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Abstract

Scientific method may be viewed either as an argument justifying a
conclusion or as a procedure for finding the right answer to some question.
Both conceptions occasion the problem of empirical regresses. According
to the former approach, it is hard to say what the point of a regress is.
According to the latter, we can solve for the strongest sense of single-
method performance that could be covered from a regress of procedures.
Several types of regresses are solved in this sense. Some of the solutions
are shown to have sufficient power to deal with Duhem’s problem.

1 CONFIRMATION AND NATURALISM

Here is a familiar way to think about the philosophy of science. Our empirical
claims must be justified. Usually, evidence does not and never will entail them,
so they must be justified some weaker way. Thus, there must be a relation
of partial support or confirmation falling short of full (deductive) support that
justifies them. The principal task of the philosophy of science is to explicate the
concept of confirmation from practice and historical examples. Any feature of
scientific method or procedure that is not addressed to the nature of this relation
is extraneous to the philosophy of science per se, although it may be of tangen-
tial psychological, sociological, or purely computational interest. Thus virtues
such as confirmation, explanation, simplicity, and testing are relevant, but the
logic of discovery (procedures for inventing new hypotheses) and computational
efficiency are extraneous (e.g., Laudan 1980).

After the justifying relation is explicated from historical examples, the ob-
vious question is why it should be that relation rather than another. It is no
longer stylish to seek an a priori answer to this question; one responds, instead,
with the naturalistic view that if scientific standards are to be justified, that
justification must itself be scientific. The next question is how scientific reason-
ing can justify itself. Somehow, circles are more fashionable than regresses, but
without a clear picture of what justification is supposed to accomplish it is hard

∗This paper benefits from helpful suggestions by John Earman, Jim Lennox, and Oliver
Sculte.
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to see why regresses would be any worse than circles or what would make one
regress better or worse than another.

2 THE PROCEDURAL PARADIGM

Consider an alternative paradigm for the philosophy of science. Suppose that
scientific methods are procedures aimed at converging to correct answers rather
than concepts of short-run justification that apply to incorrect as well as to cor-
rect hypotheses. This shift turns everything on its head. For now the object is
to justify methods for finding correct hypotheses rather than to justify possible
mistakes. Computational considerations are no longer extraneous but central,
for procedures are justified insofar as they find correct answers both reliably
and efficiently. The logic of discovery is no longer peripheral because the con-
cept of convergence to a correct answer applies as much to methods producing
hypotheses as to methods assessing given hypotheses. If confirmation has any
relevance to justification, it is relevant only in the derivative sense of serving
as a cog in a larger procedure for finding correct answers. This is the tacit
philosophy of computational learning theory, a computation-theoretic approach
to inductive inference initially proposed by Hilary Putnam (1963, 1965) and
computer scientist E. M. Gold (1965, 1967).1

Here is a more precise formulation of the idea. Empirical methods are proce-
dures or dispositions that take in successive inputs from nature and that output
guesses in response. Like computational procedures, inductive methods may
be judged as solutions to problems. A problem is not a particular situation
but a range of possible cases in which the method must succeed (analogously,
a multiplication procedure is expected to work for each instance of n × k, not
just for 2× 2). In the case of empirical problems, the range of possible cases is
a range of possibilities over which the method is to be held accountable. Such
possibilities may be called serious possibilities (relative to the problem at hand).
Success in a possibility means converging to a correct answer on the stream of
inputs that would be received if that possibility were actual. Correctness may
be truth or something weaker, such as empirical adequacy. It may also involve
pragmatic components, such as being a potential answer to a given question.
Or following Thomas Kuhn, it might be something like future problem solving
effectiveness. The precise choice of the correctness relation is not the crucial
matter. What is crucial is that all of these notions transcend any finite amount
of data, and therefore occasion the problem of induction, unlike confirmation,
support, personal confidence, and other such “local” substitutes.

