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1. Relational Epistemology

The problem of induction reminds us that science cannot wait for empirical hypotheses to be verified and Duhem’s problem reminds us that we cannot expect full refutations either.  We must settle for something less.  The shape of this something less depends on which features of full verification and refutation we choose to emphasize.  If we conceive of verification and refutation as arguments in which evidence entails the hypothesis or its negation, then the central problem of the philosophy of science is to explicate a relation of confirmation or support that is weaker than full entailment but which serves, nonetheless, to justify empirical conclusions.

Much standard philosophy of science follows from this simple conception.  Justification is a state that obtains when the confirmation relation holds.  The precise nature of confirmation is hazy, but it can be explicated from historical examples.  Confirmation, like entailment, is a universal concept.  Context-dependencies can be absorbed into the relation so long as sufficient intersubjective force remains to ground scientific forms of argument.  Underdetermination is a matter of evidential support.  The realism debate can therefore be settled by showing that one theory is better confirmed than another (Glymour 1981, Friedman 1983).  Since confirmation confers justification, it philosophically “screens off” all other considerations.  Thus, discovery and computability are irrelevant to epistemology (Laudan 1980) and should be referred to appropriate experts in mathematics, psychology and computer science.  The only remaining role for mathematical logic is to help us reason about the nature of the explicated confirmation relation.  So if there were no underlying relation of justification to be studied, there would be no logic of science.  I will refer to this familiar viewpoint as the relational paradigm.  

The relational paradigm is natural and resilient.  Successive contextualizations and liberalizations lead all the way from naïve hypothetico-deductivism, verificationism and falsificationism to the Bayesian synthesis and recent historicist meta-methodologies in which research traditions, rather than hypotheses or theories are the proper objects of justification.  But what is natural and resilient is not inevitable.  A different starting point leads to an alternative philosophy of science.

2. Computational Epistemology

Verification and refutation may also be conceived of as strict success criteria for procedures rather than as logical relations among propositions.  Think of a method not as a relation conferring justification but as a procedure that is supposed to determine whether a given hypothesis is correct.  A decision procedure is guaranteed to halt with the right answer (yes or no) over a range of possible situations.  A verification procedure is one-sided: it halts with “yes” if the hypothesis is correct but may fail to make an output otherwise.  A refutation procedure halts with “no” if the hypothesis is incorrect, but may fail to make an output otherwise.  Procedural verification occurs when one’s verification procedure halts with “yes”, and similarly for refutation.  Procedural decision, verification, and refutation are, perhaps, the most fundamental concepts in computer science and mathematical logic.

The difference between entailment and procedural verification is barely noticeable, since a verification procedure cannot say “yes” unless receipt of the current inputs entails (relative to the underlying set of possibilities) that the hypothesis is correct, and similarly for refutation.  The two approaches diverge, however, when we begin to weaken our ambitions in light of the problems of Hume and Duhem.  The relational conception suggests that we retain the short-run perspective and excuse possibilities of error so long as some weakened analogue of the entailment relation obtains.  The procedural conception suggests an alternative response: dropping the halting requirement, for after the procedure halts, it cannot retract its opinion and correct it later if its answer is mistaken.  Allowing a scientist, community, or learning device to “take back” an answer and replace it with another permits inquiry to get “back on track”.  The foundational metaphor of instantaneous, partial, support is replaced, thereby, with the pragmatic metaphor of fallible but self-correcting convergence to a correct answer.  Such success provides no sign that the goal has been reached.  Nor is there an objective sense of  “support” along the way.  Short-run justification is supposed to be a kind of static state, like floating on a placid pool of experience.  Convergent success is more like surfing on the wave of experience: a dynamical stability that depends as much on the surfer’s ongoing technique as on the shape of the wave.  I will refer to this dynamic, procedural conception of scientific method as the computational paradigm. 

The computational perspective gives rise to an inverted philosophy of science.  Methods are not relations that confer immediate justification on mistaken conclusions; they are procedures for converging to correct outputs.   Methods should exploit the special structure of the problems they address so universal recommendations should not be expected and equally good solutions may disagree markedly in the short run.  Underdetermination arises when no possible method is guaranteed to converge to at a correct answer.   It is not sufficient to observe that we systematically prefer one sort of theory to another.  A relevant, realist response is to produce an alternative, plausible, model of the inference problem in question and to show how a particular method solves it.    The relational paradigm’s harsh judgments against discovery and computability are also reversed.  Computationally speaking, discovery (converging to a correct answer) and test (determining whether an answer is correct) are simply two different types of problems (think of adding x + y to obtain z as opposed to deciding whether x + y = z).  If anything, discovery is the more fundamental aim, test being a means for filtering out incorrect answers.  Computability is not only relevant, but central, for performance must be judged relative to the best achievable performance.  In fact, uncomputability and the problem of induction are more similar than different:  both arise from a bounded perspective on a global reality  (Kelly and Schulte 1997).  Instead of distinguishing formal from empirical inquiry, the computational viewpoint calls for a unified treatment.  Such a unified account is provided by mathematical logic and computability theory, which have long guided thinking in the philosophy of mathematics.

Computability theory focuses on the solvability of problems rather than on the details of specific procedures.   Following that instructive example, we might say that an inductive inference problem consists of  (1) a set of relevant possibilities, each of which specifies some potentially infinite sequence of inputs to the scientist’s method,  (2) a question whose potential answers partition the relevant possibilities,
  (3) a convergent success criterion and (4) a set of admissible methods.  A solution to such a problem is an admissible scientific strategy that converges in the required sense to a correct answer to the given question in each relevant possibility.  A problem is solvable just in case it has such a solution.  Eliminating relevant possibilities, weakening the convergence criterion, coarsening the question, or augmenting the collection of potential strategies all tend to make a problem easier to solve.  As in computer science, some problems are trivially solvable and others are hopelessly difficult.  In between, there is some objective, mathematical boundary between the solvable and the unsolvable problems.  The a priori component of computational epistemology is directed toward the investigation of this boundary.  Such a study might be described as the logic of success.  

Since inductive inference problems involve material as well as modal and normative components, such an approach cannot provide secure, a priori foundations for knowledge.
  Then again, neither can anything else.  So what is the point?  Consider the following passage by W. V. Quine:

“Insofar as theoretical epistemology gets naturalized into a chapter of theoretical science, so normative epistemology gets naturalized into a chapter of engineering: the technology of anticipating sensory stimulation”  (Quine, p. 19, my emphasis).  

Theoretical science does not succeed without extensive mathematical guidance. 
  If the topic is how we anticipate nature, then surely the relevant mathematical background includes the factors that determine the solvability (and hence the relative difficulty) of inductive inference problems.  Furthermore, the engineering problem of designing better methods for a given problem raises the question whether harder versions of the given problem are solvable.

In spite of all the foundational rhetoric, much traditional epistemology may be understood in just this way.   Skeptics propose models of inductive inference problems and prove that they are unsolvable.
  The various schools of epistemology advocate different strategies for modifying such problems to make them solvable.  The most obvious strategy is to excuse or neglect relevant possibilities of error.  This is achieved by assuming that we can succeed (i.e., transcendental deduction), assuming uniformity of nature postulates, throwing away probabilistically “negligible” sets of errors, ignoring possibilities that have not entered into scientific debate, ignoring errors in “distant” possible worlds (i.e., truth-tracking), and eliminating possibilities with hidden structure (empiricism).  Coarsening the question amounts to asking for less information, as in instrumentalism, behaviorism, and Van Fraassen’s (1980) acceptance-based constructive empiricism.  Weakening the convergence criterion reflects the pragmatist’s strategy of dropping the halting condition from the concept of scientific success.   

