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Abstract

Ockham’s razor impels scientists to seek ever greater unity in nature. That seems to
saddle science with a metaphysical presupposition of simplicity that might be false.
The objection is apt if scientific method is understood as a system of inductive logic
or proof, for then the unity of science must, somehow, function as an unjustified
premise in scientific arguments. But if science is understood, instead, primarily
as a process of discovery that aims at finding the truth as efficiently as possible,
the unity of science can be understood as an optimally truth-conducive heuristic
rather than as a metaphysical presupposition. Optimal truth conduciveness is what
epistemic justification is for. Therefore, Ockham’s razor is justified as a scientific
heuristic even though it might be false.

1 Ockam’s Razor and the Unity of Science

In the Preface to his De Revolutionibus, Nikolaus Copernicus did not cite any new or
crucial experiments in favor of his heliocentric astronomical hypothesis: his argument
was based squarely on what he called the harmonies of his system. What he had in
mind is the fact that his theory is severely tested by data that Ptolemy’s theory merely
accommodates; for example, heliocentrism entails that planetary retrograde motion
must happen either at solar conjunction or at solar opposition, whereas in Ptolemy’s
theory retrograde motion is entirely independent of solar position. Fresnel’s argument
for the wave theory of light centered on the ability of the theory to provide a unified ex-
planation of diffraction bands around shadows and of the rings that appear when lenses
are pressed together, which are qualitatively completely different. Each phenomenon
allows one to derive the wave lengths of the various colors of light, which yields a
sharp, testable prediction with respect to the other phenomena. Universal gravitation
allowed Newton to estimate the gravitational constant from terrestrial pendula and
then test the theory against the moon’s orbit. Maxwell’s electromagnetic equations
unified magnetic and electrical forces. Darwin’s theory of evolution uses common an-
cestry to explain homologies or similarities of structure across diverse environments.
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And so on. The scientific preference for simple, harmonious, unified, severely testable
explanations is now known as Ockham’s razor.

Harmony, unity, and severe testability sound like wholesome virtues, but it is a
further question whether such virtues count as reasons to believe in simple theories.
Ockham’s razor can result in error. Parmenides proposed that the universe is an im-
mutable, perfectly symmetrical sphere. Aristotle set force proportional to the first
derivative of distance rather than to the second. Johannes Kepler “unified” the di-
ameters of planetary orbits by nesting the orbits in nested platonic solids. Particle
physicists mistakenly assumed that reactions would conserve parity. Conspiracy theo-
rists see diabolical common causes everywhere. In fact, nature is not perfectly simple
and its complexities were not always so obvious as to be observable immediately (e.g.,
the violation of parity). To assume that reality is as simple as possible with respect
to the data available can, therefore, result in error. So what entitles science to assume
that the truth is simple? The simplicity of the universe would seem to be an empirical
matter that should be investigated rather than pre-judged by science.

Every philosophical explanation starts with a simple, guiding paradigm or metaphor.
One traditional, guiding metaphor for explaining scientific method is that science is a
system of empirical or inductive arguments. Inductive arguments reflect a relation of
support or partial entailment of theoretical hypotheses by the available data and other
background assumptions. On that view, Ockham’s razor must be understood either
as a material premise or as a structural feature of inductive argumentation. But it is
implausible to suppose that we know that hidden realities must be simple, so Ockham’s
razor does not appear to be a premise. Nor does the rhetorical force of Ockham’s razor
explain why simplicity should count toward empirical justification—is does not imply
ought.

Alternatively, science can be viewed not as a system of arguments but as an ongoing
process of inquiry directed at finding the truth. But how could any process systemati-
cally biased toward simplicity help one find possibly complex truths? Since Ockham’s
razor is a fixed bias, relying on its advice is like navigating a ship whose compass needle
frozen into a fixed position by rust. Nonetheless, I will explain how Ockham’s razor can
be shown, in a sense, to be optimally truth conducive. The trick is that theory choice
is an ongoing, essentially fallible procedure and, hence, cannot possibly be guaranteed
to head straight for the truth, so the best Ockham’s razor could do is to keep inquiry
on the straightest possible path to the truth—much as directions to the freeway keep
one on the best route home wherever home might happen to be. Therefore, the con-
ception of science as an extended, fallible process of inquiry allows one to explain how
Ockham’s razor can be optimally truth conducive without assuming a priori that the
universe is simple. The conception of science as a static system of arguments has not
achieved a similar explanation and it is not clear how it could.
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2 Simplicity and Proof

Philosophers of science tend to think of scientific justification in terms of confirmation.
The idea is that confirmation is some sort of relation between theory and evidence that
in some sense justifies or increases the justification of the theory. However you come
up with a theory, at the end of the day it is the evidence reported in the final write-
up rather than the Stürm und Drang of the scientist’s individual psycho-history that
matters (Hempel 1965). Kepler’s neoplatonic fantasies and travails in deciphering the
orbit of Mars and Kekule’s dream of a snake biting its own tail prior to publishing the
stere-structure of Benzene make fascinating and inspirational reading, but have nothing
to do with the justification of the views for which these men are justly famous. Instead,
it is the bearing of the available evidence that ultimately justifies a theory. Hence, a
proper understanding of scientific justification reduces, in its cold fundamentals, to the
nature of the relation of confirmation or evidential bearing, itself. And how does one
study such a thing? As philosophers have done since Plato: by examining intuitive
judgments of positive and negative evidential relevance to sketch out or explicate the
underlying concept. The concept of confirmation, properly analyzed, distills the essence
of scientific justification and, hence, screens off or renders irrelevant all of the other
more vivid, procedural or, one might say, tawdry aspects of inquiry, like gathering data,
generating hypothesis, testing them, formulating alternatives, and generally doing one’s
best to find the truth.

The plausibility of the preceding position is based squarely on a rough analogy
between scientific justification and mathematical proof. Scientists and mathematicians
both use proofs and arguments. Gottlob Frege, David Hilbert, and others seemed
to explain mathematics as a system of theorems from formal axioms. It is tempting,
therefore, to apply the same idea to natural science, substituting a fallible or “inductive”
logic for the deductive logic of mathematics.

