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1 INTRODUCTION

Learning is the acquisition of new knowledge and skills. It spans a range of processes from
practice and rote memorization to the invention of entirely novel abilities and scientific theories
that extend past experience. Learning is not restricted to humans: machines and animals
can learn, social organizations can learn, and a genetic population can learn through natural
selection. In this broad sense, learning is adaptive change, whether in behavior or in belief.

Learning can occur through the receipt of unexpected information, as when a detective learns
where the suspect resides from an anonymous informant. But it can also be a process whose
arrival at a correct result is in some sense guaranteed before the new knowledge is acquired.
Such a learning process may be said to be reliable at the time it is adopted. Formal Learning
Theory is an a priori, mathematical investigation of this strategic conception of reliability. It
does not examine how people learn or whether people actually know, but rather, how reliable any
system, human or otherwise, could possibly be. Thus, learning theory is related to traditional
psychological and epistemological issues, but retains its own, distinct emphasis and character.

Reliability is a notoriously vague concept, suggesting a disposition to acquire new knowledge
or skill over a broad range of relevantly possible environments. Learning theory deals with the
vagueness not by insisting on a single, sharp “explication” of reliability, but by studying a range
of possible explications, no one of which is insisted upon. This approach subtly shifts the focus
from intractable debates about what reliability is to the more objective task of determining
which precise senses of reliability are achievable in a given, precisely specified learning problem.

A learning problem specifies (1) what is to learned, (2) a range of relevantly possible envi-
ronments in which the learner must succeed, (3) the kinds of inputs these environments provide
to the learner, (4) what it means to learn over a range of relevantly possible environments, and
(5) the sorts of learning strategies that will be entertained as solutions. A learning strategy
solves a learning problem just in case it is admitted as a potential solution by the problem and
succeeds in the specified sense over the relevant possibilities. A problem is solvable just in case
some admissible strategy solves it.

Solvability is the basic question addressed by formal learning theory. To establish a positive
solvability result, one must construct an admissible learning strategy and prove that this strategy
succeeds in the relevant sense. A negative result requires a general proof that every allowable
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learning strategy fails. Thus, the positive results appear “methodological” whereas the negative
results look “skeptical”. Negative results and positive results lock together to form a whole
that is more interesting than the sum of its parts. For example, a learning method may appear
unimaginative and pedestrian until it is shown that no method could do better (i.e., no harder
problem is solvable). And a notion of success may sound too weak until until it is discovered
that some natural problem is solvable in this sense but not in the more ambitious senses we
would prefer.

There are so many different parameters in a learning problem that it is common to hold some
of them fixed (e.g., the notion of success) and to allow others to vary (e.g., the set of relevantly
possible environments). A partial specification of the problem parameters is called a learning
paradigm and any problem agreeing with these specifications is an instance of the paradigm.

The notion of a paradigm raises more general questions. After several solvability and unsolv-
ability results have been established in a paradigm, a pattern begins to emerge and one would
like to know what it is about the combinatorial structure of the solvable problems that makes
them solvable. A rigorous answer to this question is called a characterization theorem.

Many learning theoretic results concern the relative difficulty of two paradigms. Suppose we
change a parameter (e.g., success) in one paradigm to produce another paradigm. There will
usually remain an obvious correspondence between problems in the two paradigms (e.g., identical
sets of serious possibilities). A reduction of paradigm P to another paradigm P ′ transforms a
solution to a problem in P ′ into a solution to the corresponding problem in P . Then we may say
that P is no harder than P ′. Inter-reducible paradigms are equivalent. Equivalent paradigms
may employ intuitively different standards of success, but the equivalence in difficulty shows
that the quality of information provided by the diverse criteria is essentially the same. Paradigm
equivalence results may therefore be viewed as epistemic analogues of the conservation principles
of physics, closing the door on the temptation to get something (more reliability) for nothing
by fiddling with the notion of success.

2 LEARNING IN EPISTEMOLOGY

Epistemology begins with the irritating stimulus of unlearnability arguments. For example,
Sextus Empiricus records the classical problem of inductive justification as follows:

[Dogmatists] claim that the universal is established from the particulars by means
of induction. If this is so, they will effect it by reviewing either all the particulars or
some of them. But if they review only some, their induction will be unreliable, since
it is possible that some of the particulars omitted in the induction may contradict the
universal. If, on the other hand, their review is to include all the particulars, theirs
will be an inmpossible task, because particulars are infinite and indefinite (Sextus
1985): 105.

This argument may be modelled in the following data stream paradigm. A data stream is just an
infinite sequence e of natural numbers encoding discrete “observations”. By stage n of inquiry
the learner has seen observations e(0), e(1), . . . e(n−1). An empirical proposition is a proposition
whose truth or falsity depends only on the data stream, and hence may be identified with a set
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of data streams. A learning strategy decides a given empirical proposition with certainty just in
case in each relevantly possible data stream, it eventually halts and returns the truth value of
the proposition.

Let the hypothesis to be assessed be “zeros will be observed forever”, which corresponds
to the empirical proposition whose only element is the everywhere zero data stream. Let every
Boolean-valued data stream be a relevant alternative. To show that no possible learning strategy
decides the hypothesis with certainty over these alternatives, we construct a “demonic strategy”
for presenting data in response to the successive outputs of an arbitrary learning strategy in
such a way that the learner fails to halt with the right answer on the data stream presented.
The demon presents the learner with the everywhere zero sequence until the learner halts and
returns “true”. If this never happens, the learner fails on the everywhere zero data stream.
If the learner halts with “true”, there is another relevantly possible data stream that agrees
with the everywhere zero data stream up to the present and that presents only ones thereafter.
The demon then proceeds to present this alternative data stream, on which the learner has
already halted with the wrong answer. So whatever the learner’s strategy does, it fails on some
relevantly possible data stream and hence does not decide the hypothesis with certainty. This
is the simplest example of a negative learning theoretic argument.

The argument actually shows something stronger. Verification with certainty requires, asym-
metrically, that the learner’s strategy halt with the output “true” if the hypothesis under assess-
ment is true and that the strategy always say “false” otherwise, possibly without ever halting.
The preceding argument shows that the “zeros forever” hypothesis is not verifiable with cer-
tainty.