Bounded epistemology concerns cognitive, social, or practical restrictions on the set of potential methods.  Among these, perhaps the most fundamental is computability, which computational epistemology is in a uniquely favorable position to examine.  Bounded epistemology asks the following kind of question: given a recommendation that makes sense for ideal agents (e.g., consistency), do there exist problems that computational agents could solve only if they didn’t satisfy the recommendation?  If the answer is affirmative, then we may say that the proposed norm restricts reliability, which amounts to a prima facie indictment of its normative standing.  Such results share much in spirit, if not in style, with Paul Feyerabend’s (1979) critique of restrictive recommendations.

The themes of convergence and defeasibility arise in many traditions, including the pragmatism of Peirce and James, Reichenbach’s vindication of induction, and the convergence theorems of classical and Bayesian statistics.  The systematic examination of these themes within an explicitly computational framework originated nearly forty years ago in the work of Hilary Putnam (1963, 1965) and computer scientist E. M. Gold (1965, 1967).  While Putnam’s idea did not catch on in philosophy, Gold’s similar approach struck a chord among followers of Noam Chomsky’s program in linguistics, which was carried out in an explicitly computational framework and which emphasized that any theory of the essence of natural language must characterize a learnable collection of possible natural languages.  Since then, the approach has been developed under the rubric of  computational learning theory.  The term has led to unfortunate misunderstandings in philosophy, since it connotes a particular empirical theory of actual human learning rather than the boldly original paradigm for the philosophy of science that I have just described.  For this reason, I will refer to the approach as “computational epistemology”.  

Several book-length developments of computational learning theory are currently available (Osherson et al. 1986, Kelly 1996, Martin and Osherson 1998, Kearns and Vazirani 1994, Jain et al. 1999).  Instead of attempting to summarize the many results and ideas contained in these sources, I will attempt to place them in a recognizable philosophical context.  

3. Degrees of Underdetermination

One point of contact between computational epistemology and traditional philosophy of science is the concept of underdetermination of hypotheses by evidence.  Each relevant possibility in an inductive inference problem affords an unbounded sequence of inputs to the scientist, which we may call an input stream.  A hypothesis is empirically adequate for an input stream just in case it is correct of some possibility affording that input stream.  The empirical content of a hypothesis is the set of all input streams for which it is empirically adequate.
  Global underdetermination arises when distinct answers to an empirical question have overlapping empirical contents.  Evidently, no method that bases its conclusions on the inputs and internal hunches can be guaranteed to succeed when the total inputs do not determine the right answer.  The debate over scientific realism has centered on “unobservable entities” because theories that posit them seem, prima facie, to be globally underdetermined.  It has been objected (e.g., Friedman 1983, Churchland 1989) that the current data always underdetermine a general hypothesis whether it has theoretical terms or not, so there is no special problem with unobservable entities.  When the current data always underdetermine a question but the question is not globally underdetermined, we may say that it is locally underdetermined  (Kelly 1996, chapter 2).  

In computational epistemology, underdetermination is just another name for the unsolvability of an inductive inference problem.  Since solvability depends on the operative notion of success, successively weaker senses of success give rise to a scale of degrees of local underdetermination.  On this view, underdetermination is most fundamentally a matter of temporal entanglement of the relevantly possible input streams for and against a given hypothesis.  One of the main insights of computational epistemology is that the relevant concepts of temporal entanglement are captured exactly by standard concepts of topological and computational complexity. We may summarize this important idea as follows:

underdetermination = unsolvability = entanglement of input streams = complexity.  

“Weights”, “confirmation”, and probabilities are noticeably absent from the equation.  Complexity and probability are, in a sense, at odds: arbitrarily high complexity or entanglement can occur in a set of possibilities of arbitrarily small probability (cf. Kelly 1996, chapter 13).   For this reason, I do not regard probability theory as a neutral setting for epistemological debate, if underdetermination and skepticism are to be taken seriously (cf. section 7 below).  

The relevant notions of topological
 complexity or entanglement may be illustrated by a series of successive generalizations of  Nelson Goodman’s (1983) grue predicate.  The always green input stream reveals nothing but green observations forever.  A grue input stream starts out with green observations and then switches at some stage to blue observations thereafter.  Let the relevant possibilities consist of the always green stream together with all of the grue input streams.  Think of the input streams in this set as branching off from one another as soon as they begin to disagree.  The resulting construction resembles an infinite “feather”, whose “shaft” is the always green stream and whose nth “barb” is the grue stream that switches from green to blue at stage n.  Suppose that the problem is to converge to an empirical theory that entails each position along the actual input stream.  No method is guaranteed to halt with a correct answer, for no matter how many green inputs have been seen along the shaft, it is relevantly possible for the future inputs to veer off along a grue barb thereafter.  A single retraction suffices, however, for one can output “always green” until blue is observed at some stage n and then conjecture “switches to blue at n” thereafter.
  This sounds like the familiar adage that universal laws are refutable but not verifiable.  It would be better, however, to say that the logical form of a hypothesis is relevant to solvability only insofar as it determines (along with material constraints on how evidence statements are received from the world) the appropriate kind of topological branching structure among possible input streams.  

Goodman’s point was that syntactic features invoked in accounts of relational support (e.g., “uniformity” of the input stream) are not preserved under translation, and hence cannot be objective, language-invariant features of the empirical problem itself.  The solvability (and corresponding underdetermination) properties of the preceding problem persist no matter how one renames the inputs along the input streams (e.g., the feather has the same branching structure whether the labels along the input streams are presented in the blue/green vocabulary or in the grue/bleen vocabulary).  Both are immune, therefore, to Goodman-style arguments, as are all methodological recommendations based upon them.
 

The “feather” just constructed is only the first step in an infinite hierarchy of underdetermination concepts.   A doubly grue input stream switches from green to blue and then again to green  (e.g., the resistance of a dimpled golf ball is higher than that of a smooth golf ball at low velocities, lower at intermediate velocities, and higher at high velocities.)  Add all of these “two-surprise” possibilities to the possible input streams already considered, so that the “first-order barbs” sprout “second-order barbs” down their lengths, resulting in an infinite, “two-dimensional” feather.  Now two retractions are required, for nature could lead us down the main shaft until we say “always green”, down a grue first-order barb until we guess blue forever after and then down a doubly grue, second-order barb until we guess green forever after.  The situation generalizes to n-dimensional feathers (with nth-order barbs) and convergence to the right answer with n retractions.  In computational epistemology, retractions are not just an inconvenience or an arbitrary dimension of personal utility.  They are a way of defining refined degrees of local underdetermination that generalize in a natural manner the complexity of the standard problem of induction.  

This looks cute but scientifically irrelevant.  Then again, one must look in order to see and we have been trained to look for confirmation and support rather than for complexity and solvability.  Consider the problem of finding conservation laws in particle physics.  The basic idea is this:

The strong hint emerging from recent studies of elementary particles is that the only inhibition imposed upon the chaotic flux of events in the world of the very small is that imposed by the conservation laws.    Everything that can happen without violating a conservation law does happen (Ford 1963 p. 82).
Given that there are conservation laws to be found and that there are at most finitely many observable particles, it follows that the possible reactions are closed under linear combinations with rational coefficients.
   The problem includes, therefore, the complexity of an n-dimensional feather, for nature can walk us through the linear subspaces of possible reactions one dimension at a time, forcing us to retract each time a new dimension is encountered.  The best strategy for minimizing retractions is to accept the most restrictive theory consistent with the observations (i.e., the linear closure of the observed reactions) for otherwise nature could withhold the data we expect to see until we retract to a “tighter” fit to the observed reactions, exacting an extra retraction.   If we drop the assumption that all n particles are observable then a similar story obtains, except that the possible reactions are closed only under linear combinations with integral coefficients and more retractions are possible prior to convergence.  

