Reducing Belief Simpliciter to Degrees of Belief

Hannes Leitgeb

University of Bristol

June 2010
Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.
Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

- However, even scientists *do* seem to believe in the truth of certain propositions. And they do so without being *certain* of these propositions. (Which rules out: X is believed$_P$ iff $P(X) = 1$.)

One reason why the concept of belief simpliciter is so valuable is that it occupies a more elementary scale of measurement than the concept of quantitative belief does.
Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

- However, even scientists *do* seem to believe in the truth of certain propositions. And they do so without being *certain* of these propositions. (Which rules out: X is believed$_P$ iff $P(X) = 1$.)

- Also, when scientists believe two hypotheses A and B to be true, $A \land B$ *does* seem believable to be true for them (as all other of their logical consequences).

 (Which rules out the *Lockean thesis*: X is believed$_P$ iff $P(X) > r$.)
Rational belief comes in a qualitative version—belief \textit{simpliciter}—and in a quantitative one—\textit{degrees} of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

- However, even scientists \textit{do} seem to believe in the truth of certain propositions. And they do so without being \textit{certain} of these propositions. (Which rules out: \(X\) is believed\(_P\) iff \(P(X) = 1\).)

- Also, when scientists believe two hypotheses \(A\) and \(B\) to be true, \(A \land B\) \textit{does} seem believable to be true for them (as all other of their logical consequences).

 (Which rules out the \textit{Lockean thesis}: \(X\) is believed\(_P\) iff \(P(X) > r\).)

One reason why the concept of belief simpliciter is so valuable is that it occupies a \textit{more elementary} scale of measurement than the concept of quantitative belief does.
So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. *How exactly do they relate to each other?*
So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. *How exactly do they relate to each other?*

Plan of the talk:

1. Postulates on Quantitative/Qualitative Belief
2. The Representation Theorem and its Surprising Consequence
3. Applications and Extensions: A To-Do List for the Future
4. Solving a Problem

Postulates on Quantitative/Qualitative Belief

Let \mathcal{W} be a set of possible worlds, and let \mathfrak{A} be an algebra of subsets of \mathcal{W} (propositions) in which an agent is interested at a time.

We assume that \mathfrak{A} is closed under countable unions (σ-algebra).

P1 (Probability)

$P : \mathfrak{A} \rightarrow [0,1]$ is a probability measure on \mathfrak{A}.

$P(Y|X) = \frac{P(Y \cap X)}{P(X)}$, when $P(X) > 0$.

Read: $P(Y|X)$ is the degree of belief in Y on the supposition of X.

$P(Y) = P(Y|\mathcal{W})$ is the degree of belief in Y (unconditionally).

P2 (Countable Additivity)

If $X_1, X_2, \ldots, X_n, \ldots$ are pairwise disjoint members of \mathfrak{A}, then

$P(\bigcup_{n \in \mathbb{N}} X_n) = \sum_{n=1}^{\infty} P(X_n)$.
Let W be a set of possible worlds, and let \mathcal{A} be an algebra of subsets of W (propositions) in which an agent is interested at a time.

We assume that \mathcal{A} is closed under countable unions (σ-algebra).

Let P be an agent’s degree-of-belief function at the time.

P1 (Probability) $P : \mathcal{A} \rightarrow [0, 1]$ is a probability measure on \mathcal{A}.

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}$$, when $P(X) > 0$.

Read: $P(Y|X)$ is the degree of belief in Y on the supposition of X.

$P(Y) = P(Y|W)$ is the degree of belief in Y (unconditionally).
Postulates on Quantitative/Qualitative Belief

Let \(W \) be a set of possible worlds, and let \(\mathcal{A} \) be an algebra of subsets of \(W \) (propositions) in which an agent is interested at a time.

We assume that \(\mathcal{A} \) is closed under countable unions (\(\sigma \)-algebra).

Let \(P \) be an agent’s degree-of-belief function at the time.

P1 (Probability) \(P : \mathcal{A} \rightarrow [0, 1] \) is a probability measure on \(\mathcal{A} \).

\[
P(Y|X) = \frac{P(Y \cap X)}{P(X)}, \text{ when } P(X) > 0.
\]

Read: \(P(Y|X) \) is the *degree of belief in \(Y \) on the supposition of \(X \).*

\(P(Y) = P(Y|W) \) is the *degree of belief in \(Y \) (unconditionally).*
Let W be a set of possible worlds, and let \mathcal{A} be an algebra of subsets of W (propositions) in which an agent is interested at a time.