The logic of empirical science has been sought mainly in the theory of probability.
One approach, due to John Maynard Keynes (1921) and Rudolf Carnap (1962), is
to choose a particular conditional probability measure p(T |E) whose value is to be
interpreted as the degree of confirmation or partial entailment of theory T by evidential
report E. The idea is that in a logically valid argument from premise E to conclusion T
there can be no counterexample, whereas the strength of a partially valid or inductive
argument depends on the weight or proportion of possible cases satisfying E that also
satisfy T . Weight is interpreted as some probability measure p(D) over possible state
descriptions D of the universe as describable in the scientist’s language. Then the
conditional probability p(T |E) = p(T&E)/p(E) can be viewed as the degree to which
premises E partially entail theory T , with full entailment implying p(T |E) = 1 and
refutation implying p(T |E) = 0. The trick is to pick out some special choice of p. But
which one? Carnap wanted to make sure that confirmation would allow for induction
or learning from experience, which for him meant that more observations satisfying
property Q confirm that the next observation will also satisfy Q:

p(Q tomorrow | Q until today) > p(Q today | Q until yesterday).
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Traditionally, induction is traced to uniformity of nature, the view that the future will
resemble the past. Uniform courses of nature are usually thought to be simpler than
random or messy courses of nature, so uniformity of nature is an instance of Ockham’s
razor and, therefore, Carnap was really attempting to explain Ockham’s razor in terms
of confirmation or empirical argumentation.

An obvious idea is to assume that every possible state description of the universe
carries equal probabilistic weight, but that idea makes successive observations proba-
bilistically independent, so there is no induction in the sense just described. Instead,
Carnap assigned equal probabilities to structural descriptions of the universe, where
two states of the universe have the same structure if they are identical up to a permu-
tation of individual names. Thus, if there is just one attribute, white vs. black, then
each state description involving three objects corresponds to an assignment of colors
to these objects:

p(◦ ◦ ◦) = 3/12
p(◦ ◦ •) = p(◦ • ◦) = p(• ◦ ◦) = 1/12
p(◦ • •) = p(• ◦ •) = p(• • ◦) = 1/12

p(• • •) = 3/12.

Carnap’s proposal evidently imposes imposes a not-so-subtle prior probabilistic bias
toward uniform or simple sequences of experience—a bias that becomes more pro-
nounced as the number of individuals is increased. Given that a priori bias, it is hardly
surprising that a run of black circles increases the probability of seeing another black
circle.1

Carnap’s explanation of induction has all the advantages of theft over honest toil.
But even a thief needs to tell a consistent story, and Carnap’s confirmation idea can’t
do so. Suppose that the predicate “blite” (Goodman 1995) is defined as black up to
stage three and white thereafter and “whack” is defined as white up to stage three and
black thereafter. To a speaker of the blite/whack language, the “uniform” worlds are
“always blite” and “always whack”, so the inductive bias becomes:

p(◦ ◦ •) = 3/12
p(◦ ◦ ◦) = p(◦ • •) = p(• ◦ •) = 1/12
p(◦ • ◦) = p(• ◦ ◦) = p(• • •) = 1/12

p(• • ◦) = 3/12.

Now learning from experience means expecting black at stage three after an seamless
run of white. Or anything else, depending on the language and the bias adopted.
The first response is that “blite” and “whack” are phoney, gerrymandered concepts

1The trick is that Carnap did not include time of appearance of an object as a predicate in the
underlying language. If he did, then every ternary sequence would be in its own structural isomorphism
class and once again there would be no learning! Carnap insisted that confirmation be assessed only
in light of the total information available. Refusing to include time as a predicate is a tacit violation
of that principle.
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until one stops to reflect that to the blite/whack speaker white and black are equally
gerrymandered, since they amount to “blite until stage three and whack thereafter” and
“whack until stage three and white thereafter”. So far as logical syntax is concerned
(and that’s all Carnap’s logical approach had to fall back on) the situation is entirely
symmetrical.

This radical dependence of scientific justification on linguistic formulation was not
necessarily a bitter pill for Carnap, himself. Carnap had a penchant for progressive
ideas and for solving the world’s and philosophy’s conflicts with language reform—he
was an avid Esperanto instructor as a youth, for example and he developed his own
shorthand for making notes—to the chagrin of contemporary archivists. In his philos-
ophy, the laws of logic—deductive or inductive—are necessarily true not because they
reflect some deep structure in the world but because they are an empty, conventional
game; so it was a foregone conclusion to him that the concept of confirmation or partial
entailment should have such a conventional element as well. The irony of grounding
Ockham’s razor on the choice of a free parameter in his philosophy seems to have been
lost on Carnap.

But then it must be conceded that the reasons for using one logic as opposed
to another are pragmatic or external to logic, itself. In an Orwellian terminological
maneuver, Carnap included the truth-conduciveness of inquiry guided by such a logic
among the merely “pragmatic” considerations, reserving the term “logic” for empty
conventional considerations irrelevant to the fundamental aim of science. That amounts
to a concession that Ockham’s razor has no logical explanation.

Sometimes the best strategy is to fall back and to rally on more secure terrain. Frank
Ramsey (1990), who discussed similar ideas with Keynes at Cambridge, proposed that
there is no need to justify choice of a particular p because p(A) is nothing other than
some individual’s degree of belief or willingness to pay for a bet that A is true. Whereas
Carnap and Keynes viewed p as part of the structure of scientific justification, itself,
Ramsey’s view, now called subjective Bayesianism, was that p is more like a material
premise reflecting the background beliefs and hunches of the individual. Then the logic
of scientific justification, or of empirical rationality more broadly, consists only of the
rules of probability, themselves, together with the familiar updating rule:

pE(T ) = p(T |E) =
p(T&E)

p(E)
,

which says that one’s degree of belief in theory T upon learning that E should be one’s
prior degree of belief in T conditioned on E.