This crisp kind of demonstrable progress under restrictive assumptions is reminiscent of Kuhn’s discussion of normal science.  Progressively relaxing assumptions gives rise to more complex problems that increasingly resemble extraordinary science (cf. section 5 below).  For example, start out with the forever green shaft and for each n, have an  n-dimensional feather sprout off at stage n.  Call the resulting construction an ω + 1–feather.  No a priori, finite bound on retractions prior to convergence suffices in this case, since feathers of each dimension may be reached.  There is still some topological asymmetry in the situation, however: the question is how to define a notion of success that exposes its intuitive, epistemic value.  Suppose that we require the method to empirically estimate the number of retractions it will perform in the future.  In the ω + 1–feather, it is possible to converge to a true estimate of one’s own future retractions with at most one retraction:  guess that there will be zero retractions so long as the data are consistent with the shaft and modify the guess to n retractions when the data veer from the shaft into an n-feather branching off from it.  The story generalizes (Freivalds and Smith 1993): there are ordinal feather problems that can only be solved with a transfinite ordinal bound on retractions. 

The situation could be worse.  Suppose we admit as relevantly possible every infinite sequence of blue or green inputs that converges, eventually, to blue or to green (e.g., the system under study is assumed to equilibrate to some unknown value).  This includes structures of all the preceding kinds, so there is not even a bound on estimates of retractions of estimates of retractions….  With perfect topological symmetry in every direction, one can do no better than to converge to a correct answer in the limit by guessing that the future will be the same as the present.   This is essentially the situation in the particle conservation law problem when it is assumed that there are only finitely many kinds of particles, but no fixed, a priori bound is assumed (Schulte 2000).  Observe how the qualitative character of scientific change degrades as nested presuppositions are successively relaxed and the corresponding complexity of the inference problem increases.

The situation could be even worse.  If we admit all sequences of blue and green observations as relevant possibilities, even convergent success is impossible:  nature can present green until we think the data will be green forever and then switch to blue until we expect blue forever.  In the limit, the input stream is an alternating mess that the method fails to identify but which counts as relevantly possible.  This corresponds to the situation in which it is not assumed that there are at most finitely many kinds of  hidden particles (nature can withhold new particles until we believe we have seen all of them and then present more).  

The above complexity concepts apply equally to hypothesis assessment, which is why computational epistemology does not distinguish sharply between generation and test.  Test merges into theory choice, which merges into estimation or generation and discovery, depending on how messy the space of possible answers is.  For example, consider the hypothesis that the input stream will stabilize to green inputs.  In the one dimensional feather, this hypothesis is refutable but not verifiable (the standard problem of induction).  The correspondence between retractions and feather dimension works out exactly as before.  Over the convergent input sequences the hypothesis is decidable in the limit but not under any transfinite ordinal bound.

What happens when we open the floodgate to all possible input sequences?  Now the hypothesis of convergence to green is not even decidable in the limit: for nature can present green until we accept, switch to blue until we reject, and so forth forever.  In the limit, we accept infinitely often even though the hypothesis is false.  A weak kind of success can still be achieved:  we become confident after some amount of green experience and lose confidence each time blue appears.  Then at least we will converge to acceptance just in case the hypothesis is correct.  Call this one-sided kind of success verification in the limit.  The dual concept, which requires convergence to rejection just in case the hypothesis is incorrect, may be called refutation in the limit.  

The inputs in this problem might be produced by a light in the theorist’s office that turns blue each time the laboratory discovers a new particle and that remains green otherwise.  The hypothesis now says that there are only finitely many particles.  Thus, the strong background assumption required to make the original particle problem appear crisp is not even decidable in the limit.  This helps to explain why such structural assumptions are so resilient in the face of anomaly (cf. section 5 below).  Why does it seem that we never face a problem this hard in practice?  While the green light remains on, we feel increasingly confident that we have the right particle model and skeptical possibilities of surprise are treated like idle talk until the blue light goes on again.  Complexity does not imply a lack of confidence.  It implies an attenuated guarantee of success, regardless of our short-run confidence.

The parallel postulate occasioned a long history of special epistemic scrutiny due to the perception that it is unduly “complex” (Trudeau 1987).
  Given the other Euclidean axioms, the postulate can be empirically refuted by Gauss’ procedure of measuring the internal angles of increasingly large triangles.  Suppose, however, that we have only a straightedge and an ability to extend line segments indefinitely and to observe where they cross.  At each stage, we construct more line segments through the given point and extend previously constructed segments ever farther.  The trouble is that all but finitely many of the finitely extended lines will have failed to reach the given line by any given time even if the parallel postulate is true.  Still, we can provisionally assume that the successive extensions of a given pair of the initial conditions will never cross the given line.  While this assumption stands, our confidence in the parallel postulate drops, for the provisional counterexample looks increasingly like a real one.  When the assistant announces that one of the two lines in the current, provisional counterexample has crossed the given line, our confidence in the parallel postulate rises and we say that the postulate is “confirmed”.  But if the next provisional pair of line segments fails for long enough to converge, our confidence steadily drops again, and so forth.  This disposition refutes the parallel postulate in the limit and no better performance is achievable without further assumptions or measurements.  This example illustrates how material assumptions about the evidence gathering process can be relevant to a problem’s degree of underdetermination.

Consider the question whether a limiting relative frequency lies within a given interval.  While the observed frequency is within the interval the hypothesis looks good.  When it is not, the hypothesis looks bad.  Given that the limiting relative frequency in question exists, this disposition verifies the interval hypothesis in the limit (Kelly 1996, chapter 3), and no better performance is possible without further assumptions.  Indeed, if the significance and power of a statistical test are interpreted in terms of limiting relative frequencies, it can be shown that the existence of an “unbiased test” (a test whose probabilities of type I and type II error sum to less than unity) is equivalent to verifiability in the limit (Kelly 1996, chapter 3).  The standard definition of chaos (nonzero Lyopunov exponent) has a similar structure, and the hypothesis that a deterministic system is chaotic is verifiable in the limit, assuming that the map governing the process is absolutely continuous and that the relevant limit exists (Harrell 2000)
.   This kind of example suggests the interest of investigating the complexity-reducing power of innocuous,  “technical” assumptions in physics.  

Uniformitarian geologists held that geology fluctuates around a steady state.  Progressionists maintained that the fossil record will reveal a steady ascent to the highest form (man).  In 1814, a bed containing mammalian fossils was unearthed at Stonesfield, Oxfordshire (cf. Ruse 1979, p. 70).  The find was misplaced and rediscovered in 1828.  At that time, auxiliary hypotheses about mishandling of the fossils were dispensed with and it was agreed by both sides that mammals, which had previously been thought by progressionists to arise only by the early Cenozoic, had in fact existed much earlier, by the middle of the Mesozoic.  Lyell declared victory.
  The progressionists simply revised their schedule of progress.  It seems that this cycle might have repeated itself indefinitely.  Confidence in progressionism drops each time the current provisional schedule of progress is upset and returns after a new schedule is filled in with later finds.  This disposition verifies progressionism in the limit and no better performance is achievable without further assumptions.
  

