is quite another matter to smuggle extra
structure into a symmetrical problem without acknowledging that one has done so,
for such practice is not warranted by truth-finding efficiency in the problem addressed
(figure 43).
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Hey, Ock baby.

I got what ya need.

Now pick up dat razor!

smuggled

structure

Figure 43: Theft Over Honest Toil

0.16 Conclusion: Ockham’s Family Secret

Ockham is beloved as an inexhaustible source of free information that somehow parlays
the scientist’s limited viewpoint into sweeping generalizations about unseen realities
(figure 44). But his very appeal is his undoing, for it is impossible to explain how his

He had me cornered!

Urk!

Figure 44: Ockham’s Day Job

fixed advice could be true without assuming exactly what we rely upon him to tell us.
This paper presents an alternative view, according to which Ockham helps us find

the truth, but in an unexpected way. He doesn’t provide any guarantee that the theory
he selects is true or probably true. He doesn’t point at the truth. He can’t even bound
the number of future surprises or U-turns you will have to make in the future on your
way to the truth. All he does is save you the trouble of needless surprises beyond those
arbitrarily many surprises nature is objectively in a position to exact from you. But in
that respect, his advice is still uniquely the best.

The proposed explanation is unnerving because it singles out simplicity as the
right bias to have, but falls so far short of our craving for certainty, verification, and
guarantees against future surprises. That is far harder to dismiss than the usual,
academic sort of skepticism, which finds no connection between simplicity and truth
and urges rejection of simplicity-based conclusions altogether.

It is also ironic that Ockham is viewed as a comforting figure when, in fact, he
is built out of the inductive demon’s opportunities to successively force science to
reverse course. Indeed, Ockham and the demon work together as a coordinated team,
since Ockham changes his recommendations each time the demon uses up one of his
opportunities to fool the scientist (figure 45).
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Father!

We were a great team today, son!

Did you see that guy’s face?

Figure 45: But by Night. . .

The key to understanding Ockham’s razor is to set aside our instinctive appetite
for certainty and to focus squarely on the objective complexity properties of empirical
problems that underly unavoidable reversals of scientific opinion through time. A
similar focus on problem complexity has long been the norm in the mathematical
theories of computability, computational complexity, and descriptive set theory. In
these established, scientific subjects, nobody would dream of “victory” over complexity.
It is late in the day for the philosophy of science and induction to be dreaming still.
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0.19 Appendix: Proofs

Proof of proposition 1. Suppose that A is Ockham. Let σ be an arbitrary, demonic
sequence. If σ is empty, then trivially A ∗ σ is demonic, since there is an information
sequence for some world in A and a solution must converge to A on this sequence. So
suppose that σ = B ∗ γ. Since A is Ockham, there exists demonic A ∗ τ such that
B ∗ γ ≤ A ∗ τ , in virtue of some mapping φ. If φ(0) = 0, then B = A, so:

A ∗ τ ≥ A ∗ γ ≥ A ∗A ∗ γ = A ∗ (B ∗ γ) = A ∗ σ.
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So since A ∗ τ is demonic, so is A ∗ σ. If φ(0) > 0, then since B ∗ γ ≤ A ∗ τ and B 6= A,
it follows that σ = B ∗ γ ≤ τ . Hence: A ∗ τ ≥ A ∗ σ. So since A ∗ τ is demonic, so is
A ∗ σ.

Conversely, suppose that for each demonic sequence σ, A∗σ is demonic. The empty
sequence () is trivially demonic, so A∗ () = (A) is demonic, so some δ ≥ (A) is forcible,
so there is some information sequence whose intersection is A. For suppose otherwise.
Since the problem is solvable, let a solution be given. Since there is no information
sequence for A, the solution remains a solution if its output is changed to “?” each time
it produces A. Hence, no sequence as bad as (A) is forcible. Contradiction. Finally, let
B be an answer and let B ∗ σ be demonic. Then by assumption, A ∗B ∗ σ is demonic.
So the A sequences are as bad as the B sequences. Thus, in light of the italicized claim,
A is Ockham. a