The tactical retreat may seem like an utter rout, for science is no longer portrayed
as the chaste operation of pure logic, but as the result of combining arbitrary, prior
biases with data to arrive at new biases. Of course, advocates of personalism were
keenly aware of that objection from the outset and, to some extent, it can be met
(Howson and Urbach 1989). It follows immediately from the above definition that:

p(T |E) =
p(E|T )P (T )

p(E)
,
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a fact known as Bayes’ theorem. Then p(T ) and p(E) are called the prior probabilities
of the theory and the evidence, respectively, and p(E|T ) is called the likelihood of the
theory given E. The likelihood p(E|T ) corresponds, roughly, to the extent to which T
explains or at least predicts E. The idea is that the theory T says what p(E|T ) is, so
the only subjective elements remaining are p(T ) and p(E). The prior probability p(T )
corresponds to the initial plausibility of T , and who can deny that initial plausibility has
something to do with scientific justification? The prior probability p(E) corresponds
to how surprising or unexpected the evidence is. There are celebrated cases of strange
predictions vindicated by nature (e.g., Fresnel’s prediction of a bright spot in the center
of a circular shadow) and it does seem that these have particular confirmatory value.
After the connection of the formula to scientific method is clear, it does explain quite
a bit of scientific method. Implausibility is bad for then p(T ) ≈ 0. Refutation is
bad because p(E|T ) = 0. Surprising predictions are good because then p(E|T ) = 1
and p(E) ≈ 0. Tediously repeated experiments have diminishing returns since then
p(E) ≈ 1. Those are just the sorts of vague maxims that come to mind when one
thinks of scientific method and now they can be traced to the firm ground of probability
theory and the updating rule, rather than to some unmotivated, particular choice of
p. Also, conceding that p enters into science as a premise rather than as part of the
logic, itself, allows one to integrate background knowledge into science in a smooth and
motivated way. In Carnap’s setup, one always faces the question whether one is talking
about personal hunches or logical support by the data and it is not even clear what
that distinction means in particular cases (Quine 1951).

For those reasons and others, personal Bayesianism has caught on like wildfire in
philosophy, statistics, machine learning, economics, social science, advertising, insur-
ance, management and, increasingly, in the natural sciences, themselves (Lee 1989). It
is an example of a philosophical view about science that has become part of the very
fabric of science.2

What about Ockham’s razor? Recall that Carnap’s account depended on a partic-
ular choice of p, which, on the Bayesian scheme, seems to make it an explicit, material
premise rather than a structural feature of the logic of science, itself. But at a deeper
level Bayesians do have something to say about simplicity. Consider dependent vari-
able Y and independent variable X and consider the orders of complexity of polynomial
relationships between them: zero, constant, linear-but-not-constant, quadratic-but-not-
linear, etc. Think of all the polynomial equations as being nested together into one
infinitely long equation:

Y = ε + a1 + a1X
1 + a2X

2 + . . . ,

where ε is a random variable that injects noise so that the plot of dependent variable
Y is not exact for a given value of the independent variable X. Let hypothesis Hn say
that exactly a1, . . . , an are non-zero and assume that some hypothesis Hn is true. If

2Of course, that makes it rather self-serving to argue for Bayesianism on the basis of “case studies”
that reveal Bayesian behavior—one ought at least to present alternative philosophies of induction (e.g.,
mine) and then take a survey.
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the observations were perfect, then one observation would suffice to rule out H0, two
would suffice to rule out H1, etc. (Popper 1959). But science isn’t that easy because the
random error term ε spreads out the observations, making the arbitrarily small bumps
in an arbitrarily complex polynomial curve arbitrarily hard to discern at a given sample
size.

The extra bumps allowed by Hi as i increases are paradigmatic of what scientists
understand empirical complexity to be. Each bump in is governed by a free parameter
ai that can be twiddled to accommodate the data. Hence, simpler theories explain
simple data better or less arbitrarily so they are tested more severely by the data.
These are not explanations of Ockham’s razor, however (contrary to what many seem
to think)—they are just trivial restatements of it.

The Bayesian explanation of Ockham’s razor now goes like this. Suppose that the
data nearly all fall on a flat line around zero. That is more or less what H0 or Y = 0
would predict, so p(E | H0) is not so small. Now consider H1, which says that Y = a0

for some a0 > 0. If a0 is tuned toward 0, p(E | Y = a0) converges to p(E | Y = 0),
which is the Bayesian way to say that the more complex theory H1 has a free parameter
a1 that can be tuned to accommodate the data. But H1 says only that there exists some
value of a1 > 0 such that Y = a1, so the likelihood of sample E given H2 is the weighted
average:

p(E | H1) =
∫

z
p(E | Y = z) · p(Y = z | H1) dz.

Since p(E |Y = a) is at best a little smaller than p(E | Y = 0) when a ≈ 0 and drops off
to zero elsewhere, the weighted average is far smaller than p(E | H0) = p(E | Y = 0),
so p(E | H0) À p(E | H1). Hence, by Bayes’ theorem, the sharp explanation by the
simple theory swamps almost any prior hunch in favor of the complex theory. It seems,
then, that even Ockham’s razor is enforced by the structural part of probability theory,
so the retrenchment to defensible ground was a resounding success.

Not exactly. Suppose that there are two theories, that a marble in a box is blue and
that the marble is not blue. Indifference there results in degree of belief 1/2 in both
theories. Further indifference among the ways of being non-blue results in probabilities
far less than 1/2 for each of these colors (assuming sufficiently fine distinctions in color).
So if the question is to guess the color of the marble, whatever it is, your ignorance
now favors blue. Alternatively, you could be indifferent about color, in which case
you would be strongly biased against blue in the question of blue vs. non-blue. The
familiar moral is that that it is impossible to avoid strong prior biases in all questions
even if one is confessedly completely ignorant with respect to all of the questions—
modeling ignorance as flat probability forces everyone to take an a priori stand on
some questions. The Bayesian “explanation” of Ockham’s razor is just a case in point:
ignorance over the possible answers to the question of polynomial degree implies that
the prior probability of the simple curve stands in an infinite ratio with the prior
probability of each complex curve and that infinite prior bias is passed through Bayes’
theorem. Alternatively, a flat prior probability over curves implies an infinite prior bias
against simple polynomial degrees—i.e., a strongly anti-Ockham bias.