There are many different senses of convergent success, some of which are
more stringent than others (cf. Kelly 1996). Let a hypothesis be given. It
would be wonderful if we could expect a scientific procedure to eventually halt
with acceptance or rejection just in case the hypothesis is respectively correct or
incorrect. Call this notion of success decision with certainty. But the hypoth-
esis may only be verifiable with certainty (halt with acceptance if and only if
the hypothesis is correct) or refutable with certainty (halt with rejection if and

1For book-length reviews of the technical literature, cf. (Osherson et al. 1986), (Jain et
al. 1999). For sustained attempts to relate the ideas to the philosophy of science, cf. (Kelly
1996), (Martin and Osherson 1998) . For my most recent attempt at a general philosophical
motivation, cf. (Kelly 2000).
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only if the hypothesis is false). Popper’s philosophy of science begins with the
idea that universal laws are refutable but not verifiable. Less stringently, we
might require only that the method decide the hypothesis in the limit, meaning
that it eventually stabilizes to acceptance if the hypothesis is correct and to
rejection otherwise. More leniently still, we could insist that the method sta-
bilize to acceptance if and only if the hypothesis is correct (verification in the
limit) or stabilize to rejection if and only if the hypothesis is incorrect (refuta-
tion in the limit). Between decision in the limit and verification and refutation
with certainty, we may refine the notion of success by asking how many retrac-
tions are necessary prior to convergence. Kuhn and others have emphasized the
tremendous social cost of retracting fundamental theories, but the number of
retractions required prior to convergence may be viewed as a concept of com-
plexity that bridges the concepts of certainty and limiting convergence with an
infinite sequence of refined complexity concepts. Similar ideas can be applied
when the problem is to discover a correct hypothesis, rather than to assess a
given one. Identification with certainty requires that the method halt with a cor-
rect answer. Identification in the limit requires convergence to a correct answer
and in between we can count the number of retractions prior to convergence.

A given empirical problem (whether of test or discovery) may be solvable
in one of the above senses but not in another. The best sense in which it is
solvable may be said to be its characteristic complexity. This is parallel to what
goes on in the theory of computability and computational complexity; in fact,
the complexity classes so defined are already familiar objects in analysis and
computability theory. In the philosophy of science we speak vaguely of under-
determination of theory by evidence. I have proposed that underdetermination
is just complexity, so degrees of complexity correspond to degrees of underde-
termination (Kelly 1996, 2000b). This way of thinking yields a comprehensive
framework for comparing and understanding different kinds of inquiry drawn
from different contexts, as well as for providing a unified perspective on formal
and empirical inquiry (Kelly 1996, chapters 6, 7, 8, and 10), something that has
bedeviled the confirmation-theoretic approach from the beginning.

All of that sounds rather abstract. But many methodological ideas familiar
to philosophers of science drop out of the framework in a natural way. Given the
relevant auxiliary hypotheses, a universal hypothesis is refutable with certainty
from a data stream that eventually presents every instance. The problem of
choosing a correct universal hypothesis from a finite set of alternatives (assuming
that one is correct) requires at most as many retractions as there are hypotheses
in the set, as when one needs to isolate a quantum number conservation law to
account for collisions among a finite set of observable particles (Schulte 2000).
If we drop the assumption that all the particles have been observed, the answer
may only be identifiable in the limit (we may be surprised by new particles any
finite number of times).

Return to the problem of assessing an individual universal hypothesis. If
we drop the relevant auxiliary assumptions, the hypothesis may fail even to be
decidable in the limit. The auxiliaries may also fail to be individually refutable.
It may only be the entire theory involving the hypothesis and the auxiliaries that
is refutable. Assuming only that each conjunction of H with a set of auxiliaries is
refutable with certainty, we can enumerate the possible systems of auxiliaries we
have thought of and accept H so long as the currently adopted set of auxiliaries is
not refuted in conjunction with H. Each time the conjunction is refuted we move
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to the next set of auxiliaries and reject H. When we think of new systems of
auxiliaries, we add them to the end of the queue of auxiliaries we have thought of.
This verifies H in the limit so long as our “creative intuition” produces systems
of auxiliaries covering all relevant possibilities admitted by H. So verifiability in
the limit corresponds to the intuitive epistemic difficulty occasioned by Duhem’s
problem and paradigm choice. That is important, because most issues in the
philosophy of science (realism, conventionalism, observability, theory-ladenness,
and paradigms) cluster around Duhem’s problem.

Think of a “puzzle” as an empirical problem of low complexity (refutable
or decidable with bounded retractions) whose crisp, stepwise solvability is due
to the constraints on serious possibility afforded by the protective environment
of the paradigm (as in the conservation law inference problem). Think of ex-
traordinary science as arising when the constraining paradigm can no longer be
assumed.2 Now it is necessary to run through the possible alternative auxiliary
hypotheses, so inquiry appears more subjective and arbitrary in the short run
as different investigators fill in the blanks in different ways. Here is a bold idea:
the historicist distinction between “normal” and “extraordinary” science is just
the distinction between low learning theoretic complexity given the assumptions
of the paradigm and high learning theoretic complexity when the paradigm is
no longer assumed .