Karl Popper’s falsificationist epistemology was originally based on the observation that al-
though universal hypotheses cannot be verified with certainty, they can be refuted with certainty,
meaning that a method exists that halts with “false” if the hypothesis is false and that always
says “true” otherwise. In the “zeros forever” example, the refutation method simply returns
“true” until a nonzero value is observed and then halts inquiry with “false”.

When reliability demands verification with certainty, there is no tension between the static
concept of conclusive justification and the dynamical concept of reliable success, since conver-
gence to the truth occurs precisely when conclusive justification is received. Refutation with
certainty severs this tie: the learner reliably stabilizes to the truth value of h but when h is
true there is no time at which this guess is certainly justified. The separation of reliablity from
complete justification was hailed as a major epistemological innovation by the American Prag-
matists.1 In light of it, one may either try to invent some notion of partial empirical justification
(e.g., a theory of confirmation), or one may, like Popper, side entirely with reliability.2 Learning
theory has nothing to say about whether partial epistemic justification exists or what it might
be. Insofar as such notions are entertained at all, they are assessed either as components of
reliable learning strategies or as extraneous constraints on admissible strategies that may make

1“We may talk of the empiricist and the absolutist way of believing the truth. The absolutists in this matter
say that we not only can attain to knowing truth, but we can know when we have attained to knowing it; while
the empiricists think that although we may attain it, we cannot infallibly know when.” (James 1948): 95-96.

2“Of course theories which we claim to be no more than conjectures or hypothees need no justification (and
least of all a justification by a nonexistent ‘method of induction’, of which nobody has ever given a sensible
description).” (Popper 1982): 79.
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reliability more difficult or even impossible to achieve. Methodological principles with the latter
property are said to be restrictive.3

“Hypothetico-deductivism” is sometimes viewed as a theory of partial inductive support
(Glymour 1980), but it can also been understood as a strategy for reducing scientific discovery
to hypothesis assessment (Popper 1968, Kemeny 1953, Putnam 1963). Suppose that the rel-
evant possibilities are covered by a countable family of hypotheses, each of which is refutable
with certainty and informative enough to be interesting. A discovery method produces empirical
hypotheses in response to its successive observations. A discovery method identifies these hy-
potheses in the limit just in case on each relevantly possible data stream, the method eventually
stabilizes to some true hypothesis in the family. Suppose that we have an assessment method
that refutes each hypothesis with certainty. The corresponding hypothetico-deductive method
is constructed as follows. It enumerates the hypotheses (by “boldness”, “abduction”, “plausibil-
ity”, “simplicity”, or the order by which they are produced by “creative intuition”) and outputs
the first hypothesis in the enumeration that is not rejected by the given refutation method. This
reduction has occurred to just about everyone who has ever thought about inductive method-
ology. But things needn’t be quite so easy. What if the hypotheses aren’t even refutable with
certainty? Could enumerating the right hypotheses occasion computational difficulties? These
are just the sorts of questions of principle that are amenable to learning theoretic analysis, as
will be seen below.

Another example of learning theoretic thinking in the philosophy of science is Hans Re-
ichenbach’s “pragmatic vindication” of the “straight rule” of induction (Reichenbach 1938).
Reichenbach endorsed Richard Von Mises’ frequentist interpretation of probability. The relative
frequency of an outcome in a data stream at position n is the number of occurrences of the
outcome up to position n divided by n. The probability of an outcome in a data stream is the
limit of the relative frequencies as n goes to infinity. Thus, a probabilistic statement determines
an empirical proposition: the set of all data streams in which the outcome in question has the
specified limiting relative frequency.

To discover limiting relative frequencies, Reichenbach recommended using the straight rule,
whose guess at the probability of an outcome is the currently observed relative frequency of
that outcome. It is immediate by definition that if the relevant possibilities include only data
streams in which the limiting relative frequency of an event type is defined, then following the
straight rule gradually identifies the true probability value, in the sense that on each relevantly
possible data stream, for each nonzero distance from the probability, the conjectures of the rule
eventually stay within that distance.

If the straight rule is altered to output an open interval of probabilities of fixed width
centered on the observed relative frequency, then the modified method evidently identifies a
true interval in the limit (given that a probability exists). This is the same property that
hypothetico-deductive inquiry has over countable collections of refutable hypotheses.

So are probability intervals refutable with certainty? Evidently not, for each finite data
sequence is consistent with each limiting relative frequency: simply extend the finite sequence
with an infinite data sequence in which the probability claim is true. Is there any interesting
sense in which open probability intervals can be reliably assessed? Say that a learner decides a

3Cf. section 6 below.
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hypothesis in the limit just in case in each relevantly possible enviroinment, the learner eventually
stabilizes to “true” if the hypothesis is true and to “false” if the hypothesis is false. According
to this notion of success, the learner is guaranteed to end up with the correct truth value,
even though no relevantly possible environment affords certain verification or refutation. But
even assuming that some limiting relative frequency exists, open probability intervals are not
decidable even in this weak, limiting sense (Kelly 1996). A learner verifies a hypothesis in
the limit just in case on each relevantly possible data stream, she converges to “true” if the
hypothesis is true and fails to converge to “true” otherwise. This even weaker notion of success
is “one sided”, for when the hypothesis is true, it is only guaranteed that “false” is produced
infinitely often (possibly at ever longer intervals).4 Analogously, refutation in the limit requires
convergence to “false” when the hypothesis is false and anything but convergence to “false”
otherwise. It turns out that open probability intervals are verifiable but not decidable in the
limit given that some probability (limiting relative frequency) exists.5

Thus, identification in the limit is possible even when the possible hypotheses are merely
verifiable in the limit. Indeed, identification in the limit is in general reducible to limiting
verification, but the requisite reduction is a bit more complicated than the familiar hypothetico-
deductive construction. Suppose we have a countable family of hypotheses covering all the
relevant possibilities and a limiting verifier for each of these hypotheses. Enumerate the hy-
potheses so that each hypothesis occurs infinitely often in the enumeration. At a given stage of
inquiry, find the first remaining hypothesis whose limiting verifier currently returns “true”. If
there is no such, output the first hypothesis and go to the next stage of inquiry. If there is one,
output it and delete all hypotheses occurring prior to it from the hypothesis enumeration. It
is an exercise to check that this method identifies a true hypothesis in the limit. So although
limiting verification is an unsatisfying sense of reliable assessment, it sufficees for limiting identi-
fication. If the hypotheses form a partition, the limiting verifiability of each cell is also necessary
for limiting identification (Kelly 1996). So limiting verification is perhaps more important than
it might first have appeared.