Closer to home is the problem of global warming.  Glacial core samples provide information about past temperature and carbon dioxide levels.  Present levels can be measured directly.  The problem, as it was seen in the late 1980s, was this:

Another aspect of the lack of understanding of climate dynamics is the question of detection of abrupt climatic change.  As far as we know, such change may be occurring right now…. However, since the realm of natural fluctuations has not been clearly exceeded … we cannot be sure that this trend will continue into the future.  The signal generated by human climate modification may still lie just within the background noise of climate variation (Berger and Labeyrie 1987, p. 7).
The difficulty is that our historical estimate of expectable levels of background variability is changing along with the current temperature.  As current temperatures rise relative to current ideas about background variability, the global warming hypothesis looks better.  As glacial evidence reveals higher temperature spikes unaccompanied by corresponding carbon dioxide doses on longer time scales, the global warming hypothesis appears more dubious.  Grant that (1) if the current spike is spurious then eventually the glacial record will reveal a similar spike in the past without a corresponding carbon dioxide dose and that (2) if the current trend is not spurious, then it will eventually grow larger than any historical spike that was not driven by a corresponding carbon dioxide dose.  Then our natural expectations verify the global warming hypothesis in the limit and no better performance can be guaranteed without further assumptions.

A guiding assumption of the strong A.I. program in cognitive science is that human behavior is computably generated.  This hypothesis is empirically adequate just in case human behavior is computable.  Consider the obvious method of enumerating all the possible computer models of cognition and testing them against the data.  Each finite chunk of behavior can be duplicated with a computer, so some match to the data can always be found.  Each time our current model is overthrown, we lose confidence and reject the computability hypothesis for a while.  This disposition verifies the computability thesis in the limit and no better performance is achievable without further assumptions (Kelly 1996, chapter 3).

What kind of complexity characterizes verifiability in the limit?  It is not hard to see that each such hypothesis may be expressed as a countable disjunction of refutable hypotheses.
  This is a standard complexity concept encountered both in topology and in the theory of computability.
  Each of the component refutable statements may be though of as a literally refutable “way” that the non-refutable hypothesis can be correct.  In each of the above cases, some such choice was available (e.g., particle models, pairs of parallels, schedules of progress, levels of background variation).  Similarly, a hypothesis is refutable in the limit just in case it is a countable conjunction of verifiable propositions and a hypothesis is decidable in the limit just in case it can be expressed both ways.
  

The fundamental procedural question posed by the logic of discovery is: how complex can individual hypotheses be if it is to be possible to converge to a correct one, assuming there is a correct one to be found?  One might suppose that they must be refutable, else how could we get rid of one and move on to the next?  It suffices, however, that each hypothesis be verifiable in the limit (Kelly 1996, chapter 7).  This fact underscores the importance of verifiability in the limit as a success criterion for hypothesis assessment.

Local underdetermination does not end with limiting verifiability and refutatability.   For suppose we did not know in advance that a limiting relative frequency exists.  Hans Reichenbach wished to exempt us all from error in such cases, but that is of little help if we want to find the answer to this question itself; and why not, for otherwise the frequentist properties claimed for statistical methods would be an illusion.  The hypothesis is not even verifiable or refutable in the limit.  It is, however, gradually verifiable, in the sense that a method exists that could output values in the unit interval that converge to 1 just in case the hypothesis is true.  It is not gradually refutable in the corresponding sense.  A hypothesis is gradually verifiable just in case it is a countable conjunction of countable disjunctions of verifiable propositions.  This is yet another level of empirical complexity corresponding to a higher degree of local underdetermination.  Beyond this level, it is hard to conceive of natural success criteria except by composing them (e.g., verifying in the limit whether some other method refutes in the limit).  This idea will be discussed below in section 6.

4. Church’s Thesis and Hume’s Problem

The preceding discussion of underdetermination was “ideal”, in the sense that the methods under consideration were not assumed to be computable.  The beauty of computational epistemology is that the story for computable inquiry is essentially the same.  Each of the above concepts of empirical success and complexity can be applied to computable empirical methods, in which case the corresponding complexity concepts are an elegant mixture of temporal interleaving and purely computational complexity (Kelly 1996, chapters 6 and 7).  For example, the hypothesis that the input stream is computable is ideally verifiable in the limit, but it can be shown to be only gradually refutable by effective means.  This unified treatment of formal and empirical uncertainty illustrates my earlier suggestion that the problems of induction and uncomputability arise from a common root and should be handled jointly (Kelly and Schulte 1995).  The situation is very different in Bayesian epistemology.  According to that view, formal ignorance arising from uncomputability is “incoherent”, whereas empirical ignorance is an unavoidable fact of human existence.  

In fact, the first clear application of computational epistemology was Putnam’s (1963) philosophical criticism of Bayesian methodology.  An extrapolator is required to eventually produce only correct predictions of the next input.  Putnam proved that no computable method (including Carnap’s) can extrapolate all computable input streams.  Given that every computable method fails on some computable input stream, Putnam argued that it would be better to add an input slot for “new ideas” from an external source.  Then the method could be made to succeed on any input stream for which the external source provides a correct program.  In one bold stroke, Putnam related computability, the logic of discovery, and the Bayesian “problem of new ideas”.
  The idea did not catch on in the philosophy of science.

E. M. Gold’s similar ideas (1965, 1967) found a much warmer reception among computer scientists and linguists, illustrating the relative influence of the relational and procedural paradigms over the respective disciplines.  Gold introduced two particular sorts of problems, function identification and language learnability, which came to dominate subsequent research in the area by computer scientists.  In function identification, a method is supposed to converge to a correct program for each input stream in a given set of relevantly possible, computable input streams.  The language learning problem is similar, except that the method is supposed to converge to a computer program that accepts (halts on) just the numbers presented in the infinite input stream.  The acceptance program represents syntactic competence and the inputs may be thought of as Gödel numbers of well-formed formulas in some natural language.  The “child” is a computable function that guesses grammars based on the presented examples of well-formed strings. 

Gold’s paper suggested a number of intricate avenues of investigation, many of which are summarized in (Jain et al. 1999).  This literature is somewhat stylized and one should not take the proposed philosophical morals at face value.
  Nonetheless, one may think of function identification as an idealization of inferring phenomenal laws and of  “language” identification as an idealization of inferring  “permissive” conservation laws from positive data, along the lines of the preceding discussion.  Even in these narrow settings, there are suggestive results worthy of the attention of anyone interested in the logic and philosophy of induction.  For example, assuming that a collection of languages is identifiable in the limit, it can be shown that for each language there exists a finite input sequence on which the learner produces a correct theory and retains that theory no matter what data consistent with the language are received thereafter (cf. Jain et al. 1999, p. 42).  This is striking, since it shows that reliability (one of the standard solutions to the Gettier paradox) implies indefeasibility (the other standard solution to the Gettier paradox) in some situations.  For another example, it seems obvious that discovering a predictive, computable theory should be harder than extrapolating the input stream, for given the theory one can derive correct predictions, but prediction does not obviously require that one find such a theory.  The truth, however is exactly the reverse: every extrapolable problem is discoverable but not conversely (Bārzdiņš and Freivalds 1972; cf. Kelly 1996, chapter 11).  
More flexible settings have been examined.  For example, theories can be expressed in a first-order logical language and relevant possibilities may be identified with model-theoretic truth-assignments on this language.  In a given such assignment, an inductive method is assumed to receive a complete, true, enumeration of the true atomic sentences in an arbitrary order.  Many of the results for language and function identification lift to this setting  (Kelly 1996, chapter 12, Martin and Osherson 1998).  I developed a simpler, more abstract conception of inductive inference problems (assumed above and developed in Kelly 1996) for two reasons.  First, I believe it comes closer to what is essential (e.g., underdetermination is a matter of temporal entanglement, not logical form).  Second, the logical approach invites a number of avoidable philosophical criticisms, most notably the assumption of a fixed hypothesis and evidence language and the assumption of meaning invariance.   The approach based on inductive inference problems not only skirts these criticisms; it provides a unified understanding of them (cf. section 5 below).