Limiting verifiability can arise even within normal science if the question
is sufficiently complex, as in the case of hypotheses concerning trends. Such
questions are intuitively difficult, because any evidence for the trend could be a
local fluctuation around an unknown equilibrium. This sort of complexity was
apparent in the debate between uniformitarian and progressionist geologists in
the nineteenth century (cf. Ruse 1979). Progressionists held that geological
history exhibits progress due to the classical, exponential cooling of the Earth
from its primordial, hot state, whereas Lyell reinterpreted all apparent trends as
local fluctuations on an immensely expanded time scale. Assuming a particular
schedule of progress, progressionism is refutable with certainty: just wait for a
fossil to come in that appears ahead of schedule. In fact, Lyell claimed to have
refuted progressionism when the Stonesfield mammals were found in Jurassic
strata, prior to progressionist expectations. But without such an auxiliary as-
sumption, the progressionists can revise their schedule. To verify progressionism
in the limit, accept so long as the current schedule for progress fits the facts
and reject whenever a new schedule has to be adopted. Uniformitarianism is
refutable with certainty: it looks good when progressionism looks bad. Global
warming (Berger and Labeyrie 1987) provides a more recent example of this
kind (is the current warming trend a chaotic spike or a genuine effect of the
undeniable increase in carbon dioxide in the atmosphere?). Other hypotheses
that are verifiable in the limit include the computability of human cognition
(Kelly 1996) and the hypothesis that an empirical time series is generated by a
chaotic system (Harrell 2000).

2Much more can be said about this (Kelly 2000b). For example, one can also provide a
naturalistic account of theory-laden data in learning theoretic terms.
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3 PROCEDURAL REGRESSES

The procedural outlook just described is subject to its own empirical regress
problem. No empirical problem is solvable, even in the limit, without some
empirical, auxiliary assumptions. If such assumptions are necessary for success,
how can we know that they are satisfied? By invoking another method with its
own battery of assumptions? And what about those? Appealing to “problems”
doesn’t help, for how do we know that the actual world is counted among the
range of possibilities specified by the problem?

I used to think that I had no interesting answer to this challenge, because
if some background knowledge is necessary to “prime the pump” of successful
inquiry, it cannot be successfully investigated in the same sense of success, else
it wouldn’t have been necessary to begin with. But this argument assumes that
a method that investigates the background assumption and a method that pre-
supposes the background assumption to investigate H could be chained together
to form a method that succeeds in the same sense on H without the background
assumption. The assumption is plausible but wrong. Chaining methods that
succeed in stronger senses can solve problems solvable only in weaker senses.
Therein lies the germ of a nontrivial, learning theoretic analysis of infinite epis-
temic regresses. The basic idea is a methodological no free lunch principle, which
states that the value of a regress can be no greater than the best single-method
performance that could be achieved by looking at the outputs of the methods
in the regress rather than at the data themselves. If this performance is much
worse than what could be achieved by looking at the data directly, we may say
that it is methodologically vicious. If this performance is the best possible, then
the regress is optimal. This idea imposes the full discipline of computational
complexity on empirical epistemic regresses.

4 FOUNDED REGRESSES

For simplicity, let’s focus on the problem of assessing a given hypothesis H0. Fix
a given sense of success (e.g., refutation with certainty, verifiability in the limit,
etc.) The empirical presupposition H1 of a method is just the set of all serious
possibilities over which it succeeds. Since the presupposition of method M0 is a
set of worlds, we may think of it as the proposition “method M0 will succeed”,
which is a nontrivial empirical hypothesis in its own right. So let M1 be charged
with assessing H1. Method M1 has its own presupposition H2, which is assessed
by M2, and so forth. Start with the case of a finite (i.e., founded) regress whose
last method is Mn. In that case, we say that the regress succeeds with respect
to H0 in a given sense (e.g., refutation with certainty) just in case

1. Hi+1 is the presupposition of Mi with respect to Hi according to the given
sense of success and

2. Mn really does succeed on Hn.

A regress reduction is an empirical method that gets to watch all of the
outputs of all the methods in the regress up to the current stage of inquiry and
that produces a single output for that stage. Similarly, a regress production
is a rule that looks at the outputs of a single method up to the present stage
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and that specifies the current output of each method in a regress at that stage.
A sense of regressive success R is methodologically reducible to a concept of
single-method success S if and only if there exists a regress reduction that turns
each regressive solution in sense R into a single-method solution in sense S.3

Regressive success concept R is methodologically producible from a given sense S
of single-method success just in case there is a regress production that turns each
method succeeding in sense S into a regress succeeding in sense R. A sense R
of regressive success is methodologically equivalent to a sense S of single-method
success just in case R is reducible to and producible from S.