The biases under discussion are not really knowledge or information, as habitually
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loose Bayesian talk about “making use of one’s available information” might suggest—
they are in place before data collection even starts. But neither can such strong biases
be considered genuine ignorance, which ought not to be biased. Better to refer to such
unavoidable Bayesian biases as ignoredge, to pre-empt the irresistable but epistemolog-
ically fatal slide from “ignorance” to “knowledge”. The underlying metaphor that p is
a premise in an argument abets the illusion of getting something for nothing here. In
real logic, you are free not to have a premise and then you really aren’t biased at all. In
the Bayesian logic of “rationality”, on the other hand, starting with a prior probability
p is mandatory and each choice of p implies some material bias, so genuine ignorance
is impossible.

But what is pure rationality, after all, other than a quasi-sociological model of
the reasoning of the people whose reasoning we find most compelling—i.e., ours? For
example, Leonard Savage (1954) held that the only ultimate defense of his formal
axiomatization of Bayesian theory is that when violations of the axioms are pointed
out, people will take steps to bring themselves into conformity. But, as a matter of
fact, most of us vote with our feet when Bayesian rationality forces us to replace our
genuine, honest, ignorance with Bayesian ignoredge. The following example is due to
Daniel Ellsberg (1961). There is an urn filled with red, yellow, and blue balls, all
thoroughly mixed. The known proportion of balls is 30% red and 60% yellow or blue
and the proportion of yellow and blue balls is unknown. You are offered a hundred
dollar bet on red vs. black and a hundred dollar bet on red-or-yellow vs. blue-or-yellow.
Most people side with red in the first bet and with blue-or-yellow in the second, which
contradicts Bayesian decision theory.3 Assuming that the agent’s ignorance is really
ignoredge, favoring red in the first bet implies p(R) > p(B). Favoring blue-or-yellow in
the second implies p(B) + p(Y ) > p(R) + p(Y ) and, hence, p(B) > p(R), contradicting
p(R) > p(B). But if you are just plain ignorant about the relative frequency of blue vs.
yellow, p(B) and p(Y ) should not carry precise values and there is no contradiction.

Bayesianism can be liberalized in various ways to allow for genuine ignorance —
e.g., by representing the agent’s mental state by a set of possible probability measures
(Kadane et al. 1999). That approach is more in keeping with the original metaphor
of scientific justification as an argument, for now the trivial set containing all possible
probability measures corresponds to the empty set of premises. But if both the Ockham
and the counter-Ockham biases are added to an agent’s set of distributions, as our true
ignorance would seem to require prior to the onset of inquiry, the Bayesian argument
for Ockham’s razor evaporates.

3 Simplicity and Inquiry

There is an alternative, more active and dynamic metaphor for scientific justification:
that the aim of inquiry is to discover or to learn the truth and that scientific justifica-
tion is a matter of truth-conduciveness, or pursuing the truth as effectively as possible.

3Note that the second pair of bets results from the first pair of bets by replacing prize 0 in case
“blue” with prize 100 in case “blue”.
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Plato, for example, viewed philosophy as a mystical path to ultimate truth. His central
metaphors for philosophy were, accordingly, learning, in the dialogue Meno (2007). The
learning viewpoint was expounded by the American Pragmatists C. S. Peirce (1878) and
W. James (1897) and, in Carnap’s time, by the philosopher/physicist H. Reichenbach
(1949). Classical (non-Bayesian) statistics is filled with procedures for testing and esti-
mation rather than with proofs. At my university, there is now an academic department
devoted entirely to machine learning (Mitchell 1997). Computational learning theory
(Jain et al., 1999) is entirely devoted to the truth-finding effectiveness of computable
scientific methods. Machine learning and data-mining are now seeing their way back
into statistics, itself (Wasserman 2004) and philosophy (Kelly 1996).

As fundamental metaphors for scientific justification, proof and discovery are quite
different and, perhaps, even opposite (Kelly 1987, 2000, 2004). On the preceding, logi-
cal metaphor, confirmation is a merely formal or conventional relation that screens off
the relevance of all process and procedure from scientific justification. The discovery
picture is just the opposite: what matters to justification is how well science works
as an overall learning machine and formal relations like confirmation and rationality
are nothing but gears and subroutines embedded in the overall machine that are jus-
tified only to the subtle extent that they contribute to the truth-conduciveness of the
overall process. The vaunted “published research report” that allegedly screens off
the relevance of all procedural considerations is just a token in the overall, ongoing,
social machine of inquiry. Even the social rules for assigning credit and blame to in-
dividual scientists can be viewed as social programming that furthers or hinders the
overall truth-conduciveness of science as a collective enterprise (Kitcher 1993). One of
the things that keeps philosophy fresh and exciting is the way truisms reverse when
fundamental metaphors are shifted.

Truth-conduciveness comes in various strengths or grades. At the strong end of
the spectrum is certifiable reliability: the requirement that a scientific method produce
answers in a manner that entails a low, a priori bound on the objective chance of
error, or production of a false answer. This is the property guaranteed by a statistical
test. The size or significance level α of a test is an a priori bound on the chance of
rejecting the hypothesis under test if it is true (called, unrevealingly, error of type I).
Suppose that we conclude that the null hypothesis is false if the test rejects it but
follow the advice in the statistics textbooks and conclude nothing at all if the test
fails to reject. Refusal to produce a conclusion cannot result in error and the chosen
significance level ensures a low chance of concluding in error that the null hypothesis is
false, so statistical testing is certifiably reliable—with α as the a priori bound on chance
of error. Taking acceptance of the null hypothesis seriously would not be certifiably
reliable in most applications because possibilities quite close to the null hypothesis
would produce samples almost indistinguishable from samples produced if the null
hypothesis were true. So suspension of judgment when the null hypothesis is accepted
is the price paid for certifiable reliability.