We assume that \mathcal{A} is closed under countable unions (σ-algebra).

Let P be an agent’s degree-of-belief function at the time.

P1 (Probability) $P : \mathcal{A} \rightarrow [0, 1]$ is a probability measure on \mathcal{A}.

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}$$

when $P(X) > 0$.

Read: $P(Y|X)$ is the degree of belief in Y on the supposition of X.

$P(Y) = P(Y|W)$ is the degree of belief in Y (unconditionally).

P2 (Countable Additivity) If $X_1, X_2, \ldots, X_n, \ldots$ are pairwise disjoint members of \mathcal{A}, then

$$P(\bigcup_{n \in \mathbb{N}} X_n) = \sum_{n=1}^{\infty} P(X_n).$$
Accordingly, let Bel express an agent's conditional beliefs.

Read: $\text{Bel}(Y|X)$ iff the agent has a belief in Y on the supposition of X.
$\text{Bel}(Y)$ iff $\text{Bel}(Y|W)$ iff the agent believes Y (unconditionally).
Accordingly, let Bel express an agent's conditional beliefs.

Read: $Bel(Y|X)$ iff the agent has a belief in Y on the supposition of X. $Bel(Y)$ iff $Bel(Y|W)$ iff the agent believes Y (unconditionally).

B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then $Bel(X|X)$.
Accordingly, let Bel express an agent's conditional beliefs.

Read: $Bel(Y|X)$ iff the agent has a belief in Y on the supposition of X. $Bel(Y)$ iff $Bel(Y|W)$ iff the agent believes Y (unconditionally).

B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then $Bel(X|X)$.

B2 (One Premise Logical Closure) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in A$: If $Bel(Y|X)$ and $Y \subseteq Z$, then $Bel(Z|X)$.
Accordingly, let Bel express an agent’s conditional beliefs.

Read: $\text{Bel}(Y | X)$ iff the agent has a belief in Y on the supposition of X.
$\text{Bel}(Y)$ iff $\text{Bel}(Y | W)$ iff the agent believes Y (unconditionally).

B1 (Reflexivity) If $\neg \text{Bel}(\neg X | W)$, then $\text{Bel}(X | X)$.

B2 (One Premise Logical Closure) If $\neg \text{Bel}(\neg X | W)$, then for all $Y, Z \in \mathbb{A}$:
If $\text{Bel}(Y | X)$ and $Y \subseteq Z$, then $\text{Bel}(Z | X)$.

B3 (Finite Conjunction) If $\neg \text{Bel}(\neg X | W)$, then for all $Y, Z \in \mathbb{A}$:
If $\text{Bel}(Y | X)$ and $\text{Bel}(Z | X)$, then $\text{Bel}(Y \cap Z | X)$.

B4 (General Conjunction) If $\neg \text{Bel}(\neg X | W)$, then for $\mathcal{Y} = \{ Y \in \mathbb{A} | \text{Bel}(Y | X) \}$,
$\bigcap \mathcal{Y}$ is a member of \mathbb{A}, and $\text{Bel}(\bigcap \mathcal{Y} | X)$.

Accordingly, let Bel express an agent's conditional beliefs.

Read: $Bel(Y|X)$ iff the agent has a belief in Y on the supposition of X.

$Bel(Y)$ iff $Bel(Y|W)$ iff the agent believes Y (unconditionally).

B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then $Bel(X|X)$.

B2 (One Premise Logical Closure) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathbb{A}$:

If $Bel(Y|X)$ and $Y \subseteq Z$, then $Bel(Z|X)$.

B3 (Finite Conjunction) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathbb{A}$:

If $Bel(Y|X)$ and $Bel(Z|X)$, then $Bel(Y \cap Z|X)$.

B4 (General Conjunction) If $\neg Bel(\neg X|W)$, then for $\mathcal{Y} = \{ Y \in \mathbb{A} | Bel(Y|X) \}$, $\bigcap \mathcal{Y}$ is a member of \mathbb{A}, and $Bel(\bigcap \mathcal{Y}|X)$.

B5 (Consistency) $\neg Bel(\emptyset|W)$.

Accordingly, let Bel express an agent’s conditional beliefs.

Read: $\text{Bel}(Y|X)$ iff the agent has a belief in Y on the supposition of X. $\text{Bel}(Y)$ iff $\text{Bel}(Y|W)$ iff the agent believes Y (unconditionally).

B1 (Reflexivity) If $\neg \text{Bel}(\neg X|W)$, then $\text{Bel}(X|X)$.