Neyman and Pearson justified their theory of statistical testing in terms of the frequentist
interpretation of probability:

It may often be proved that if we behave according to such a rule, then in the long
run we shall reject h when it is true not more, say, than once in a hundred times,
and in addition we may have evidence that we shall reject h sufficiently often when
it is false (Neyman and Pearson 1933): 142.

The significance level of a test is a fixed upper bound on the limiting relative frequency of false
rejection of the hypothesis under test over all possible data streams. A test is “useless” if the
limiting frequency of mistaken acceptances exceeds one minus the significance, for then we could

4If there were any schedule governing the rate at which the the outputs “false” spread apart through time,
this schedule could be used to produce a method that decides the hypothesis in the limit: the new rule outputs
“false” until the simulated rule produces more “true”s than the schedule allows for. Thus the potential for ever
rarer “false” outputs when the hypothesis is false is crucial to the extra lenience of this criterion.

5Conjecturing “true” while the observed frequency is in the interval and “false” otherwise does suffice unless
we exclude possible data streams in which the limiting relative frequency approaches its limit from one side, for
all but finitely many satages along the data stream. A reliable method is presented in (Kelly 1996).
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have done better at reducing the limiting relative frequency of error by ignoring the data and
flipping a coin biased according to the significance level. “Useful” testability can be viewed as
a learning paradigm over data streams. How does it relate to the “qualitative” paradigms just
discussed? It turns out that the existence of a useful test for a hypothesis is equivalent to the
hypothesis being either verifiable or refutable in the limit (Kelly 1996). This is an example
of a paradigm equivalence theorem, showing that useful statistical tests provide essentially no
more “information” than limiting verification or refutation procedures, assuming the frequentist
interpretation of probability.

It is standard to assume in statistical studies that the relevant probabilities exist, but is there
a sense in which this claim could be reliably assessed? Demonic arguments reveal the existence
of a limiting relative frequency to be neither verifiable in the limit nor refutable in the limit over
arbitrary data streams. But this hypothesis is gradually verifiable in the sense that there is a
method that outputs numbers in the unit interval such that these numbers approach one just if
the hypothesis is true (Kelly 1996). A demonic argument shows that the existence of a limiting
relative frequency is not gradually refutable, in the sense of producing a sequence of numbers
approaching zero just in case the hypothesis is false.

Gradual decidability requires that the learner’s outputs gradually converge to the truth value
of the hypothesis whatever this truth value happens to be. Unlike gradual verification and
refutation, which we have just seen to be weaker than their limiting analogues, gradual decision
is inter-reducible with limiting decision: simply choose a cutoff value (e.g. 0.5) and output
“true” if the current output is less than 0.5 and “false”otherwise. Gradual decision is familiar
as the sense of success invoked in Bayesian convergence arguments. Since Bayesian updating by
conditionalization can never retract a zero or a one on data of nonzero probablity, these outputs
indicate certainty (inquiry may as well be halted), so limiting decision may only be accomplished
gradually.

This short discussion illustrates how familiar epistemological issues as diverse as the problem
of induction, Popper’s falsificationism, Reichenbach’s vindication of the straight rule, statistical
testability, and Bayesian convergence all fit within a single, graduated system of learnability
concepts.

3 COMPUTABLE LEARNING

The preceding discussion framed traditional epistemological topics in learning theoretic terms.
But despite its ancient pedigree, the focus of formal learning theory on computational issues
anchors it squarely in the twentieth century.

One of the earliest examples of a computationally driven unlearnability argument was pre-
sented by Hilary Putnam in 1963 in an article criticizing Rudolph Carnap’s (1950) approach
to inductive logic. Following suggestions by Wittgenstein, Carnap viewed inductive logic as a
theory of “partial entailment”, in which the conditional probability of the hypothesis given the
data is interpreted as the proportion of logical possibilities satisfying the “premise” that also
satisfy the intended “conclusion”.

An inductive logic determines a prediction function: given the data encountered so far,
output the most probable guess at the next datum to be seen. If there is a tie, we interpret
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this as a refusal to select a prediction and view it as a failure at this round. Since the relevant
probabilities are computable in Carnap’s inductive logic, so is the induced prediction function.

In the extrapolation paradigm, the goal in each relevantly possible data stream is to eventually
produce only correct predictions. Putnam showed that no computable prediction function can
extrapolate the set of all total computable data streams, from which it follows that Carnap’s
inductive logic cannot extrapolate the computable data streams. Let an arbitrary, computable
prediction strategy be given. At each stage, the demon calculates the computable prediction
strategy’s next prediction in light of the data already presented. If the prediction is one or
greater, the demon presens a zero. If the prediction is zero, the demon presents a one. Evidently,
every prediction made by the computable extrapolator along the resulting data stream is wrong.
Since both the demon’s strategy and the learner’s strategy are computable, this data stream is
computable and hence relevantly possible.6

On the other hand, the problem is solved by the obvious, but noncomputable, hypothetico-
deductive method. Enumerate a set of computer programs computing all and only the total
computable functions (i.e., no programs that go into infinite loops are included). Each such
program is computably refutable with certainty by calculating its prediction for the current
stage of inquiry and rejecting it if this prediction does not agree with what is observed. This
method identifies a correct program in the limit. To turn it into a reliable extrapolator, just
compute what the currently output hypothesis says will happen at the next stage (another
example of a paradigm reduction).

The only part of this procedure that is not computable is enumerating a collection of pro-
grams covering exactly the total computable functions. Since the prediction problem is com-
putably unsolvable, it follows immediately that no such program enumeration is computable. So
computable predictors fail on this problem “because” they cannot enumerate the right collection
of hypotheses.7

The computable function identification paradigm poses the closely related problem of identi-
fying in the limit a computer program correctly predicting each position in the data stream. The
preceding hypothetico-deductive method noncomputably identifies the computable data streams
in this sense, but in a seminal paper, the computer scientist E. M. Gold (1965) showed that
the problem is not computably solvable. The computable demonic construction employed in
the proof of this result is more subtle than in the extrapolation case, because it is a nontrivial
matter for a computable demon to figure out what the computable learner’s current hypothesis
predicts the next datum to be. For all the demon knows, the prediction may be undefined (i.e.,
the hypothesis may go into an infinite loop).