The computational results most directly relevant to the philosophy of science concern the restrictivenes of methodological recommendations, in the sense that computable (or perhaps even ideal) methods that satisfy them cannot solve problems that would have been effectively solvable had the recommendation been violated.  The idea is to demonstrate what Kuhn and Feyerabend claimed: that too much “rationality” of the local, relational sort can stand in the way of progress.  For example (Kelly and Schulte 1995, Kelly 1996 section 7.9), there exists an inductive inference problem in which (1) the hypothesis at issue is refutable with certainty by a computable agent, (2) a computable agent can drop the hypothesis as soon as is inconsistent with the current data, and yet (3) no computable agent (or even “infinitely uncomputable” agent) 
 who drops the hypothesis as soon as it becomes inconsistent with the current data can even converge to the truth value of the hypothesis in the limit.  In other words, an effectively satisfiable norm that seems sensible for ideal agents (why believe what can’t be correct) can cripple the achievable performance of even highly noncomputable agents.
  Thus, computable agents must choose between “rationality” and progress.  Unlike the social arguments of Kuhn and Feyerabend, this one emerges from the logic of success itself and holds for every computable process of inquiry, social or otherwise, not just the methods we can think of or have seen in practice.  Restrictiveness results pertaining to recent theories of belief revision will be mentioned in section 6 below.  A catalog of restrictiveness and non-restrictiveness results for computable language and function identification is provided in (Jain et al. 1999, chapter 5).  It is restrictive, for example, to require that conjectures be consistent with the data, that a conjecture be retained until it is refuted, that permissive laws always allow for observations of a novel type, or that the method’s guess be insensitive to the order of the data.  It is not restrictive to require that a method conjecture only theories that it converges to the truth about or that the method converge to the same theory, regardless of the order of the inputs.  

5. Conceptual Schemes and Revolutions

Competing research programs may be modeled as potential answers to an empirical question.  So long as the question does not change, neither do its potential answers, so the competing research programs take on the diachronic aspect of  “hard cores”.  Assuming that a correct research program can be found in the limit (if a correct one exists), we have seen that each potential answer is decomposable into a countable infinity of refutable “ways of being correct”.  A “way of being correct” could be a refutable conjunction of the paradigm with a collection of “auxiliary hypotheses”, none of which are individually refutable (i.e., Duhem’s problem).  It could also be a parameter setting in a general theory or, more abstractly, a conceptual shift or articulation of a given paradigm.  Hence, the historicist distinction between relatively stable programs and relatively evanescent articulations emerges a priori from the logic of successful convergence to a correct answer in a sufficiently complex inductive inference problem.  

The principal tension in Kuhn’s work (1970) is that nothing rationally compels a scientific revolution when it occurs, and yet the outcome of the revolution is ultimately inevitable.  Anomalies accumulate, but no intersubjective evidential criterion forces a revolution at any particular time.  These are also consequences of the concept of convergent success.  Although the inputs force rejection in the case of full refutation and verification, the pattern of rejections of a method that succeeds in the limit depends as much on the method as on the data (recall the surfing metaphor).
   But if inquiry is to succeed, the rejections must come eventually, else the method converges to the wrong answer.  This remains true even if we require that the method succeed as soon as possible with as few retractions as possible (cf. Kelly 1996, section 4.8).

Another consequence of the logic of convergent success is non-cumulativity.  Kuhn mentions that the number of solved problems cannot be a “unique or univocal”, short-run criterion for paradigm choice (Kuhn 1970, p. 169).  Similarly, Feyerabend criticized Lakatos’ relational approach to research program choice as follows.  

The critical standards [Lakatos] employs provide for an interval of hesitation.  They are applied ‘with hindsight’…. Now it is easy to see that standards of this kind have practical force only if they are combined with a time limit (what looks like a degenerating problem shift may be the beginning of a much longer period of advance) (Feyerabend 1989, p. 215).    

In computational epistemology, identification in the limit is driven by successive refutations of  “ways of being correct”.  This needn’t imply accumulation of content or superiority in the current number of solved problems because there are infinitely many equally good ways to decompose the answers of a solvable problem into refutable ways of being correct.
  Rigid bean counting rules were the relational paradigm’s strategy for imposing intersubjective discipline on the troublesome historiography of complex inference problems.  The logic of success sides with the historicists.

Kuhn’s theory of scientific change may be read as a sustained attempt to construct a socially distributed learning algorithm that succeeds in spite of social circumstances, cognitive limitations, and individual rationality.  Kuhn observes that science is driven by a few deep, precise, costly experiments that require cooperation to perform.  Skeptical dilettantes do not cooperate to perform such experiments.  Neither do isolated believers, since they see no point in checking the obvious.  But believers who receive tribal rewards for flattering their research program with precise confirmation have the requisite technical competence, motivation, confidence, and collective resources to generate the deep anomalies that drive scientific progress.  A range of partially articulated alternative research programs is kept alive by means of the vagueness, latency, subjectivity, and paradigm-relativity of relational epistemological principles, which ensures that almost every paradigm will look better to a few eccentrics.  Individual computational “units” in the parallel architecture of science are not very flexible (they can retract and retool at most once or twice) but that doesn’t matter because they are disposable.   New units choose sides according to the current state of the discipline, so the parallel architecture retracts and revises what individuals cannot.  From a computational viewpoint, the idea is both ingenious and relevant (whether or not it is true).
  From the relational perspective, it is an invitation to relativism and chaos.  

Incommensurability may appear to be a major difficulty for such a reading, but it is actually a difficulty for the relational paradigm.  Inputs to methods need not be propositional or even experiential.  Say that a proposition E is forced by a sequence of inputs relative to a belief state just in case the scientist’s beliefs together with the proposition that the inputs were received entails E.  The proposition that the inputs were received is forced relative to any belief state, but if the inputs are physical signals, sensory states, or “sense data”, this proposition may not even be cognizable by the scientist.  Nonetheless, other propositions expressible within the paradigm may be forced relative to other accepted propositions.  When the scientist’s beliefs change through the course of inquiry, the forced propositions (i.e., the “evidence”) change as well.
  On this interpretation, paradigms may generate “self-serving” evidence, since different propositions are forced depending on which paradigm and articulation one currently accepts, but the overall process may nonetheless be driven to convergence by inputs providing less information than the self-serving evidence seems to provide.  

Kuhn’s celebrated nihilism about truth may seem to contradict a reconstruction anchored in success, but the logic of success applies to every cognitive goal that transcends the local situation of the scientist.  Kuhn suggests that the real notion of correctness is something like puzzle-solving effectiveness, in spite of his rejection of the current number of solved puzzles as a univocal sign thereof  (1970, p. 169).  One way of making puzzle-solving effectiveness precise is to require that the paradigm be capable of handling every puzzle it generates.  Puzzles are handled by means of articulations of the program.  So there are at least two flavors of puzzle-solving effectiveness, uniform (some articulation handles all future puzzles) and non-uniform (each puzzle will eventually be handled by some articulation that continues to handle all the preceding puzzles).   Assuming that we can recognize a solution to a puzzle when we see one, success is verifiable in the limit and non-uniform success is refutable in the limit.  Either concept of success occasions the qualitative features of revolutionary science, as has already been explained.  