B2 (One Premise Logical Closure) If $\neg \text{Bel}(\neg X|W)$, then for all $Y, Z \in \mathcal{A}$: If $\text{Bel}(Y|X)$ and $Y \subseteq Z$, then $\text{Bel}(Z|X)$.

B3 (Finite Conjunction) If $\neg \text{Bel}(\neg X|W)$, then for all $Y, Z \in \mathcal{A}$: If $\text{Bel}(Y|X)$ and $\text{Bel}(Z|X)$, then $\text{Bel}(Y \cap Z|X)$.

B4 (General Conjunction) If $\neg \text{Bel}(\neg X|W)$, then for $\mathcal{Y} = \{ Y \in \mathcal{A} | \text{Bel}(Y|X) \}$, $\bigcap \mathcal{Y}$ is a member of \mathcal{A}, and $\text{Bel}(\bigcap \mathcal{Y}|X)$.

B5 (Consistency) $\neg \text{Bel}(\emptyset|W)$.

It follows: For every $X \in \mathcal{A}$ that is consistent with the agent’s beliefs there is a strongest proposition B_X, such that $\text{Bel}(Y|X)$ iff $Y \supseteq B_X$.

In particular, the agent believes Y iff $Y \supseteq B_W$.
B6 (Expansion) For all \(Y \in \mathcal{A} \) such that \(Y \cap B_W \neq \emptyset \): \(B_Y = Y \cap B_W \).

This postulate is contained in the qualitative theory of belief revision (AGM 1985, Gärdenfors 1988).
Finally, we make quantitative and qualitative belief compatible with each other:

Let $0 \leq r < 1$:

\textbf{BP1'} \, (\textbf{Likeliness}) \, \text{For all } Y \in \mathcal{A} \text{ such that } Y \cap B_W \neq \emptyset \text{ and } P(Y) > 0:\n
\text{For all } Z \in \mathcal{A}, \text{ if } Bel(Z|Y), \text{ then } P(Z|Y) > r.\n
(For $r \geq \frac{1}{2}$, this is one direction of the Lockean thesis; cf. Foley 1993.)
Finally, we make quantitative and qualitative belief compatible with each other:

Let $0 \leq r < 1$:

BP1' (Likeliness) For all $Y \in \mathcal{A}$ such that $Y \cap B_W \neq \emptyset$ and $P(Y) > 0$:

For all $Z \in \mathcal{A}$, if $\text{Bel}(Z|Y)$, then $P(Z|Y) > r$.

(For $r \geq \frac{1}{2}$, this is one direction of the Lockean thesis; cf. Foley 1993.)

It is possible to prove a representation theorem for pairs $\langle P, \text{Bel} \rangle$ that satisfy our postulates so far. It employs just one purely probabilistic concept:
Finally, we make quantitative and qualitative belief compatible with each other:

Let $0 \leq r < 1$:

BP1 (Likeliness) For all $Y \in \mathcal{A}$ such that $Y \cap B_W \neq \emptyset$ and $P(Y) > 0$:

For all $Z \in \mathcal{A}$, if $\text{Bel}(Z|Y)$, then $P(Z|Y) > r$.

(For $r \geq \frac{1}{2}$, this is one direction of the Lockean thesis; cf. Foley 1993.)

It is possible to prove a representation theorem for pairs $\langle P, \text{Bel} \rangle$ that satisfy our postulates so far. It employs just one purely probabilistic concept:

Definition

(P-Stability) For all $X \in \mathcal{A}$:

X is P-stable iff for all $Y \in \mathcal{A}$ with $Y \cap X \neq \emptyset$ and $P(Y) > 0$: $P(X|Y) > r$.

So P-stable propositions have stably high probabilities under salient suppositions. (Examples: All X with $P(X) = 1$; $X = \emptyset$; and many more!)
The Representation Theorem and its Surprising Consequence

Theorem

Let Bel be a class of ordered pairs of members of a σ-algebra \mathcal{A}, and let $P : \mathcal{A} \rightarrow [0, 1]$. Then the following two statements are equivalent:

I. P and Bel satisfy P1, B1–B6, and BP1r.

II. P satisfies P1, and there is a (uniquely determined) $X \in \mathcal{A}$, such that X is a non-empty P-stable proposition, and:

 - For all $Y \in \mathcal{A}$ such that $Y \cap X \neq \emptyset$, for all $Z \in \mathcal{A}$:

 $$\text{Bel}(Z | Y) \text{ if and only if } Z \supseteq Y \cap X$$

 (and hence, $B_W = X$).