The demon proceeds in stages as follows:8 At a given stage, some data points have already
been presented to the learner. The demon employs a fixed, computable enumeration of all the

6Putnam’s actual argument was more complicated.
7Putnam concluded that a scientific method should always be equipped with an extra input slot into which

hypotheses that occur to us during the course of inquiry can be inserted. But such an “open minded” method
must hope that the external hypothesis source (e.g., “creative intuition”) does not suggest any programs that
go into infinite loops, since the inability to distinguish such programs from “good” ones is what restricted the
reliability of computable predictors to begin with!

8This construction (Case and Smith 1983) is a bit stronger than Gold’s. It produces a data stream on which
infinitely many outputs of the learner are wrong. Gold’s construction merely forces the learner to vacillate forever
(possibly among correct conjectures).
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ordered pairs of natural numbers. He then seeks the first pair (i, j) in the enumeration such that
after reading the current data followed by i zeros, the learner outputs a program that halts in j
steps of computation with a prediction of zero for the next datum. If the search terminates with
some such pair (i, j), then the demon adds i zeros to the data presented so far, and then presents
a one (falsifying the hypothesis output by the learner after seeing the last zero). Otherwise, the
demon continues searching forever and never proceeds to the next stage.

Suppose the demon’s construction runs through infinitely many stages. Then the search
for a pair always terminates, so the resulting data stream falsifies the learner’s conjecture in-
finitely often. The data stream is computable because it is produced by the interaction of two
computable strategies. Suppose, then, that the demon’s construction eventually gets stuck at
a given stage. Then the demon’s search for a pair fails. So on the data stream consisting of
the data presented so far followed by all zeros, the learner never produces a hypothesis that
correctly predicts the next zero. This data stream is also computable: use a finite lookup table
to handle the data presented so far and output zero thereafter. So in either case, the demon
never identifies a correct program along some relevantly possible data stream.

Since the demon makes the learner’s conjecture false infinitely often, his strategy wins even
if we weaken the criterion of success to unstable identification in the limit, according to which
the learner must eventually output only true hypotheses but need not stabilize to a particular
hypothesis.9

Each total computer program is computably refutable with certainty (compute its successive
predictions and compare them to the data), so we now know that computable refutability with
certainty reduces neither computable extrapolation nor computable limiting identification. Does
computable identification in the limit reduce computable extrapolation? One might suppose so:
just compute the prediction of the limiting identifier’s current conjecture, which must eventually
be right since the identifier’s conjectures are eventually correct. But although the limiting iden-
tifier eventually produces programs without infinite loops, nothing prevents it from producing
defective programs in the short run. If a computer attempts to derive predictions from these
conjectures in the manner just described, it may get caught in an infinite loop and hang for
eternity.

Blum and Blum (1975) constructed a learning problem that is computably identifiable in
the limit but not computably extrapolable for just this reason. Consider a problem in which an
unknown Turing machine without infinite loops is hidden in a box and the successive data are
the (finite) runtimes of this program on successive inputs. The learner’s job is to guess some
computer program whose runtimes match the observed runtimes for each input (a task sugges-
tive of fitting a computational model to psychological reaction time data). In this problem,
every program is computably refutable with certainty: simulate it and see if it halts precisely
when the data say it should. Infinite loops are no problem, for one will observe in finite time
that the program doesn’t halt when it should have. Since the set of all programs is computably
enumerable (we needn’t restrict the enumeration to total programs this time), a computable im-
plementation of the hypothetico-deductive strategy identifies a correct hypothesis in the limit.

9Cf. the preceding footnote. In the learning theoretic literature unstable identification is called BC iden-
tification for “behaviorally correct”, whereas stable identification is called EX identification for “explanatory”.
Osherson et. al. (1986) call stable identification “intensional” and unstable identification “extensional”.
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Nonetheless, computable extrapolation of runtimes is not possible. Let a computable extrapo-
lator be given. The demon is a procedure that wastes computational cycles in response to the
computable predictor’s last prediction. So at a given stage, the demonic program simulates the
learner’s program on the successive runtimes of the demonic program on earlier inputs. What-
ever the prediction is, the demon goes into a wasteful subroutine that uses at least one more
step of computation than the predictor expected.

Another question raised by the preceding discussion is whether stable identification is equiva-
lent to or harder than unstable identification for computable learners in the computable function
identification paradigm. This question is answered affirmatively by Case and Smith (1983). To
see why the answer might be positive, consider the function identification problem in which the
relevant possibilities are the “almost self-describing data streams”. A unit variant of a data
stream is a partial computable function that is just like the data stream except that it may
disagree or be undefined in at most one position. A data stream is almost self-describing just in
case it is a unit variant of the function computed by the the program whose index (according to
a fixed, effective encoding of Turing programs into natural numbers) occurs in the data stream’s
first position. In other words, an “almost self-describing” data stream “gives away” a nearly cor-
rect hypothesis, but it doesn’t say where the possible mismatch might be. An unstable learner
can succeed by continually patching the “given away” program with ever larger lookup tables
specifying what has been seen so far, since eventually the lookup table corrects the mistake in
the “given away” program. But a stable learner would have to know when to stop patching, and
this information was not given away.

In the problem just described, it is trivial to stably identify an almost correct program (just
output the first datum) whereas no computable learner can stably identify an exactly correct
program. Indeed, for each finite number of allowed errors there is a learning problem that is
computably solvable under that error allowance but not with one fewer error (Case and Smith
83). This result, known as the anomaly hierarchy theorem, can be established by means of
functions that are self-describing up to n possible errors.

There are many more sophisticated results of the kind just presented, all of which share the
following points in common. (1) Uncomputability is taken just as seriously as the problem of
induction from the very outset of the analysis. This is different from the approach of traditional
epistemology, in which idealized logics of justification are proposed and passed along to experts
in computation for advice on how to satisfy them (e.g., Levi 1991). (2) When computability
is taken seriously, the halting problem (the formal problem of determining whether a computer
program is in an infinite loop on a given input) is very similar to the classical problem of
induction: for as soon as one is sure that a computation will never end, it might, for all the
simulator knows a priori, halt at the next stage. (3) Thus, computable learners fail when ideal
ones succeed because computable solvability requires the learner to solve an internalized problem
of induction (Kelly and Schulte 1997).