Proof of proposition 2. Let (Ω,V,Q) be a solvable problem, let ε be an ω-sequence
of open sets, let γ be an ω-sequence of answers and let σ be a finite sequence of answers.
The pair (ε, γ) wins for the demon in the σ-avoidance game in (Ω,V,Q) if and only
if (i) ε is an information sequence for some answer in Q and either (ii) there exists
answer A in Q such that ε is for A and γ does not converge to A or (iii) γ is as bad
as σ. Condition (i) is Borel by assumption. Condition (iii) is open and, hence, Borel.
In light of condition (i) and the fact that the problem has a solution M , condition (ii)
reduces to: there exists an A in Q such that M converges to A along ε and γ does
not converge to A. Convergence is Borel and Q is countable, so the overall winning
condition for the demon is Borel. Apply Martin’s (1975) Borel determinacy theorem,
which states that all such games with Borel winning conditions are determined. a

Proof of proposition 3. Immediate. a

Proof of proposition 4. Let an efficient solution M to a forcing-determinate prob-
lem be given. Then in each subproblem, M is as good as an arbitrary solution. Let
σ be a finite output sequence of M in a given subproblem. So every solution to the
subproblem produces an output sequence as bad as σ, so the scientist has no winning
strategy in the σ-avoidance game. So by forcing-determinacy, the demon has a winning
strategy, so σ is demonic. So an efficient method is as good as the demonic sequences
in each subproblem. a

Proof of proposition 5. Let a forcing-determinate problem be given. For the neces-
sity argument, suppose that solution M violates Ockham’s razor upon entering some
subproblem by producing non-Ockham answer A. Let D be the set of demonic se-
quences for the subproblem. Since A is not Ockham and M is a solution, there exists
(by proposition 1) a demonic sequence σ in the subproblem such that A ∗ σ does not
map into any demonic sequence. Hence, M 6≤ D. So by proposition 4, M is not
efficient.

For sufficiency, it suffices to argue that every finite sequence of Ockham answers en-
countered in subproblems successively reached as experience increases maps into some
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demonic sequence in the first subproblem. For then an Ockham solution, which pro-
duces only sequences of Ockham answers interspersed with question marks, is no worse
than the demonic sequences in an arbitrary subproblem and, hence, is efficient, since
the demonic sequences are, by definition, no worse than an arbitrary solution. In the
base case, each Ockham answer A in a subproblem has an information sequence for
it, so the singleton sequence (A) can be forced by the demon in the subproblem and,
hence, is demonic in the subproblem. Now consider a finite, downward-nested sequence
of non-empty open sets (E0, . . . , En+1) determining respective sub-problems with re-
spective Ockham answers (A0, . . . , An+1). By the induction hypothesis, (A1, . . . , An+1)
is demonic in P1. Furthermore, since E1 is a non-empty subset of E0, whatever the
demon can force in P1 he can force in P0, so (A1, . . . , An+1) is demonic in P0. So since
A0 is Ockham in P0, (A0, A1, . . . , An+1) is demonic in P0, which proves the italicized
claim and, hence, the theorem. a

Proof of proposition 6. Consider an efficient solution to a stacked, forcing-determinate
problem and suppose that M solves a given subproblem but violates Ockham’s razor
upon entering it by producing A. Let U be the Ockham answer promised by the stack-
ing property. Then since M already says A and U is compatible with the current
subproblem, the demon can force M to produce U after producing A. (That is the ini-
tial U-turn resulting from the Ockham violation). Consider an arbitrary, finite output
sequence τ of the efficient solution. Then for some demonic δ, τ ≤ δ (proposition 4)
and, hence, τ ≤ A ∗ U ∗ δ. Since U is Ockham and δ is demonic, U ∗ δ is demonic (by
proposition 1). So since M already says A and U ∗δ is demonic, A∗U ∗δ maps into one
of the output sequences of M in the current subproblem. Of course, τ ≤ δ ≤ A ∗U ∗ δ,
so M is as bad as the efficient solution. Furthermore, A ∗ U maps into no demonic
sequence, so neither does A ∗ U ∗ δ. Since all the optimal method’s output sequences
map into demonic sequences, it follows that A ∗ U ∗ δ maps into none of the optimal
method’s output sequences. Hence, M is strongly worse than the efficient solution in
the current subproblem. a
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