This neither presupposes P2 nor $r \geq \frac{1}{2}$.
With P2 and \(r \geq \frac{1}{2} \) one can prove: The class of \(P \)-stable\(^r \) propositions \(X \) in \(\mathcal{U} \) with \(P(X) < 1 \) is *well-ordered* with respect to the subset relation.
With $P2$ and $r \geq \frac{1}{2}$ one can prove: The class of P-stable propositions X in \mathcal{A} with $P(X) < 1$ is well-ordered with respect to the subset relation.

This implies: If there is a non-empty P-stable X in \mathcal{A} with $P(X) < 1$ at all, then there is also a least such X.
With \(P2 \) and \(r \geq \frac{1}{2} \) one can prove: The class of \(P \)-stable propositions \(X \) in \(\mathcal{A} \) with \(P(X) < 1 \) is \textit{well-ordered} with respect to the subset relation.

This implies: If there is a non-empty \(P \)-stable \(X \) in \(\mathcal{A} \) with \(P(X) < 1 \) at all, then there is also a \textit{least} such \(X \).

The next postulate entails, amongst others, that there is a least \(X \) s.t. \(P(X) = 1 \):
With P2 and \(r \geq \frac{1}{2} \) one can prove: The class of \(P \)-stable\(^r \) propositions \(X \) in \(\mathcal{A} \) with \(P(X) < 1 \) is \textit{well-ordered} with respect to the subset relation.

This implies: If there is a non-empty \(P \)-stable\(^r \) \(X \) in \(\mathcal{A} \) with \(P(X) < 1 \) at all, then there is also a \textit{least} such \(X \).

The next postulate entails, amongst others, that there is a least \(X \) s.t. \(P(X) = 1 \):

\(B \)P2 (Zero Supposition) For all \(Y \in \mathcal{A} \): If \(P(Y) = 0 \) and \(Y \cap B_W \neq \varnothing \), then \(B_Y = \varnothing \).
Finally, we postulate:

BP3 (Maximality)

Among all classes Bel' of ordered pairs of members of \mathcal{A}, such that P and Bel' jointly satisfy P1–P2, B1–B6, BP1'$, BP2 (with ‘$Bel'$’ replacing ‘$Bel$’), the class Bel is the largest with respect to the class of beliefs.

For then Bel approximates the other direction of the Lockean thesis to the maximal possible extent.
Finally, we postulate:

BP3 (Maximality)

Among all classes Bel' of ordered pairs of members of \mathcal{A}, such that P and Bel' jointly satisfy P1–P2, B1–B6, BP1′, BP2 (with ‘Bel’ replacing ‘Bel'’), the class Bel is the *largest* with respect to the class of beliefs.

For then Bel approximates the other direction of the Lockean thesis to the maximal possible extent.

But now $Bel = Bel_P'$ can actually be *defined explicitly* in terms of P and $r \geq \frac{1}{2}$:

Definition

Let $P : \mathcal{A} \rightarrow [0, 1]$ be a countably additive probability measure on a σ-algebra \mathcal{A}, such that there exists a least set of probability 1 in \mathcal{A}. Let X_{least} be the least non-empty P-stable proposition in \mathcal{A} (which exists).

Then we say for all $Y \in \mathcal{A}$ and $\frac{1}{2} \leq r < 1$:

$Bel_P'(Y)$ (i.e., Y is believed to a cautiousness degree of r as given by P) iff $Y \supseteq X_{\text{least}}$.
One can prove that a similar result holds even when all postulates are generalized to *suppositions that may contradict an agent’s current beliefs*.

That is: Take P1 and P2, add *full* AGM belief revision, make them compatible as before, and voilà: *full* conditional belief is definable explicitly in terms of P!
One can prove that a similar result holds even when all postulates are generalized to *suppositions that may contradict an agent’s current beliefs*.

That is: Take P1 and P2, add *full* AGM belief revision, make them compatible as before, and voilà: *full* conditional belief is definable explicitly in terms of P!

Semantically, this means that every P determines a *sphere system* of worlds:
One can prove that a similar result holds even when all postulates are generalized to *suppositions that may contradict an agent’s current beliefs*.

That is: Take P1 and P2, add *full* AGM belief revision, make them compatible as before, and voilà: *full* conditional belief is definable explicitly in terms of P!