4 SOME OTHER PARADIGMS

E. M. Gold’s language learnability paradigm (1967) was intended to model child language ac-
quition. In this setting, a language is just a computably enumerable set and a hypothesis is a
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code number (index) of a procedure that accepts all and only the members of the set.10 Differ-
ent kinds of relevantly possible environments are considered. An informant for a language is an
enumeration of all possible strings labelled as positive or negative examples of the language. A
text for a language is an enumeration of the elements of the language, and hence provides only
positive information about membership.

Gold showed a number of results that attracted wide attention from cognitive scientists. The
results for informant are similar to those for computable function identification. For example,
(1) the obvious hypothetico-deductive method (non-computably) identifies all languages and (2)
even the set of all computably decidable languages is not computably identifiable in the limit
(the proof is similar to the one showing that the total computable functions are not identifiable
in the limit). But the results for text are much weaker. For example, no collection of languages
containing one infinite language and all finite subsets of that language is identifiable in the limit,
even by non-computable learners.11 Since children seem to learn language with few negative
examples or corrections (Brown and Hanlon 1970), there have been attempts to obtain stronger
positive results. For example, Wexler and Culicover (1980) modelled the environment as a
presentation of context-utterance pairs, exchanging language learning from positive examples
for the easier problem of computable function identification. Many other variations of the
language learnability paradigm have been examined.12

The special difficulty with learning from text is “over-generalization”, or leaping to a language
that properly extends the actual language, for then no further data will correct the error. If
there is no way to avoid positioning a language prior to one of its proper subsets (e.g., an infinite
language must occur prior to all but finitely many of its finite subsets), hypothetico-deductivism
must fail, since it will converge to the large language when one of its subsets is true. What
is required is a way to use evidence to avoid overgeneralizing. This can be accomplished if (†)
each possible language has a finite, characteristic sample such that once that sample is seen,
the language can be produced without risk of overgeneralization. Then one may proceed by
enumerating the relevantly possible grammars and conjecturing the first in the enumeration
that is consistent with the data and whose characteristic sample has been observed. If no
such grammar exists, stick with the preceding conjecture. Condition (†) is both necessary and
sufficient for a collection of languages to be identifiable in the limit from text (Angluin 1980,
Osherson et. al. 1996), providing our first example of a learning theoretic characterization
theorem. Computable identification from text is characterized by the existence of a procedure
that enumerates the characteristic sample for a language when provided with the index of a
formal verification program for that language.

The logical paradigm (Shapiro 1981, Osherson and Weinstein 1986, 1989, Kelly and Glymour
1989, 1990), situates learning theoretic ideas in a more traditional epsistemological setting. In
this paradigm, there is a first-order language in which to frame hypotheses and the underlying
world is a countable relational structure interpreting this language. An environment consists of
such a structure together with a variable assignment onto the domain of the structure and an

10I.e., the procedure halts on members of the set (indicating acceptance) and not on any other inputs.
11The demon presents a text for the infinite language until the learner outputs a grammar for it, then keeps

repeating the preceding datum until the learner produces a grammar for the data presented so far, then starts
presenting the text from where he left off last, etc.

12A systematic compendium of results on language learnability is (Osherson et. al. 1986).
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enumeration of the set of all quantifier-free formulas true under that assignment.13 The relevant
possibilities are all the environments presenting models of some theory representing the learner’s
background knowledge.

An hypothesis assessment method tries to guess the truth value of a particular sentence
or theory in light of the increasing information provided by the environment, and successful
assessment can be interpreted in any of the senses introduced above. So for example, the dense
order postulate (each pair of points has a point between them) is refutable but not verifiable in
the limit given as background the theory of total orders with endpoints (Osherson and Weinstein
1989).

The characterization theorem for this paradigm explains the grain of truth in the posi-
tivist’s program of linking “cognitive significance” to logical form. An hypothesis is refutable
(respectively, verifiable) with certainty given background theory K just in case the hypothesis
is equivalent in K to a sentence in prenex normal form14 with a purely universal (respectively,
existential) quantifier prefix. Similarly, an hypothesis is refutable (respectively, verifiable) in the
limit given K just in case it is equivalent in K to a prenex sentence with a prefix of form ∀∃ (re-
spectively, ∃∀) (Osherson and Weinstein 1989, Kelly and Glymour 1990). As one might expect,
decision with certainty is possible just in case the hypothesis is equivalent to a quantifier-free
sentence in K and decision in the limit (and hence gradual decision) is possible just in case the
hypothesis is equivalent in K to a finite Boolean combination of purely universal and existential
sentences.

A discovery method outputs theories in response to the information provided. As the goal
of discovery, one can require that the method converge to the complete true theory in some
fragment of the language (e.g., the purely universal sentences). Uniform theory identification
requires that after some time the outputs of the method are true and entail the complete theory
of the required fragment. For example, the complete truth is uniformly identifiable in the limit
in a language with only unary predicates, but if there is a binary predicate or a unary predicate
and a function symbol in the language, then neither the the purely universal nor the purely
existential fragment of the complete truth is identifiable in the limit (Kelly and Glymour 1989,
Kelly 1996). Nonuniform or pointwise theory identification requires only that each true sentence
in the specified fragment is eventually always entailed by the scientist’s successive conjectures
and each false sentence is eventually never entailed. The theory of all true Boolean combinations
of universal and existential sentences is identifiable in the limit in this sense. Thus, nonuniform
theory identification provides a logical conception of scientific progress that, unlike Popper’s
“deductivist” epistemology, treats verifiable and refutable hypotheses symmetrically.

Nonuniform theory identification bears on another Popperian difficulty. Popper held that
hypothetico-deductivism leads us ever closer to the truth in the limit. David Miller (1974)
argued that “closeness” to the truth is not a semantic notion since it is not preserved under
translation. Thomas Mormann (1988) traced the difficulty to mathematics: translation is a
type of topological equivalence, but topological equivalence permits “stretching” and hence does
not preserve distance (e.g., verisimilitude). Nonuniform identification is a topological rather
than a metrical notion, and hence is preserved under translation, thereby avoiding Miller-style

13The “onto” assumption can be dropped if empirical adequacy rather than truth is the goal (Lauth 1993).
14I.e., the sentence has the form of a quantifier-free sentence preceded by a sequence of quantifiers.
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objections. Nonetheless it constitutes a nontrivial account of scientific progress toward the
complete truth that does not imply that any future theory produced by science will be literally
true.