In each concrete “case study”, computational analysis appears stilted, because normal science usually frames questions in a way that eliminates unbounded quantifiers.  There are finitely many particles, finitely many humans, finite world-lines extending back to the big bang (and perhaps to the big crunch), a finite genome, a finite geological past, etc.  Historicist models of inquiry help to overcome this impression in two ways.  First, they invite a diachronic, strategic perspective according to which current textbooks are part of an ongoing process of fundamental revision and replacement (i.e., they invite strategic second-guessing of short-run “justification”).  Second, they treat the creative generation of problems and new ideas as a black box adding another dimension of unbounded possibilities to the problem of paradigm choice.  Recall that Putnam’s original learning-theoretic moral was to treat hypothesis generation as an empirical black box in just this way.  

If computational epistemology is on the right track, then we would expect scientists to incorporate complexity-collapsing suppositions into the problems they pose for themselves.  One such strategy is to assume that a “program” (like conservation laws in particle physics) is viable.  Then what is inscrutable in the limit from the outside seems to be settled with one or two observations from the inside.  If the whole program is wrong, all we will see is an ugly sequence of new particle models, unexpected reactions and failures to obtain expected reactions (perhaps with ever larger intervals between surprises as successive “energy deserts” are passed).  In other words, as we question progressively deeper programmatic assumptions, we face a nested sequence of inductive inference problems of progressively greater complexity.  Part of what makes programmatic assumptions programmatic is precisely that their own complexity is high and what makes normal science normal is that its questions have low complexity given the program so that progress appears crisp and direct (as when a new conservation law is forced by a single reaction).
  

6. Defeasible Defeasibility
A recent review (Suppes 1998) of my book (Kelly 1996) repeatedly emphasizes that computational epistemology is “Kantian”, in the sense that background knowledge (the set of relevant possibilities) cannot be revised in light of experience.  The objection is misplaced.  Computational epistemology simply is the logic of defeasible success, so it couldn’t emphasize empirical defeasibility any more than it already does.  Constraints on relevant possibility sometimes arise when we attempt to balance the solvability equation for a given sense of defeasible success.  This no more entitles one to ignore possibilities than deductive logic entitles one to the premises required for a desired conclusion.  

If anything, Bayesian updating is more “Kantian” than computational epistemology in this very respect, since conditioning on new data can never direct the retraction of full beliefs, whereas the outputs of the methods examined in computational epistemology may be interpreted as full belief states that expand and contract through time.  The inability of Bayesian updating to direct retraction of full beliefs is the common root of the twin problems of old evidence and new ideas (Glymour 1980, Earman 1992).  There have been recent attempts to augment Bayesian methodology with principles and methods governing  “rational” retraction and revision of full belief (Gärdenfors 1988).  The issue of successful convergence is not raised by the proponents of these proposals
, but it has been examined in some detail in recent learning theoretic studies.  “Rational” belief revision cannot do what is impossible, so the only question is whether it restricts success.  The results are interestingly mixed.  Although the general axioms of belief revision theory do not restrict otherwise achievable success (Martin and Osherson 1998), some particular methods recommended in the belief revision literature have extremely weak learning power; i.e., they cannot even converge to the truth in the limit in the dimpled golf-ball problem discussed above (Kelly 1998).  Moreover, minor variants of these methods are non-restrictive.
  Thus, instead of being behind the game when it comes to this kind of “rational” feasibility, computational epistemology yields sharp, normative critiques of current proposals for how it should be done.  

A more naturalistic approach to the defeasibility of background assumptions is to use another inductive method to check whether a given inductive method will succeed.  The standard objection is that this proposal invites an infinite regress of  “justification”.
  Computational epistemology, on the other hand, provides a crisp account of the point of an empirical regress.  Define a method’s empirical presupposition to be the proposition that the method succeeds (i.e., the set of all relevant possibilities in which it succeeds).  Suppose that a method “pretends” to decide hypothesis H with n retractions, in the sense that it never retracts more than n times when studying H.  Suppose that another method really can decide the empirical presupposition of the first method with m retractions.  Now we may ask:  what kind of single-method performance is this (binary) empirical regress equivalent to in the sense that the same problems that are “solvable” in the binary regress sense are solvable in the more recognizable, single-method sense?  The answer is: decidability with at most n + m retractions (Kelly 2000).  The obvious generalization of the result extends to all finite regresses of this sort.  

What can be said about infinite (unfounded) methodological regresses?   Popper’s sophisticated falsificationism recommends that we conventionally adopt criteria for determinately rejecting hypotheses that aren’t really refuted, in order to avoid the danger of “conventionally” clinging to a false hypothesis forever.  In less flattering language, we should pretend to be able to refute the hypothesis with certainty even though we really can’t.  Not to worry, for we can adopt the same “critical” attitude toward our own presuppositions and about the presuppositions required to check our own presuppositions and about….  Somehow, this regress of pretense is supposed to be our best means for finding the truth.  Here is a surprising vindication.  As long as the presuppositions of outer critics are entailed by those of inner critics (a formal relation given the methods), the entire sequence can be effectively collapsed into a single method that really does succeed in refuting the original hypothesis H with a presupposition weaker than the presupposition of each of the methods in the regress!  The converse also holds:  a single refuting method can be effectively converted into such an infinite, nested regress of pretending refuters.  A similar equivalence theorem holds for refutation in the limit.  The situation for verification is quite different, however: an infinite, nested regress of pretending verifiers is equivalent to a single limiting refuter.  

Aside from measuring the power of infinite regresses in non-regressive coin, these results address the objection that methodological presuppositions are eternally closed to empirical scrutiny.  The single method constructed from the infinite regress doesn’t have to see the whole regress at once.  It suffices that the regress be only potentially infinite, in the sense that new methods may be added during the course of inquiry in direct response to challenges to presuppositions.  There is a cost to this hedging, however:  the simulating method converges to a correct answer more slowly as each successive method is added to the regress.  Regresses are not a free lunch: they amount to a weakening of presuppositions at the expense of convergence time.  There is a systematic account of the epistemic worth of infinite empirical regresses.  What, then, is the point of an infinite sequence of justifying relations?  Such an account would first have to specify the point of one such relation.   

7. Death in the Long Run

There is an obvious objection to all of this.  We can’t succeed in the long run because we will all be dead.  So there must be some short-run reason for doing what we do.   I have nothing against the search for subtle, short-run motives for inquiry, although as Hume wryly observed, the subtler they are the clearer it becomes that innate impulses of curiosity make inquiry its own reward.  That is not the end of the story, however.  The principal epistemological question has always been to connect these short-run inclinations with success guarantees.  Here there is room for creative choices in modeling the inference problem the agent faces.  Most scientific problems that are actually encountered in practice occur against a rich backdrop of assumptions that make them seem relatively small and managable (as we saw with the particle inference problem).  In a balanced picture of science, however, it is also important to see how the character of the problem changes when we peel back the protective assumptions, one by one.  As the complexity of the problem increases, the appearance of crisp progress steadily gives way to the messy, subjective vacillation characteristic of revolutionary change.  Limiting performance may not satisfy us, but that may be the best our natural-feeling, short-run methods can achieve outside the protective confines of the paradigm.  Epistemology should be in the business of emphasizing such facts, not hiding them.  