Semantically, this means that every P determines a *sphere system* of worlds:

And almost all P over finite W have a least P-stable set X_{least} with $P(X_{\text{least}}) < 1$!
Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable set with $r \geq \frac{1}{2}$; so only W is to be believed then.
Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable set with $r \geq \frac{1}{2}$; so only W is to be believed then.

Preface Paradox: What one cannot have (with $X_i \approx \text{‘page } i \text{ is error-free’}$):

$$\text{Bel}(X_1), \ldots, \text{Bel}(X_n), \text{Bel}(\neg X_1 \lor \ldots \lor \neg X_n).$$

What one can have is a different version of Fallibilism:

$$\text{Bel}(X_1), \ldots, \text{Bel}(X_n), P(\neg X_1 \lor \ldots \lor \neg X_n) > 0.$$
Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable set with $r \geq \frac{1}{2}$; so only W is to be believed then.

Preface Paradox: What one cannot have (with $X_i \approx \text{‘page } i \text{ is error-free’}$):

$$\text{Bel}(X_1), \ldots, \text{Bel}(X_n), \text{Bel}(\neg X_1 \lor \ldots \lor \neg X_n).$$

What one can have is a different version of Fallibilism:

$$\text{Bel}(X_1), \ldots, \text{Bel}(X_n), P(\neg X_1 \lor \ldots \lor \neg X_n) > 0.$$

Conditionalization on Zero Sets:

P^*, with $P^*(Y|X) = P(Y|B_X)$, determines a Popper function.

John Dorling’s (1979) “Duhemian” Example:

E': Observational result for the secular acceleration of the moon.
T: Relevant part of Newtonian mechanics.
H: Auxiliary hypothesis that tidal friction is negligible.

$P(T|E') = 0.8976$, $P(H|E') = 0.003$.
while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

\[Bel_P(T|E'), Bel_P(\neg H|E') \text{ (with } r = \frac{3}{4}). \]
while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

... scientists always conducted their serious scientific debates in terms of finite qualitative subjective probability assignments to scientific hypotheses (Dorling 1979).

$$Bel_P^r(T|E'), Bel_P^r(\neg H|E')$$ (with $$r = \frac{3}{4}$$).
Conditionalization and Qualitative Belief:

- **Standard conditionalization:** If $\text{Bel}_P(H|E)$, then $\text{Bel}'_{P(E)}(H)$.

- **Jeffrey conditionalization:**
 $$P'(H) = P(H|E) \cdot P'(E) + P(H|\neg E) \cdot P'(\neg E).$$

But for what value $0 < P'(E) < 1$?

Simply let it be high enough so that $\text{Bel}'_{P(E)}(E) \neq H$.

Conditionalization and Qualitative Belief:

- **Standard conditionalization:** If $\text{Bel}_P(H|E)$, then $\text{Bel}'_{P(H|E)}(H)$.

- **Jeffrey conditionalization:** $P'(H) = P(H|E) \cdot P'(E) + P(H|\neg E) \cdot P'(\neg E)$.

 But for what value $0 < P'(E) < 1$?
Conditionalization and Qualitative Belief:

- **Standard conditionalization:** If \(\text{Bel}_P(H|E) \), then \(\text{Bel}'_{P(E)}(H) \).

- **Jeffrey conditionalization:**
 \[
 P'(H) = P(H|E) \cdot P'(E) + P(H|\neg E) \cdot P'(-E).
 \]
 But for what value \(0 < P'(E) < 1 \)?

 Simply let it be high enough so that \(\text{Bel}'_{P(E)}(E) \)!
Indicative Conditionals:

If two people are arguing ‘If p will q?’ and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q... We can say that they are fixing their degrees of belief in q given p.

(Ramsey 1929)

But when is $X \rightarrow Y$ acceptable *simpliciter*?

$X \rightarrow Y$ is acceptable w.r.t. P, r iff $Bel_P'(Y|X)$.

\Box
Indicative Conditionals:

If two people are arguing ‘If p will q?’ and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q. . . . We can say that they are fixing their degrees of belief in q given p.

(Ramsey 1929)

But when is $X \rightarrow Y$ acceptable simpliciter?

$X \rightarrow Y$ is acceptable w.r.t. P, r iff $Bel^r_P(Y|X)$.

Let $X_1 \rightarrow Y_1, \ldots, X_n \rightarrow Y_n \therefore A \rightarrow B$ be valid iff for all $P, r \geq \frac{1}{2}$, if $X_1 \rightarrow Y_1, \ldots, X_n \rightarrow Y_n$ are acceptable w.r.t. P and r, so is $A \rightarrow B$.
Indicative Conditionals:

If two people are arguing ‘If p will q?’ and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q. . . We can say that they are fixing their degrees of belief in q given p.