Suppose we have a regress of two methods such that the outer one refutes the
proposition that the inner one refutes the given hypothesis H0 with certainty.
Applying the no free lunch principle, what kind of single-method performance
is this kind of success methodologically reducible to? None; for without further
qualifications, the regress might erase all of the information in the data. For
example, M0 might ignore the data and mindlessly vacillate between rejection
and acceptance, so that the proposition that M0 succeeds is the empty set.
Then M1 could refute H1 with certainty by rejecting it a priori. This shows
that regresses do not have to be infinite to be vicious. The triviality can be
overcome, however, if we add the qualification that each method in the chain
pretends to succeed in the sense specified in its presupposition. By this I mean
that the pattern of outputs produced by the method is consistent with the
intended sense of success. For example, if M pretends to refute some hypothesis
with certainty, M starts out accepting and then retracts to rejection just once,
resolving to stick with the rejection forever after. A method that pretends to
decide a hypothesis in the limit is not permitted to vacillate between acceptance
and rejection forever. In this connection, it is interesting that Karl Popper’s
philosophy was based on pretending to refute what is not really refutable. Even
though auxiliaries could always be tinkered with, Popper recommended that we
eschew this “conventionalist stratagem” and formulate in advance conditions
under which the hypothesis must be dropped for good. In other words, we should
“pretend”, in the sense under consideration, that the non-refutable hypothesis
is refutable. Popper also appealed to regresses: the pretense of refutability was
to be adopted afresh every time a presupposition came under challenge. So
Popper’s philosophy naturally invites the question of what can be accomplished
with a regress of pretending refuters!

Let’s try again. From now on, say that a finite regress of length n succeeds
in a given sense S of single-method success just in case

1. Hi+1 is the presupposition of Mi with respect to Hi according to success
criterion S and

2. Mi pretends to succeed in sense S with respect to Hi and

3. Mn really does succeed in sense S on Hn.
3Notice that notions of success with respect to a given problem are being reduced here,

whereas in the theory of computability it is usually problems that are reduced with respect to
a given notion of success (e.g.,Turing computability). But one could just as well say that, for
example, the problem of computing a function is inter-reducible to the problem of deciding
its graph since a procedure of either kind can be modified effectively to produce a procedure
of the other kind.
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This sort of regress is no longer worthless. For example, a regress of two
methods that pretend to refute with certainty is methodologically equivalent to
one method that retracts at most twice prior to convergence and that starts out
accepting.4 More generally, the following are methodologically equivalent:5

• A finite regress (M0, . . . ,Mn) in which each method pretends to succeed
with some finite number of retractions.

• A single method that succeeds with the sum of the retractions required by
(M0, . . . ,Mn) starting with rejection if an even number of the Mi reject
and starting with acceptance otherwise.

What if the methods in the regress succeed only in the limit? It is easy
to see that any finite regress of limiting decision procedures is equivalent to a
limiting decision procedure: just accept if an even number of the methods in
the sequence reject and reject otherwise. Regresses involving one-sided limiting
methods are not reducible to any of our notions of success and may be thought
of as a natural way to build methodological success criteria applicable to more
complex hypotheses. The situation simplifies when all of the presuppositions of
methods in the regress are entailed by H0 or by its complement. Then we may
speak of an H0-entailed or co-H0-entailed regress, respectively. Then we have
the following, simplified equivalence:

• An H0-entailed regress (M0,M1) such that M0 pretends to refute [verify]
in the limit and M1 refutes [verifies] the presupposition H1 of M0 in the
limit.

• A single method M that refutes [verifies] H0 in the limit.

Similarly, the following are equivalent:

• A co-H0-entailed regress (M0,M1) such that M0 pretends to refute [verify]
in the limit and M1 verifies [refutes] the presupposition H1 of M0 in the
limit.

• A single method M that verifies [refutes] H0 in the limit.