This pluralistic stance toward inference problems is countered by some ingenious strategies for eliminating the hard ones from consideration.  For example, Bayesians can show that every globally determined hypotheses is decidable with an arbitrarily low (personal) probability of error, regardless of the degree of local underdetermination and are decidable in the limit with zero (personal) probability of error.  These theorems all assume the postulate of countable additivity, which says that the probability of a whole divided into a countable infinity of parts is the (infinite) sum of the probabilities of the parts.   As Bruno DeFinetti (1990) observed, this postulate is false of limiting relative frequencies (though frequentist statisticians frequently employ it) and is awkward for Bayesians because it rules out indifference over a countable infinity of mutually exclusive alternatives (e.g., a “uniform” distribution on the unit line must become highly biased when God tells us that the true value is a rational).  The Bayesian solution to the problem of induction is just a substitution instance of this objectionable feature.  The denial of the hypothesis “forever green” is a countable disjunction of disjoint alternatives:  “switch to blue at stage 0, switch to blue at stage 1, …”.  Finite additivity guarantees that the probabilities of these disjuncts taper off to insignificance, else some finite sum of probabilities would exceed unity.  Countable additivity then implies that there is a time such that the probability of switching thereafter is insignificant.  The infinite tail of the problem of induction is then truncated at this point.  A minimally competent skeptic should respond that since the infinite tail of the problem of induction looks just like the full problem (they are topologically indistinguishable “feathers”), seeing a finite sequence of green inputs changes essentially nothing.  In fact, dropping the controversial, countable additivity postulate yields Bayesian models of the skeptic’s position, in which the probability of being fooled remains above a fixed value for eternity and a little more work yields Bayesian models of globally determined hypotheses that are not almost surely decidable in the limit  (Kelly 1996, chapter 13).  

“Similaritiy” among possible worlds affords another excuse for making inductive inference problems look easier.  Robert Nozick’s (1981) short-run, “truth-tracking” analysis defeats even the Cartesian demon by appealing to counterfactual semantics.  According to Nozick, if the vase weren’t on the table, there wouldn’t be a Cartesian demon fooling me (the possibility is too “remote” from actual circumstances) so I wouldn’t believe it is on the table.
  The problem of induction would seem to be a trifle after this victory, but it proves recalcitrant.  Suppose that quantum mechanics is true.  Nozick’s argument requires that if quantum mechanics were false we would already have rejected it.  That doesn’t seem right.  Newton’s theory was false, and we didn’t notice for quite a while.  It is hard to see why the situation would be any different if quantum mechanics were false.  So the short-run orientation of truth-tracking results in a rather broad inductive skepticism.  Truth tracking and learning theory actually complement one another.  Truth tracking vindicates the reliability of the evidence often presupposed in simple learning models (if our instrumentation is reliable it would remain reliable if the hypothesis under investigation were false), and something like the “surfing” conception of convergent success is required to overcome the inductive skepticism inherent in truth-tracking’s strict requirement that inquiry halt with a correct answer.   

I have maintained that convergence in the limit need not be understood as a personal motive for inquiry, since whatever our motives, the best sort of success we can achieve is still governed by the level of underdetermination of the problem.  Nonetheless, the discussion of Nozick’s analysis of knowledge suggests a possible individual motive for following such a method.  Perhaps what one obtains is the possibility of knowledge now rather than the certainty of truth later.  Since Plato, stability and reliability have been viewed as plausible constraints on knowledge.  Both are already present in the concept of having actually stabilized to true belief with a method that tracks the truth in the best achievable sense.
  This suggests that general empirical knowledge might be modeled as convergence to a true belief fixed by a disposition that tracks the truth in the best achievable limiting sense. 
  The proposal does not escape the problem of impending doom, for convergence is not actual.  Nonetheless, convergence might be virtual, in the sense that allowing the agent’s current learning disposition interact with the current disposition of the system under study for eternity mathematically determines an infinite “course of inquiry” in which the agent’s belief has already stabilized in the actual present.
  The agent’s virtual future may not even be possible (e.g., a big crunch is necessary), but that does not disqualify it from being a constituent of the knowledge concept.  The agent’s current learning disposition may then ground the truth of virtual truth tracking conditionals even though it does not ground the truth of truth-tracking conditionals (e.g., if H were true I would virtually converge to belief that H.)
  Now knowledge can be modeled as true, virtually stable belief that virtually tracks the truth in the limit in the best achievable sense.  This account overcomes Nozick’s inductive skepticism, exploits truth tracking to deal with brain-in-a-vat arguments against the reliability of perception, and provides a kind of short-run motive (i.e., knowledge) for following a method guaranteed to succeed only in the limit.  Finally, it vindicates underdetermination arguments against the standard, realist counterargument that we have no idea what sort of new technologies will be invented in the future.  For if such technologies are viewed as extending our cognitive abilities and are discovered fortuitously, (i.e., we might not have discovered them), then they anchor the virtual convergence properties requisite for general empirical knowledge only after they are discovered.
   

8. Conclusion

If philosophers of science have learned one lesson well, it is that initial conceptions and framing effects are crucial in the historical development of science.  The philosophy of science is not exempt from this rule.  If, at the very outset, we conceive of verification as a notion of procedural success rather than as a static entailment relation, we arrive at an inverted philosophy of science that makes formerly incidental considerations (e.g., computability, discovery, reliability) essential and that relocates a priori epistemology in complexity analysis rather than in explication.  I have described how such a viewpoint can provide alternative interpretations of such standard philosophical issues as underdetermination, empirical regress, and scientific change.  

In what sense do I advocate the viewpoint just described?  My recommendation is modest.  Computational epistemology is an interesting, radical, alternative perspective on the problem of induction.  Try it and see where it leads.  Whenever you are inclined to explain a feature of science in terms of probability and confirmation, take a moment to see how the issue would look in terms of complexity and success.  Questioning standard conceptions and habits from alternative viewpoints is, after all, the very business of critical philosophy.  I came to the philosophy of science hoping to learn how scientific inquiry leads us to the right answers.  What I learned is that we like some theories better than others and that we are justified in doing so.  That sounded evasive to me then and it still does now.  There should be at least one minority viewpoint in the philosophy of science whose first and abiding concern is finding the right answer.  
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� The approach adopted in (Kelly 1996) allows the potential answers to overlap in the set of relevant possibilities, which is somewhat more complicated. 


� The point holds for negative as well as positive arguments.  The Pyrrhonistic skeptics raised this objection against  the “dogmatic” Academic skeptics who claimed to show that knowledge is impossible  (Sextus Empiricus 1985).  Pyrrhonists did not even know that they could not know.  


� Some would-be naturalists seem to have missed this lesson.  E.g., Laudan (1996) recommends that we mine the historical record for empirical correlations between use of a given method and achievement of a given aim, treating the method as a “black box”.  


� E.g., Sextus Empiricus’ argument for inductive skepticism (cf. Etheridge 1985, p.105).  


� This is consonant with ideas of VanFraassen (1980), except for the naturalistic move from “observables” to “inputs” and for the emphasis on temporal ordering of data.  VanFraassen’s “observable substructures” do not specify which facts are observed when.  


� The relevant topological structure is not imposed; it is already present in the concept of procedural verification itself.  For observe that the contradictory hypothesis is verifiable (reject no matter what) and the tautology is verifiable (accept no matter what).  Finite conjunctions of verifiable hypotheses are verifiable (wait for them all to be accepted) and arbitrary unions of verifiable hypotheses are verifiable (wait for one of them to be accepted).  Hence, the verifiable hypotheses are the open sets of a natural, epistemologically-motivated, topological space.  The refutable propositions are closed sets and the decidable propositions are closed-open or “clopen” (Kelly 1996, chapter 4).