Another standard, statistical method is to construct confidence intervals. A confi-
dence interval is not really an interval, but a method that generates an interval around
a theoretical quantity when provided with a sample. Confidence intervals have signif-
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icance level α or confidence level 1 − α just in case the chance is less than α that a
sample will be received that results in an interval that fails to catch the true value of
the parameter in question. Thus, confidence intervals with significance level α have
an a priori bound α on chance of error (failure to include the true value of the pa-
rameter in question), so they are certifiably reliable. Again, certifiable reliability has
a cost. As the bound α on chance of error is decreased, the intervals must get larger
and, hence, less informative. As the sample size increases the intervals get smaller, but
never collapse down completely to a unique parameter value.

Could Ockham’s razor be certifiably reliable? Recall the polynomial degree prob-
lem discussed above. The simplest hypothesis H0 implies that every parameter ai is
exactly zero, so it is a point in the infinite-dimensional space of possible parameter
settings. Ockham’s razor is a systematic bias toward choosing the simpler theory, so
there should at least be a sufficiently large sample at which one’s chance of choosing
the simplest theory H0 rises above α if H0 is true. But even if the true polynomial
has a hundred bumps, each bump could be tuned to be so flat that the data would
appear indistinguishable from data produced by Y = 0 at the current sample size and
then it would be at least reasonably probable that Ockham’s razor still sides with H0.
Therefore, Ockham’s razor cannot be certifiably reliable when the question is one of
choosing the true theory.

Statistical tests are certifiably reliable if they suspend judgment when the null
hypothesis is not rejected, but in that case they do not converge to the true answer
when the true answer is the null hypothesis. If the null hypothesis is accepted (Jeffreys
1931, Spirtes et al. 2000), then the test is no longer certifiably reliable—the chance of
mistakenly accepting the null hypothesis is arbitrarily high if the null hypothesis is not
too far from the truth. Confidence intervals can’t help but be certifiably reliable, but
every confidence interval that includes parameter values at which H0 is true also catches
parameter values satisfying arbitrarily complex polynomial equations, so certifiably
reliable confidence intervals never rule out complex theories—i.e., they never make
the “inductive leap” required to arrive at the true theory. For these reasons, it is
appropriate to say that classical statistical inference is not really inductive. The demand
for certifiable reliability in classical statistics is, therefore, tantamount to inductive
skepticism.

Due to its skeptical underpinnings, when classical statistics finally confronts the
problem of theory choice, it does so under the rather pallid rubric of “model selection”.
The idea is to give up on finding true theories—as in money-laundering, it’s better not
even to ask which back-alleys they come from. In the staid halls of classical statistics,
theories are only chosen or adopted as non-literal, predictive instruments (Akaike 1973,
Forster and Sober 1994). It might seem that the best-predicting theory should be the
true one, but not when observations are noisy and theories have free parameters. To
see why, consider the following parable. The military has excellent sharpshooters, but
no human is perfect. Researchers at Maliflirtin Corp. decide to address this critical
problem by designing a device that increases overall accuracy. Maliflirtin assesses the
accuracy of a marksman by measuring the distance of each bullet hole from the bull’s
eye, squaring them, and adding the results (the squaring keeps them all positive so
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there is no cancelation of errors). The design goal is to improve this score by means
of advanced technology. The result is the Marksman-clamp. The Marksman-clamp
prevents the marksman’s rifle from moving at all in the horizontal dimension, canceling
the marksman’s jitters in that dimension entirely. Unfortunately, this is government
work, so the Markman-clamp is typically installed crooked so that the marksman can’t
possibly hit the bull’s eye. Not to worry—as long as the marksman’s clamp doesn’t
force too large a miss, the reduction in width of the cloud of hits compensates for
not being able to hit the mark at all. To translate this parable to model selection:
the untrammeled marksman corresponds to an unconstrained empirical estimate of
a theoretical quantity. The Marksman-clamp corresponds to estimating the quantity
with a simple but false theory. The point is that overall mean squared error can be
reduced by estimating a parameter using an over-simplified, false theory. Hence, using
a theory to improve predictive accuracy is not the same as finding the true theory
and the classical conception of model selection is a natural extension of the classical
statistician’s systematic commitment to inductive skepticism.

If Ockham’s razor is to be truth-conducive, one must give up either on reliability or
on certifiability. The second possibility is pursued in philosophy by naturalistic episte-
mologists. Naturalistic epistemology is, indeed, natural in applications like perceptual
knowledge. The basic idea is that you have perceptual knowledge that a vase is present
when your perceptual belief in vases tracks (Nozick 2006), indicates, is correlated with,
is caused by (Goldman 1967), or is informative about (Dretske 1981) the presence of
vases. It also works with direction signs, compasses, and meters, all of which probably
point in the right direction even though the user may not have any idea why or how
or how accurate they are. Dropping certifiability staves off skeptical doubts, since one
can have knowledge with no idea why one has it or how to get more—a hidden force
or channel of information suffices.

But how does the idea work for Ockham’s razor and induction? Suppose that
actually, the truth is the simplest theory H0. Then the actual chance of error is low,
since H0 is the theory probably chosen by Ockham’s razor, if H0 is true, making
Ockham’s razor uncertifiably reliable. That is not very impressive, however, since a
blind dogmatist who accepts H0 without looking at the sample at all would (actually)
be even more reliable by this argument! If reliability is to be more than mere luck—the
core motive of reliabilist epistemology— it must, somehow, span alternative statistical
possibilities. But reliability over all the statistical possibilities would be certifiable,
which is incompatible with Ockham’s razor, as has already been discussed.