5 INFINITE REGRESSES

Suppose we require that every challenged presupposition be tested. If the game
were to continue without an arbitrary stopping point, one would respond with a

4Here’s the trick. Both methods start out accepting, since both pretend to refute. Let
the constructed method M accept because M1 will succeed and M1 currently says that M0

will succeed and M0 now accepts. If M1 ever rejects, then let M disagree with what M0 says
because M1 discovered that M0 will fail and M1 cannot fail by retracting too often since M0

pretends to refute. At worst, both retract and M retracts once each time. So M retracts at
most twice, starting with acceptance. Methodological equivalence requires that we can also
produce a regress of two refuters M0, M1, from an arbitrary method M that succeeds with
two retractions starting with acceptance. Here’s how to do it. Let M0 accept until M retracts
once and reject thereafter. Let M1 accept until M retracts twice and reject thereafter. Let
H1 be the proposition that M0 successfully refutes H0 with certainty. That is true just in case
M retracts at most once. Thus, M1 really succeeds in refuting H1 with certainty, as required.

5The proofs of all the propositions may be found in (Kelly 2000a).
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potentially infinite sequence of methods testing the assumptions of methods. . ..
What is accomplished thereby, other than to hold up one’s position in an on-
going, rhetorical game? In a more Kantian mode, what could be accomplished
thereby? We can try to use the concept of methodological equivalence to solve
for the best sort of single-method performance such a regress would be equiva-
lent to.

Without some sort of reliability constraint on the methods in the infinite
regress it might be completely worthless: all of the methods might ignore the
data and do something arbitrary. Even though every method has presupposi-
tions, we may require, at least, that later methods have weaker presuppositions
than the presuppositions they check so that later methods are more reliable
than their predecessors. Say that such a regress is directed.6 Then the following
are methodologically equivalent:

• An infinite, directed regress (M0, . . . ,Mn, . . .) of pretending refuters.

• A single method M that decides H0 with at most two retractions, starting
with acceptance, over the disjunction (H1 ∨ . . . ∨ Hn ∨ . . .) of all the
presuppositions of the methods in the regress.

More specifically, if the regress of pretending refuters is H0-entailed, then
the whole regress is equivalent to a single method that refutes H0 with certainty.
More generally, if M0 succeeds with n retractions, the regress is equivalent to a
single method that succeeds with one more retraction, starting with the same
initial conjecture as M0.

Several points should be emphasized. First, the methodological reduction
constructed to prove the result operates in a local manner, looking at more
and more of the outputs of more and more methods in the regress. So the
equivalences hold even if the infinite regress is built up through time in response
to specific challenges instead of being given all at once. Second, no method in the
regress has a presupposition as weak as the presupposition of the regress itself, so
appealing to a regress is a way to weaken presuppositions. Third, although such
regresses yield greater reliability, they are feasible only for hypotheses that are
decidable with only two retractions, which falls far short of Popper’s ambition to
address Duhem’s problem by means of arbitrary regresses of pretending refuters
(recall that Duhem’s problem gives rise to hypotheses that are only verifiable
or refutable in the limit).

The corresponding result for an infinite regress of pretending verifiers is quite
different, as the following are methodologically equivalent:

• An infinite, directed regress (M0, . . . ,Mn, . . .) of methods that pretend to
verify with certainty, decide with at least one retraction starting with 1,
decide in the limit, or refute in the limit.

• A regress (M0,M) such that M refutes the presupposition H1 of M0 in
the limit over the disjunction (H2 ∨ . . .∨Hn ∨ . . .) of all the other presup-
positions in the regress.

Recall that regresses of limiting methods are irreducible to simpler success
criteria. If the regress is H0-entailed, however, then we have the following
equivalence.

6This does not imply that H0 entails H1, since H0 is not a presupposition.
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• An infinite, H0-entailed, directed regress (M0, . . . ,Mn, . . .) of methods
that pretend to verify with certainty, decide with at least one retraction
starting with 1, decide in the limit, or refute in the limit.

• A single method M such that M refutes H0 in the limit over the disjunc-
tion (H2 ∨ . . . ∨Hn ∨ . . .) of all the other presuppositions in the regress.

If the regress is co-H0-entailed the following are equivalent:

• An infinite, not-H0-entailed, directed regress (M0, . . . ,Mn, . . .) of methods
that pretend to verify with certainty, decide with at least one retraction
starting with 1, decide in the limit, or refute in the limit.

• A single method M such that M verifies H0 in the limit over the disjunc-
tion (H2 ∨ . . . ∨Hn ∨ . . .) of all the other presuppositions in the regress.