� The idea of counting retractions in computation is originally due to Hilary Putnam (1965).  It was applied to inductive inference by Bārzdiņš and Freivalds (1972) and has since then been studied extensively in the learning theoretic literature, particularly by Case and Smith (e.g., 1982).  For a compendium with many references, cf. (Jain et al. 1999).  Feathers are developed in (Kelly 1996), where they shown to characterize levels in the topological hierarchy of finite differences.  


�That is because the relabeling is, mathematically speaking, a homeomorphism (topological equivalence) among spaces of possibilities and homeomorphisms preserve topological structure (like the branching structure of the feather).   Observe that in the topological space described in footnote 7, the shaft of a feather is a topological limit point of the barbs.  Limit points are topological invariants of a space.


� The following discussion follows (Schulte 2000).  The formalization of the conservation inference problem is due to (Valdez-Perez  and Erdmann 1994).  The idea of modeling scientific inquiry in linear spaces has been widely applied by H. Simon (cf. Langley et al. 1987).


� Clark Glymour suggested this example.


� We don’t know yet whether this is the best bound or whether absolute continuity is necessary.


� “The occurrence of one individual of the higher classes of mammalia… in these strata, is as fatal to the theory of successive development as if several hundreds had been discovered” (Lyell 1833 I: 150).


� Whether or not this is the best achievable sense of success depends on the relevant possibilities admitted in the analysis.  Lyell spoke of an “indefinite” date for the beginning of the Earth but some of his successors spoke of  “infinite” origins (Burchfield 1975 pp. 9-10).  The finitude of the Earth itself does not really help, for it implies, on the uniformitarian view, that the fossil record before a given date has already been “recycled” by cyclic geological processes.  The question would then be globally underdetermined, which is even worse.  


� To verify the hypothesis in the limit, put the refutable, component hypotheses into some arbitrary “plausibility” ordering.  Each time a new input is received, check whether the first component hypothesis is refuted.  If so, then eliminate hypotheses from the head of the list until the first non-refuted one is found and reject H.  Otherwise, accept H.  Conversely, if a method verifies hypothesis H in the limit, then the refutable components are of the form “the method stabilizes to acceptance by stage n”.  To refute the nth such component, simulate the method and wait for it to reject after stage n (Kelly 1996, proposition 4.10).  


� Such hypotheses are called (2 Borel sets (Kelly 1996, chapter 4). 


� Such hypotheses are called 2 and 2 Borel sets, respectively.


� This is not to say that I agree with Putnam’s conclusions.  For a critical discussion, cf. (Kelly et al. 1994).  


� A notable exception is the discussion of the result (and of some of my own early results) in (Earman 1992).  After reviewing the arguments, Earman sides weakly for the relational perspective, for the reason that learning theoretic analysis concerns “knowledge how” rather than “knowledge that”.  It seems, however, that all of the preceding examples concerned “knowledge-that”.  Earman observes, further, that we need short run guidance.  I agree.  That is what inductive methods provide.  What we also need is a sense of what all of this “guidance” could possibly guide us toward and whether one method is any better than another in guiding us there.   


� Thus, the reading of Lakatos on p. 151 of  (Jain et al. 1999) is off the mark and the terms “explanatory” (p. 69) and  “Popperian” (p. 117) are used in a fanciful manner.  Much of the terminology is unfortunate and misleading.  To apply the results, one must rely strictly on the formal definitions.


� I.e., “hyperarithmetically definable”.  


� For a related result, cf. (Martin and Osherson 1999, pp. 110-112).  (Osherson et al. 1986) reports other examples of restrictiveness results in the language and function identification settings.  


�Reichenbach’s pragmatic vindication of induction was widely criticized for not singling out a uniquely rational conjecture at each stage.  Yet he was never given credit later for having anticipated Kuhn’s position a priori.  Sometimes you can’t win!


� Observe that any finite disjunction or conjunction of refutable ways of being correct is itself a refutable way of being correct.  Different methods may be driven by different such aggregations.  


� This little story suggests that it would be very interesting to mix game theory and social choice with ideas from computational learning theory and parallel computation in order to obtain a theory of social learnability and complexity.  One suspects that there must be something interesting to say about when Kuhn’s “deep-and-narrow” strategy becomes too narrow and when Feyerabend’s “broad-and-shallow” strategy becomes too shallow.  


� A more general learning theoretic model of theory-laden data is presented in (Kelly 1996, chapter 15).  


� Compare with (Kitcher 1984).  Kitcher agrees that research programs function to make inquiry appear feasible. He also mentions that research programs are relatively immune to disconfirmation (p. 214).  I disagree with the latter observation, for in all the preceding examples it was clear that the programs in question could be confirmed and disconfirmed.  The point is that confirmation and disconfirmation of programs do not add up to a crisp kind of convergence, whereas given these assumptions normal inquiry is guaranteed to be crisp and successful.  Kitcher’s position is better served by the concept of complexity than by the relational conception of confirmation.  Compare Kitcher’s discussion of Kant with the complexity-based discussion of the Kantian antinomies in (Kelly 1996, chapter 3).  


� Consider, for example, the evasive treatment of the issue in (Gärdenfors 1988, pp. 18-20).  


� For example, the revision method proposed in  (Darwiche and Pearl 1997), which is based on a proposal by Wolfgang Spohn (1988), has a parameter , governing how far to “boost” the implausibility of a world that do not satisfy the current datum.  Setting the parameter to 1, as the authors recommend, fails on two-feathers (e.g., the golf-ball problem mentioned above).  Setting it equal to 2 results in a complete method that can converge to the truth whenever convergent success is possible.  


� For this reason, Laudan (1996) requires that the regress be anchored in a single, “foundational” method.  


� A standard objection is that the argument neglects the believer’s belief state in computing distance.   I am willing to grant that “epistemic” counterfactuals put special weight on the normal functioning of the agent’s belief-fixing mechanism.


� For a related attempt to relate learning theoretic ideas to traditional epistemological concerns, cf. (Hendricks 2000).


�Each of the preceding notions of successful hypothesis assessment can be turned into a corresponding notion of limiting truth tracking.  Thus, verification in the limit becomes: if the hypothesis were true then I would eventually stabilize to belief in it and if it were false, I would do anything but stabilize to belief in it.  


� The virtual future agrees with the actual future at the present moment and diverges only when our inductive dispositions change.  


�Virtual conditionals are different from the usual counterfactual conditionals because they do not satisfy diachronic modus ponens, for it could now be true that after seeing A, B, C, I (virtually) would believe that H, but  a gamma ray strikes my brain before seeing B and C, disrupting my current learning disposition and causing me not to believe that H after seeing A, B, C. Modus ponens is validated in standard counterfactual semantics by weak centering, the assumption that no world is closer to the actual world than the actual world itself.  In virtual semantics, my current learning disposition takes precedence, so the virtual worlds in which it remains fixed are all “closer” to the actual world than the actual world itself.  Keeping the agent’s disposition fixed seems natural in epistemological contexts (as it is in deontological contexts).  Also, to insist on modus ponens would be to insist that a “philosophically proper” description of my learning disposition must include stray gamma rays as “inputs”.  This “all things considered” approach is contrary to the whole spirit of counterfactual semantics, which is to handle ceteris paribus considerations (like the absence of stray cosmic rays) without having to list them explicitly in the antecedents of true conditionals.  


� E.g., the virtual structure of the Copernican revolution prior to the advent of the telescope was very different from its virtual structure after Galileo’s observations.  
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