5 RELIABILITY AND COMPLEXITY

Learnability is a matter of how the possible futures making different hypotheses correct branch
off from one another through time. The more complex the temporal entanglement of the futures
satisfying incompatible hypotheses, the more difficult learning will be. Learnability is governed
by the topological complexity of the possible hypotheses and computable learnability depends
on their computational complexity.15

Data streams can be topologized in an epistemologically relevant manner as follows. A fan
of data streams is the set of all data streams extending some finite data sequence, which we may
call the handle of the fan. A fan with a given handle is just the empirical proposition asserting
that the handle has occurred in the data. An empirical proposition is open just in case it is a
union of fans and is closed just in case its complement is open.16 Then we have the following
characterization: an empirical proposition is verifiable with certainty just in case it is open, is
refutable with certainty just in case it is closed, and is decidable with certainty just in case it is
both closed and open. For suppose that a hypothesis is open. To verify it with certainty, just
wait until the observed data sequence is the handle of a fan contained in the hypothesis and
halt inquiry with “true”. Conversely, if a given method verifies a hypothesis with certainty, the
hypothesis can be expressed as the union of all fans whose handles are finite data sequences on
which the method halts with “true”.

To characterize limiting and gradual success, topological generalizations of the open and
closed propositions are required. Call the open and closed propositions the Σ1 and Π1 proposi-
tions, respectively. For each n, the Σn+1 propositions are countable unions of Πn propositions
and the Πn+1 propositions are countable intersections of Σn propositions. At each level n,
a proposition is ∆n just in case it is both Πn and Σn. These are known as the finite Borel
complexity classes, which have been familiar in functional analysis since early in this century
(Hinman 1978). Then it can be shown that limiting verifiability, refutability, and decidability
are characterized by Σ2,Π2, and ∆2, respectively and that gradual verifiability, refutability, and
decidability are characterized by Π3,Σ3 and ∆2, respectively. It can also be shown that when
the hypotheses are mutually incompatible, stable identification in the limit is characterized by
each hypothesis being Σ2.17

In computable inquiry, attaching hypotheses to propositions is a nontrivial matter, so instead
of bounding the complexity of empirical propositions, we must consider the overall correctness

15The computational versions of these ideas are in (Gold 1965, Putnam 1965, Kugel 1977). The topological
space is introduced in (Osherson et. al. 1986) and the characterizations are developed in (Kelly 1992, 1996) A
logical versions of the characterizations are developed in (Osherson and Weinstein 1991) and (Kelly and Glymour
1990).

16These are, in fact, the open sets of an extensively studied topological space known as the Baire space (Hinman
1978).

17Necessity of the condition fails if the hypotheses are mutually compatible or if we drop the stability require-
ment.
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relation C(e, h) indicating that hypothesis h is correct in environment e. In computable function
identification, for example, correctness requires that h be the index of a computer program that
computes e. In language learning from text, h must be the index of a positive test procedure
for the range of e. By suitable coding conventions, language learning from informant and logical
learning can also modelled with correctness relations in the data stream paradigm. Computa-
tional analogs of the Borel complexity classes can be defined for correctness relations, in which
case analogous characterization theorems hold for computable inquiry (Kelly 1996).

The moral of this discussion is that the problem of induction, or empirical underdeterination,
comes in degrees corresponding to standard topological and computational complexity classes,
which determine the objective sense in which reliable inquiry is possible.

6 A FOOLISH CONSISTENCY

A consistent learner never produces an output that is incorrect of every relevantly possible data
stream extending the current data sequence. For non-computable learners, consistency makes
a great deal of sense: why should someone who aims to find the truth say what has to be
wrong? On the other hand, we have seen that formal relations can pose an “internal” problem
of induction for computable learners. Since we do not require omniscience on the empirical
side, why should we do so on the formal side when the underlying structure of the problem of
induction is the same on both sides?

This raises an interesting question. Could insistence on computationally achievable consis-
tency preclude computationally achievable empirical reliability? The answer is striking. One
can construct an empirical proposition with the following properties. (1) The proposition is
computably refutable with certainty. (2) Some computable, consistent method exists for the
proposition (the method that always says “false” suffices since the proposition is never verified).
But (3) No consistent, computable method of even a highly idealized, uncomputable kind18 can
even gradually decide the hypothesis. Thus, where traditional epistemology sees consistency as
a means for finding the truth sooner, enforcing achievable consistency may prevent computable
learners from finding truths they could otherwise have reliably found. So if the aim of inquiry is
to find the truth, inconsistency may be an epistemic obligation (rather than a merely forgivable
lapse) for computable agents. Such results exemplify the sharp difference in emphasis between
computational learning theory and traditional, justificationist epistemology.19

7 GAMBLING WITH SUCCESS

Suppose that each learning problem comes equipped with an assignment of probabilities to
empirical propositions. More precisely, suppose that the probability assignment is defined on
the set of all Borel propositions (i.e., the least set that contains all the open (Σ1) propositions
and that is closed under countable union and complementation). A probability assignment on
the Borel propositions is a function taking values in the unit interval that assigns unity to the

18i.e., hyperarithmetically definable
19(Osherson et. al. 1986) contains many restrictiveness results carrying a similar moral. Also, see (Osherson

and Weinstein 1988).
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vacuous proposition and that is finitely additive in the sense that the probability of a finite union
of mutually incompatible Borel propositions is the sum of the probabilities of the propositions the
union is taken over. Countable additivity extends finite additivity to countable, disjoint unions.
While Kolmogorov’s familiar mathematical theory of probability assumes countable additivity as
a postulate, limiting relative frequencies do not satisfy it and the usual foundations of Bayesian
probability theory do not entail it (e.g., DeFinetti 1990, Savage 1972).

Say that an hypothesis is gradually decidable with probability r just in case there exists
some empirical proposition of probability r over which the hypothesis is gradually decidable in
the usual sense, and similarly for the other assessment criteria. Probabilistic success can be
much easier to achieve than success in each relevant possibility. If the probability assignment is
countably additive, then, remarkably, every Borel hypothesis is (1) decidable in the limit with
unit probability and (2) decidable with certainty with arbitrarily high but non-unit probability.
(1) can be improved to the result that the method of updating the given probability measure
by conditionalization gradually decides the hypothesis with unit prior probability (e.g., Halmos
1970). This is a very general version of the familiar Bayesian claim that prior probabilities are
eventually “swamped” by the data.