That leaves an intriguing possibility: that some unknown causes or chances some-
how correlate simplicity with truth across possible statistical worlds. G. Leibniz, the
celebrated co-founder of the calculus, proposed something of the sort—that the Deity
is an engineer who loves simplicity and who, therefore, judges the best possible world
to be the simplest or most elegant (1714). To make the idea more explicit, suppose that
the Deity is a sporting Fellow, who creates the universe according to a chance sampling
distribution over possible universes—a distribution that looks, coincidentally, just like
the standard, Bayesian prior bias toward simplicity. Then simplicity would be an ob-
jective indicator of truth—like a metaphysical compass needle—even though we cannot
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certify its significance level a priori. Indeed, all one needs are the Bayesian likelihoods
for each theory. For if the Bayesisan likelihoods were objective chances, it would be
the case that if the truth weren’t as simple as we think, it probably wouldn’t be com-
plex in a way so contrived as to have fooled us on a sufficiently large sample, as those
parameter settings are only a very small range of the possible parameter settings.4 So
then Ockham’s razor would track the truth, not in terms of the overt sampling chances
discussed posited by the theories themselves (that would imply certifiable reliability)
but in virtue of the Deity’s hidden, metaphysical Urn chances. Hope beyond hope, if
something like that is true, then even if we never figure out whether or how or why,
Ockham’s razor is busy producing non-accidental knowledge as we speak and there is
a point, after all, to scientific inquiry!

Hidden causes and chances may explain Ockham’s razor in sufficiently low-level
inquiries, in which the free parameters in the laws can reasonably be viewed as ran-
dom variables in their own right (e.g., infection rate in an epidemiological model). But
nowhere is Ockham’s razor more indispensable than at the level of fundamental theory
and then the naturalistic turn becomes problematic, as R. Koons (2000) has argued.
Suppose that the theories under consideration are fundamental, so that their parame-
ters govern all the natural chances in the universe. Then natural chance is a function
of the parameters, so the chance, given the actual setting of the parameters, that they
are set as they are must be unity, if it even makes sense to speak of such a chance:

pθ=r(θ = r) = 1.

Hence, there is no possible universe in which the natural chance of the fundamental
parameters being set in a given way is flat or even continuous, as in the Bayesian
argument for Ockham’s razor.

Koons concludes that the truth-conduciveness of fundamental science is incompat-
ible with naturalism—the view that all causes and chances are natural causes and
chances “in” the natural universe, leaving the reader to carry the argument to its Leib-
nizian conclusion. My diagnosis is different. Short-run reliability is the wrong explica-
tion of truth-conduciveness for understanding theory choice, induction, and Ockham’s
razor. Insistence upon short-run reliability results either in inductive skepticism or in a
pseudo-scientific, hidden, causal super-structure for science that would make Ockham
blush. Better to explicate scientific truth-conduciveness in a weaker but certifiable
manner that avoids both skepticism and shamanism.

A traditional alternative to reliability is certifiable convergence. Thus, although
Ockham’s razor does not certifiably point at or indicate the right answer immediately,
eventually all the false, overly-simple answers are refuted and one is left with the
true answer. This argument works entirely without occult, Ouija-board forces—it is
no more occult than shooting a row of tin cans off of a fence (Sklar 1977). Even
the Bayesians, who put their faith in a formal theory of rationality into which one
may insert arbitrary, personal hunches, invoke convergence theorems to maintain some

4For example, Roush’s (2005) version of tracking uses such likelihoods and, therefore, yields at least
a subjective explanation of Ockham’s razor.
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sort of connection with reality. Unlike certifiable reliability, certifiable convergence is
sufficiently weak to apply to the problem of theory choice—a point often repeated in
the literature on statistical model selection.

But if reliability is too strict to single out Ockham’s razor, convergence is too weak
(Salmon 1967). For any theory whatever could be brought to the front of the queue
and entertained until the complex effects it predicts (e.g., bumps in the polynomial
case) have failed to appear by a given time fixed in advance. This procedure might find
the truth faster than Ockham’s razor (e.g, if the favored theory is true and the effects
it predicts happen to be sufficiently large). Indeed, it is part of Bayesian lore that
arbitrary prior opinions are less of a problem than one might suppose because they
wash out in the face of empirical evidence (Savage 1954), so that divergent starting
points come to agreement. But then Ockham’s razor is more like a defeasible hindrance
in finding the truth than a positive guide to the truth—and that much could be said of
a prior bias toward complexity. So, again, certifiable convergence fails to explain how
a prior bias toward simplicity helps one find the truth better than other prior biases
would.

4 The Freeway to the Truth

The crux of the simplicity puzzle is to explain, without circularity, how a prior bias
toward simplicity is better for finding the truth than a prior bias toward complexity
would be. Mere convergence in the limit does not single out simplicity as the right
bias to start out with and simplicity points toward the truth in the short run only
under the (circular) prior assumption that the truth is simple. Indeed, it seems that
any explanation of Ockham’s razor must be circular, for how could a prior bias help
one find the truth regardless how complex the truth happens to be? That sounds
as paradoxical as giving good directions for arriving at an unspecified destination:
wherever one points, the destination could lie in the opposite direction.

But not only can such advice be given; it happens every day. If you are lost
in a small town and ask for directions, any local resident who recognizes that you live
elsewhere will send you to the freeway entrance ramp. It isn’t necessary for the resident
to know which major city you are headed to, since the best route to any major city is
on the freeway system. The hardest case for Ockham’s razor is the one in which the
entrance ramp lies in the opposite direction from your ultimate destination. But it is
still, in a sense, better to follow the local directions to the freeway, which is straighter
and more direct overall, even though the entrance ramp is in the opposite direction
from your ultimate destination. For suppose you disregard the advice and, as luck
would have it, head on a compass course directly toward your destination. You either
end up taking a much more circuitous route home over rural roads or you eventually
turn around and head toward the entrance ramp, adding at least one gratuitous course
reversal to your overall route. In this parable, the resident puts you on the most direct
route to your goal without knowing where you were headed. He does it without occult,
mind-reading signals or circular assumptions. Indeed, knowing where you were headed
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wouldn’t have improved his advice. Perhaps, in some similar manner, Ockham’s razor
keeps one on the most direct route to the truth, even though that route is not without
some unavoidable twists and bumps of its own.5

Convergence to the truth implies only that one’s chance of producing the truth
climbs ever closer to 1. That is compatible with arbitrarily many arbitrarily large
vacillations or retractions of earlier answers along the way and no possible convergent
method is guaranteed to avoid arbitrarily many such retractions. More precisely, say
that a method retracts answer H (in chance) to extent r at sample size n + 1 just in
case the chance that the method produces H drops by r from sample size n to sample
size n+1. The total retractions in chance can be obtained by summing over all sample
sizes and all possible answers.6 Retractions are a healthy but painful sign of scientific
progress, so there is no question of eliminating them altogether. But surely, it would
be better not to reverse the course of science needlessly.