Thus, infinite directed regresses of pretending verifiers vastly transcend the
power of verification with certainty. They reach the level of complexity oc-
casioned by Duhem’s problem, which is what Popper wished to address with
regresses of refuters. So, perhaps he should have been a regressive verificationist
after all!7

To illustrate this result, let H0 denote Lyell’s uniformitarian hypothesis.
After the Stonesfield mammals were discovered in the Jurassic strata, Lyell de-
clared victory for H0.8 His method M0 was something like: don’t declare victory
for uniformitarianism9 until the current progressionist (auxiliary) hypothesis A1

about the particular schedule of progress is refuted (e.g., by an advanced form
like a mammal appearing too early). Then halt and accept uniformitarianism.
The presupposition H1 of this method is, obviously, that uniformitarianism is
correct if A1 is not (i.e., H1 = H0∨A1). Indeed, the progressionists responded by
challenging precisely this presupposition. They revised their schedule to a new
schedule A2. Let’s continue the game. Lyell can respond with a meta-method
M1 that tests his initial presupposition as follows. If the original schedule A1

is never refuted, M0 was right to reject uniformitarianism, so accept H1. If the
current schedule A1 is refuted but the new schedule A2 never is, then M0 was
wrong to halt with acceptance of H0, so reject H1. Finally, M1 presupposes
that no new schedule is correct (i.e., H2 = H0 ∨ A1 ∨ A2) and assumes that
M0 was right to reject if the second schedule is refuted. In general, Mn ac-
cepts Hn just in case the nth conjectured schedule of progress is not refuted,
rejects if it is, and accepts when the n + 1th schedule is refuted, thereby pre-
supposing Hn = H0 ∨ A1 ∨ . . . An. This is an H0-entailed directed regress of
methods pretending to decide with at most two retractions starting with accep-
tance, and hence is equivalent to a single limiting refutation procedure M for H0

that succeeds over the disjunction of the presuppositions, which is equivalent
to the disjunction of the two competing paradigms (i.e., uniformitarianism ∨
progressionism). Here is how to construct M in this particular case. Method M
maintains a queue of the methods added to the regress so far. Each time a new

7There is an escape from this argument. Popper never said, to my knowledge, that the
regress had to be directed.

8Of course, I oversimplify. He declared victory for a tangle of reasons that would defy any
elegant logical representation.

9Actually, Lyell was already committed to uniformitarianism. In this case, the method M0

models his rule for announcing victory rather than his actual convictions.
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method is added to the regress, it gets added to the end of the queue (the regress
is only “potentially” infinite). If the method at the head of the queue accepts,
it is placed at the end of the queue (ahead of any new methods added at that
stage). Each time the method at the head of the queue is shuffled to the back,
M accepts. Otherwise, M rejects. Suppose that the presupposition of some
method in the regress is satisfied. Let Hn be the first such. Suppose that n > 0.
Then H0 is false since H0 entails Hn. By directedness, each preceding presup-
position is wrong. So Mn converges correctly rejection. Each preceding method
converges incorrectly to acceptance and each succeeding method converges cor-
rectly to acceptance, so Mn is the unique method that converges to rejection. So
eventually Mn comes to the head of the queue after it has converged to rejection
and M converges correctly to rejection at that stage, as required. Now suppose
that n = 0. Then all of the methods converge to acceptance so M accepts in-
finitely often, as required. Observe how the reduction in this example unravels
the rhetorical game of responding to challenges with methods that second-guess
presuppositions into an ongoing game of inquiry against nature whose object
is finding a correct answer. This is a model, perhaps, of how rhetorical and
reliabilist conceptions of science can be reconciled.

6 CONCLUSION

Scientific method may be conceived as a justifying argument or as a procedure
aimed at finding a correct answer. Both conceptions raise a question about
the propriety of infinite empirical regresses, whether of reasons or of methods
checking methods checking methods. Since it is hard to say what evidential jus-
tification is for, it is hard to bring the notion of infinite regresses of reasons under
firm theoretical control. The procedural concept of methodological equivalence,
on the other hand, allows one to “solve” for the best single-method perfor-
mance that a given kind of regress is equivalent to. Without extra constraints,
both finite and infinite regresses can be worthless in terms of equivalent single-
method performance. However, some motivated conditions on regresses can
result in nontrivial regresses that achieve sufficient power to address Duhem’s
problem. Other interesting sorts of regresses might be brought under the same,
complexity-theoretic discipline.
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