Compared with the purely topological analysis of section 5, these probabilistic results seem
almost too good to be true, since Borel propositions can be infinitely more complex than ∆2

propositions (Hinman 1978). What accounts for the dramatic difference? Suppose we want to
decide the “zeros forever” hypothesis with a given, nonzero probability r. The negation of this
hypothesis is the countable, disjoint union of the hypotheses hi = “the first nonzero occurs at
position i”. So by countable additivity, the probability that the “zeros forever” hypothesis is
false is the sum of the probabilities of the propositions hi. Since the infinite sum converges to a
finite value, there is some position n such that the sum of the probabilities of hn, hn+1, . . . is less
than r. So our probability of failure is less than r if we halt with “true” at stage n if no nonzero
datum has been seen by position n and halt with “false” as soon as a nonzero datum is seen.
In other words, countable additivity asserts that when a high prior probability of successful
learning suffices, only finitely many of the demon’s opportunities to make the hypothesis false
matter.

Without countable additivity, it is possible that the probability that the hypothesis is false
exceeds the mass distributed over the hn, say by a value of r. Since this “residual” probability
mass is not distributed over the propositions hi, the learner never “gets past” it, so whenever
the learner halts inquiry with “true”, the probability that this conclusion was in error remains
at least as high as r. The residual probability reflects the demon’s inexhaustible opportunities
to falsify the hypothesis in the infinite future, providing a probabilistic model of Sextus’ de-
monic argument. In fact, both (1) and (2) can fail when countable additivity is dropped (Kelly
1996), highlighting the pivotal epistemological significance of this questionable and somewhat
“technical” looking assumption.

8 CONCEPT LEARNING AND THE PAC PARADIGM

In the Meno, Plato outlined what has come to be known as the concept learning paradigm, which
has captured the imagination of philosophers, psychologists, and artificial intelligence researchers
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ever since. A concept learning problem specifies a domain of examples described as vectors of
values (e.g., blue, five kilos) of a corresponding set of attributes (e.g., color, weight), together
with a set of possible target concepts, which are sets of examples. The learner is somehow
presented with examples labelled either as positive or as negative examples of the concept to
be learned, and the learner’s task is to converge in some specified sense to a correct definition.
In contemporary artificial intelligence and cognitive science, the “concepts” to be learned are
defined by neural networks, logic circuits, and finite state automata, but the underlying paradigm
would still be familiar to Socrates.

Socrates ridiculed students who proposed disjunctive concept definitions, which suggests that
he admitted only conjunctively definable concepts as relevant possibilities. Socrates’ solution
to the problem was to have the environment “give away” the answer in a mystical flash of
insight. But J. S. Mill’s (i.e., Francis Bacon’s) well-known inductive methods need no mystical
help to identify conjunctive concepts with certainty: the first conjecture is the first positive
example sampled. On each successive positive example in the sample, delete from the current
conjecture each conjunct that disagrees with the corresponding attribute value of the example
(the “method of difference”). On each successive negative example that agrees with the current
conjecture everywhere except on one attribute, underline the value of that attribute in the
current conjecture (the “method of similarity”). When all conjuncts in the current conjecture
are underlined, halt inquiry.

Boolean concepts are also identifiable with certainty over a finite set of attribute values: wait
for all possible examples to come in and then disjoin the positive ones. Bacon’s methods sound
plausible in the conjunctive case, but this “jerrymandering” procedure for learning Boolean con-
cepts sounds hopeless (it is, in fact, just what Socrates ridiculed). Yet both procedures identify
the truth with certainty since the set of examples is finite. The PAC (Probably Approximately
Correct) paradigm distinguishes such “small” problems in terms of tractable rather than merely
computable inquiry.20

In the PAC paradigm, examples are sampled with replacement from an urn in which the
probability of selecting an example is unknown. There is a collection of relevantly possible
concepts and also a collection of hypotheses specifying the possible forms in which the learner
is permitted to define a relevantly possible concept. Say that a hypothesis is ε-accurate just
in case the sampling probability that a single sampled individual is a counterexample is less
than ε. The learner is given a confidence parameter δ and an error parameter ε. From these
parameters, the learner specifies a sample size and upon inspecting the resulting sample, she
outputs a hypothesis. A learning strategy is probably approximately correct (PAC) just in case
for each probability distribution on the urn and for each ε, δ exceeding zero, the strategy has a
probability of at least 1− ε of producing an ε-accurate hypothesis.

It remains to specify what it means for a PAC learning strategy to be efficient. Computa-
tional complexity is usually analyzed in terms of asymptotic growth rate over an infinite sequence
of “similar” but “ever larger” examples of the problem. Tractability is understood as resource
consumption bounded almost everywhere by some polynomial function of problem size. The
size of a concept learning problem is determined by (1) the number of attributes (2) the size

20An excellent source presenting all of the results mentioned here is (Kearns and Vazirani 1994), which provides
detailed descriptions and bibliographic notes for all the results mentioned below.
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of the smallest definition of the target concept, (3) the reciprocal of the confidence parameter,
and (4) the reciprocal of the error parameter (higher accuracy and reliability requirements make
for a “bigger” inference problem). A data efficient PAC learner takes a sample in each problem
whose size is bounded by a polynomial in these four arguments.

There is an elegant combinatorial characterization of how large the sample required for PAC
learning should be. Say that a concept class shatters a set S of examples just in case each subset
of S is the intersection of S with some concept in the class. The Vapnik-Chervonenkis (VC)
dimension of the concept class is the cardinality of the largest set of instances shattered by the
class. There exists a fixed constant c such that if the VC dimension of the concept class is d, it
suffices for PAC learnability that a sample of size s be taken, where

s ≥ c

(
1
ε

log
1
δ

+
d

ε
log

1
ε

)
.

For example, the VC dimension of the conjunctive concepts over n Boolean attributes is 2n
(and in fact is just n if n > 1) so the problem is data-efficiently solvable by setting the sample
size according to the above formula and then using any method producing conjectures consistent
with the data (e.g., Bacon’s method of similarity). Calculating the VC dimension of the concepts
decidable by neural networks reveals that they are also data-efficiently learnable.