Although retractions in chance are rarely discussed as such, they are a familiar
feature of statistical inference. For example, consider the policy of choosing the simplest
polynomial hypothesis H0 if it is not rejected by a test at low significance α and choosing
the complementary hypothesis ¬H0 otherwise. Then the chance of accepting H0 is also
high when the truth is the flat line Y = a0, for a0 slightly greater than zero. But
at a larger sample size the disparity between a0 and zero becomes noticeable and the
chance of selecting Y = 0 drops to zero while the chance of accepting the true, complex
answer Y = a1 rises to unity. This reversal of opinion is due to the increasing power of
the test as sample size increases, a generally recognized and unavoidable feature of of
statistical testing.

Suppose you were to “fish” for the true hypothesis Hn by performing tests of the
“nested” hypotheses:

(H0), (H0 or H1), (H0 or H1 or H2), . . . ,

and choosing Hi when the first test not to reject is (H0 or . . . or Hi). Then by the
preceding logic, it is possible that the chance of choosing H0 approaches unity and
then drops toward zero, followed by the chance of choosing H1 rising to unity and
dropping to zero, followed by . . ., until the chance of choosing Hn rises toward unity.
So the theory fishing expedition retracts its conclusions n times when the truth is Hn.
It may seem that the same result would be achieved regardless of the ordering—the
thing you seek is always in the last place you look. But here is the interesting part:
every method that converges in probability to the truth can be forced by nature to
produce H0 with arbitrarily high chance followed by H1 with arbitrarily high chance

5The idea of paying attention to retractions was proposed by H. Putnam (1965), a student of H.
Reichenbach. Since then, the concept has been extensively studied by computational learning theorists
as a concept of problem complexity (Jain et al. 1999). O. Schulte (1999, 2000) and I proposed retraction
minimization as a way to recover short-run constraints on scientific method and my own recent work
(2002, 2007, 2007a, 2007b, 2008, Kelly and Glymour 2004) has applied that approach to the derivation
of Ockham’s razor.

6It is not hard to show that total retractions in chance are a lower bound on the expected number
of total retractions.
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followed by H2 with arbitrarily high chance, etc.—the sequence corresponding to the
intuitive ranking by simplicity. For let ε be non-zero but arbitrarily small. On data
presented by X = 0, method M always produces H0 with chance greater than 1 − ε
after the sample reaches some size n0. Since sampling chance depends continuously on
the form of the underlying equation, there exists a sufficiently small constant a0 > 0
such that M has chance greater than 1 − ε of producing H0 even though Y = a0 is
true. But since M converges to the truth, there is a larger sample size n1 after which
the chance that M produces H1 exceeds 1 − ε. So M first probably produces H0 and
then probably produces H1. Note that ε can be chosen arbitrarily small, so the total
retractions can be driven arbitrarily close to 1. This argument can be iterated to force
retractions in chance arbitrarily close to n when the truth is Hn, using just convergence
and arbitrarily good approximations of simple curves by means of arbitrarily complex
curves with arbitrarily flat bumps. Since no convergent discovery strategy can avoid the
retractions performed by Ockham’s razor, one can say that Ockham’s razor is efficient
or optimal in terms of following the certifiably straightest or most efficient route to the
truth.

The only escape from the retraction argument is to fail to find the truth at all, a
remedy worse than the disease. Even Bayesian rationality, with its degrees of belief
apportioned appropriately to the evidence, cannot escape the argument—because it
converges to the truth. Say that a Bayesian retracts H to degree r if her degree of
belief in H is above r with chance r at one point and is below 1 − r with chance r
at a later point. Now use convergence and approximation just as before to force the
Bayesian into retractions in chance arbitrarily close to n when Hn is true.

Since the argument is, perhaps, unfamiliar, it may be helpful to actually see the
retractions in chance of a real method for statistical theory choice employed in statistics,
machine learning, and data-mining, namely, the Bayes’ Information Criterion or BIC
for short (Schwartz 1978). One of the standardly cited advantages of BIC is that it
converges to the right answer, because the BIC score of a theory converges to the
degree of belief of a simplicity-biased Bayesian. The BIC score for a model T with k
free parameters on sample E of size n is just:

BIC(T, E) = log(highest chance E could have under T )− k

2
log(n),

and the strategy is to choose the theory that maximizes the BIC score. The left-hand-
term rewards models that can be “fit” closely to the data (i.e., that make the data very
probable) while the right-hand-term penalizes the number k of free parameters in the
theory—an obvious nod to Ockham.

Suppose that the truth is a bivariate normal distribution over two variables X,Y
and H0 says that both variables have zero mean, H1 says that one variable has zero
mean, and H2 says that neither variable has zero mean. As in the polynomial case, H0

is zero dimensional, H1 is uni-dimensional, etc. so, statistically the problems are quite
analogous although this one is easier to plot and to visualize. The Mathematica plots
depicted in figure 1 illustrate the retractions in chance by BIC as the sample size n
increases. The strangely shaped white zone covers the points in sample mean space at
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n = 2 n = 100 n = 30,000 n = 4,000,000

Figure 1: Retractions in chance by BIC

which BIC selects the simplest answer (that both coordinates of the population mean
are zero).7 The cross-shaped grey zone covers points at which the next simplest answer
is selected (that one coordinate of the population mean is zero) and the black region is
where the most complex answer is selected. Graphically, Ockham’s razor corresponds
to the fact that the white zone is “on top of” the grey zone which is “on top of” the
black zone. The unfilled oval line is the boundary of the 95% quantile or footprint of the
true sampling distribution, which is in this case has mean vector (.05, .005). The BIC
strategy first “takes the bait” for the simplest answer at around n = 100 (note that the
95% quantile is nearly contained within the acceptance zone for the simplest answer).
BIC “notices” that the first component of the mean vector is nonzero at n = 30, 000
(the 95% quantile is now nearly contained in the acceptance zone for the next-simplest
answer) and then notices that the second is nonzero at around n = 4, 000, 000, for
approximately two retractions in chance—the theoretical optimum in this case. In
spite of the suggestive form of the BIC scoring rule, BIC falls short of implementing
Ockham’s razor fully due to the black and grey regions inside the oval at n = 2. In
consequence, the exclusion of these regions at n = 100 amounts to an extra retraction
that could have been avoided by expanding the white region or by returning no answer
at all.

5 Unique Optimality

So Ockham’s razor is certifiably optimal, but is it uniquely certifiably optimal? Recall
the most striking feature of the freeway metaphor—the entrance ramp is the most direct
route home even if it is a bit out of the way, so one ought to take the local resident’s
advice. Something similar is true of Ockham’s razor. Think of a child following her

7The strange shape is a consequence optimizing a score expressed as the sum of a fit-rewarding term
and a complexity penalizing term. The origin scores better than the background in a naturally shaped
oval, but the origin scores better than the axes in a caustic star shape that extends far into the sectors
and pinches in along the axes. The zone in which the origin does better than both is the intersection
of the caustic star with the oval, as depicted in the figure. The Akaike information criterion or AIC
yields a zone of the same shape but a different size (Akaike 1973). Contemplation of the shape may
make one think twice about using either criterion, in spite of the cuteness of the formulas and the nod
to Ockham’s razor.
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mother from one errand to another. If the child stays with or behind her mother, she
follows the same path to the ultimate destination as her mother, which is the best she
can do. If she ever runs ahead to the next store before her mother leaves the current
one, the current store may have been her mother’s last destination, so if her mother
waits there long enough she has to backtrack to avoid permanent separation. After she
returns to her mother’s side, her mother is free to go to the next shop and the next.
Now the daughter’s path involves at least one extra U-turn compared to her mother’s.
Her “pursuit curve” is inefficient.

More literally, in the polynomial example, consider the world state in which the
true parameter values are (a1, a2), where a1, a2 > 0 and a2 is quite small but a1 is
large enough for H0 to be rejected at low significance. So one might say that H1 is the
simplest answer compatible with experience and, hence, is the answer Ockham’s razor
should favor. Suppose, instead, that your strategy has a high chance of producing
the true answer H2 at sample size n (any answer other than H1 would suffice, but
this is the most interesting case, since it pits Ockham against short-run truth). Then
since possibility (a1, 0) has a sampling distribution similar to that of (a1, a2), there is
a non-negligible chance β that you accept H2 at (a1, 0). Since you converge to the
truth at (a1, 0), the chance of producing H1 at (a1, 0) rises as high as you please as
sample size increases, so the chance of producing H2 drops from β to as near to zero as
you please. Now the preceding argument forces nearly another unit retraction at some
nearby world (a1, a3) satisfying H2, for a total of 1 + β retractions after sample size n
in the true answer H2. Favoring the Ockham answer would have resulted in retractions
certifiably near 1 in answer H2 after rejection of H0 at sample size n. So it is better, in
terms of certifiably direct approach to the truth, to follow Ockham’s razor—even if the
violation happens to be true. Hence, there is no need to know in advance whether the
truth is simple or complex, so there is no need for circles or Ouija boards to explain
why Ockham’s razor is the best possible truth-finding policy.

The retraction optimality argument does not establish that Ockham’s razor is reli-
able. Since simple samples can be approximated by complex means, there is no way to
certifiably avoid retractions in chance in theory choice. That is crucial to the asymme-
try between simplicity and complexity: the retractions can be forced toward theories
of higher in complexity but not in reverse. Pretense to reliability implies that nature
cannot force retractions and, hence, makes it impossible to explain Ockham’s razor
without the usual recourse to wishful thinking or circles.

The argument is based on certifiable bounds. An Ockham violator can get lucky in
terms of retractions if nature is kind enough to reveal all the anticipated complexities
immediately, so it is not claimed that Ockham’s razor does better in every possibility.
Also, whether or not Ockham’s razor does better in terms of expected retractions
depends upon which question-begging prior probability distribution one adopts. It
is not claimed that the above argument takes precedence over genuine plausibility
considerations. Rather, it explains and justifies the usual selection of an Ockham
ignoredge profile when one is actually ignorant.

The forcibility of retractions toward ever more complex theories also sheds light
upon Goodman’s whack/blite puzzle. Simplicity is not a matter of mere notation that
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can be coded away. Rather, the empirical complexity of a theory T , relative to a
theory choice problem, is the number of retractions nature could force an arbitrary,
convergent scientist to perform prior to convergence to T (Kelly 2007a, 2007b). That
ordering determines the freeway route to the truth and Ockham’s razor directs inquiry
along the straightest path to any destination along the route.

6 Conclusion

This essay began with the puzzle that Ockham’s razor seems to require a metaphysical
commitment to the simplicity of nature, pre-judging the future course of scientific
inquiry. As avenues for addressing the puzzle, two fundamental metaphors for scientific
reasoning were considered; argument and inquiry. The argumentative viewpoint leads
ineluctably to a circle. The perspective of inquiry, on the other hand, explains Ockham’s
razor, without presupposing that the truth is simple, as the straightest possible path
to the truth.
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