On the negative side, it can be shown that if the VC dimension of a concept class is d, then
on some concept and in some sampling distribution, a sample size of at least d/ε is required.
Since the VC dimension of the Boolean concepts over n Boolean attributes is 2n, exponentially
large samples will sometimes be required. Thus, any algorithm that takes a sample whose size
depends only on the problem and not the size of the (unknown) target concept itself will be
data-inefficient (since the sample size grows non-polynomially when concept size is held fixed at
the minimum value).

A computationally efficient PAC learner is a PAC learner whose runtime is bounded by a
polynomial of the sort described in the definition of data efficiency. Since scanning a sampled
instance takes time, computational efficiency implies data efficiency. Since Bacon’s method is
computationally trivial and requires small samples, it is a computationally efficient PAC learner.
This method can be generalized to efficiently PAC learn k-CNF concepts (i.e., conjunctions of
k-ary disjunctions of atomic or negated atomic sentences), for fixed k.

Sometimes computational difficulties arise entirely because it is hard for the learner to frame
her conjecture in the required hypothesis language. It is known, for example, that the k-
term DNF concepts (i.e., disjunctions of k purely conjunctive concepts) are not efficiently PAC
learnable using k-term DNF hypotheses (when k ≥ 2),21 whereas they are efficiently PAC
learnable using k-CNF hypotheses

For some time it was not known whether there exist efficiently solvable PAC problems that
are unsolvable neither due to sample-size compexity nor due to output representation. It turns
out (Kearns and Valiant 1994) that under a standard cryptographic hypothesis,22 the Boolean
concepts of length polynomial in the number of attributes have this property, as does the neural
network training problem.

21This negative result holds only under the familiar complexity-theoretic hypothesis that P 6= NP .
22I.e, that computing discrete cube roots is intractable even for random algorithms.
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An alternative way to obtain more refined results in a non-probabilistic context is to permit
the learner to ask questions. A membership oracle accepts an example from the learner and
returns “in” or “out” to indicate whether it is a positive or a negative example. A Socratic
oracle responds to an input conjecture with a counterexample, if there is one.23 One such result
is that Socratic and membership queries suffice for identification of finite state automata with
certainty in polynomial time (Angluin 1987).

9 LEARNING THEORY AND EPISTEMOLOGY

To coherentists, learning theory looks like a naive form of foundationalism, in which incorrigible
beliefs are the fulcrum driving inquiry to the truth. But foundationalists are also disappointed
because positive learning theoretic results depend on substantial, contingent assumptions such
as the nature of the signals from the environment, the structure of time, and the range of relevant
possibilities. Externalists would prefer to investigate our reliability directly, instead of taking a
mathematical detour into possible methods and problems. And contextualists will object to the
fixity of truth through time, ignoring the possibility of meaning shifts due to conceptual change.

But on a more careful examination, learning theory reinforces recent epistemological trends.
The search for incorrigible foundations for knowledge is no longer considered a serious option,
so the fact that reliability depends on contingent assumptions is hardly a penetrating objection.
Indeed, it can be shown by learning theoretic means that if some background knowledge is nec-
essary for reliability, this knowledge cannot be reliably assessed according to the same standard,
blocking any attempt at an entirely reliability-based foundationalism.

Externalist epistemologies sidestep the foundational demand that the conditions for relia-
bility be known by requiring only that we be reliable, without necessarily being aware of this
fact. Knowledge attributions are then empirical hypotheses that can be studied by ordinary
empirical means. But empirical science is not the same as behavioristic science. Mature empir-
ical investigations are always focused by general mathematical constraints on what is possible.
Accordingly, learning theoretic results constrain naturalistic epistemology by specifying how
reliable an arbitrary system, whether computable or otherwise, could possibly be in various
learning situations.

Externalism has encountered the objection (Lehrer 1990) that reliability is insufficient for
knowledge if one is not justified in believing that one is reliable (e.g., someone has a thermometer
implanted in her brain that suddenly begins to produce true beliefs about the local tempera-
ture). The intended point of such objections is that reliable belief-forming processes should
be embedded in a coherent belief system incorporating beliefs about the agent’s own situation
and reliability therein. Learning theory may then be viewed as defining the crucial relation of
methodological coherence between epistemic situations, ambitions, and means. Unlearnability
arguments isolate methodological incoherence and positive arguments suggest methods, back-
ground assumptions, or compromised ambitions which, if adopted, could bring a system of beliefs
into methodological coherence.

Incorporating learning theoretic structure into the concept of coherence addresses what some
coherentists take to be the chief objection to their position.

23In the learning theoretic literature, Socratic queries are referred to as “equivalence” queries.
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. . . [A]lthough any adequate epistemological theory must confront the task of bridging
the gap between justification and truth, the adoption of a nonstandard conception of
truth, such as a coherence theory of truth, will do no good unless that conception is
independently motivated. Therefore, it seems that a coherence theory of justification
has no acceptable way of establishing the essential connection with truth (Bonjour
1985): 110.

Whether a methodological principle guarantees or prevents reliable convergence to the truth is, of
course, the unshakable focus of learning theoretic analysis. Where coherence is at issue, one must
consider a multitude of possible interpretations of reliability and of one’s epistemic situation,
backing and filling until the analysis seems apt and fits with the rest of one’s beliefs. This
pluralistic attitude is reflected in the wide variety of success criteria, paradigms and problems
considered in the learning theoretic literature.

Contextualists may also find some value in learning theoretic results. The first moral of the
subject is that reliability is highly sensitive to the finest details of the data presentation, the
range of possible alternatives, the kinds of hypotheses or skills at issue, the learner’s cognitive
powers and resources, and the methodological principles to which she is committed. Reliable
methodology is unavoidably piece-meal, contextual methodology, optimized to the special fea-
tures of the problem at hand.

A remaining contextualist objection is that learning theory presupposes a fixed “conceptual
scheme” in which truth is a fixed target, whereas in light of conceptual revolutions, meaning
and hence truth changes as the beliefs of the learner change through time. This objection
does apply to the usual learning theoretic paradigms, but the concept of reliability is flexible
enough to accommodate it. If truth feints as inquiry lunges, then success can be defined as a
methodological fixed point in which the beliefs of the learner are eventually true with respect
to themselves (Kelly 1996, Kelly and Glymour 1992). Unlike norms of justification, which may
change through time, convergence to the relative truth provides a strategic aim that plausibly
survives successive changes in the underlying scientific tradition.
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