(Ramsey 1929)

But when is \(X \rightarrow Y \) acceptable simpliciter?

\(X \rightarrow Y \) is acceptable w.r.t. \(P, r \) iff \(\text{Bel}_r(P)(Y|X) \).

Let \(X_1 \rightarrow Y_1, \ldots, X_n \rightarrow Y_n \vdash A \rightarrow B \) be valid iff for all \(P, r \geq \frac{1}{2} \), if \(X_1 \rightarrow Y_1, \ldots, X_n \rightarrow Y_n \) are acceptable w.r.t. \(P \) and \(r \), so is \(A \rightarrow B \).

The resulting logic is exactly E. Adams’ logic of conditionals! E.g.:

\[
\begin{align*}
\frac{X \rightarrow Y, X \rightarrow Z}{X \rightarrow (Y \land Z)} \quad \text{(And)} \\
\frac{(X \land Y) \rightarrow Z, X \rightarrow Y}{X \rightarrow Z} \quad \text{(Cautious Cut)} \\
\frac{X \rightarrow Z, Y \rightarrow Z}{(X \lor Y) \rightarrow Z} \quad \text{(Or)} \\
\frac{X \rightarrow Y, X \rightarrow Z}{(X \land Y) \rightarrow Z} \quad \text{(Cautious M.)}
\end{align*}
\]
Subjunctive Conditionals: For each world $w \in W$, let Ch_w be the chance measure of w (at a fixed time). Then it is plausible that Ch_w and ‘truth of $X \rightarrow Y$ at w’ taken together satisfy the analogues of our postulates.

The truth of $X \rightarrow Y$ at w thus entails $Ch_w(Y|X)$ being high, without $Ch_w(Y|X)$ having to be 1.
Subjunctive Conditionals: For each world \(w \in W \), let \(Ch_w \) be the chance measure of \(w \) (at a fixed time). Then it is plausible that \(Ch_w \) and ‘truth of \(X \rightarrow Y \) at \(w \)’ taken together satisfy the analogues of our postulates.

The truth of \(X \rightarrow Y \) at \(w \) thus entails \(Ch_w(Y|X) \) being high, without \(Ch_w(Y|X) \) having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the system V, and Hawthorne’s and Hájek’s recent probabilistic worries about the truth of ordinary counterfactuals are undermined.
Subjunctive Conditionals: For each world \(w \in W \), let \(Ch_w \) be the chance measure of \(w \) (at a fixed time). Then it is plausible that \(Ch_w \) and ‘truth of \(X \rightarrow Y \) at \(w \)’ taken together satisfy the analogues of our postulates.

The truth of \(X \rightarrow Y \) at \(w \) thus entails \(Ch_w(Y|X) \) being high, without \(Ch_w(Y|X) \) having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the system V, and Hawthorne’s and Hájek’s recent probabilistic worries about the truth of ordinary counterfactuals are undermined.

Furthermore, if \(P \) satisfies the Principal Principle, then

\[
Bel'_P(Y|X \land (X \rightarrow Y)).
\]
Subjunctive Conditionals: For each world \(w \in W \), let \(Ch_w \) be the chance measure of \(w \) (at a fixed time). Then it is plausible that \(Ch_w \) and ‘truth of \(X \rightarrow Y \) at \(w \)’ taken together satisfy the analogues of our postulates.

The truth of \(X \rightarrow Y \) at \(w \) thus entails \(Ch_w(Y|X) \) being high, without \(Ch_w(Y|X) \) having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the system V, and Hawthorne’s and Hájek’s recent probabilistic worries about the truth of ordinary counterfactuals are undermined.

Furthermore, if \(P \) satisfies the Principal Principle, then

\[
Bel'_P(Y|X \land (X \rightarrow Y)).
\]

More applications: Bayesian statistics, preference aggregation, vagueness, . . . ?

One promising future topic in these areas might thus be: A reunification of logical and probabilistic accounts of inductive reasoning in this or in other ways.
Solving a Problem

A challenge to the theory:

- Intuitively, Expansion/Revision can be problematic:

\[
\begin{align*}
\text{Bel}_P(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \; \neg \text{Bel}_P(\neg Y_i \mid X) \\
\text{Bel}_P(Y_i \mid Y_i \lor (X \land \neg (Y_1 \lor Y_2 \lor \ldots \lor Y_n)))
\end{align*}
\]
Solving a Problem

A challenge to the theory:

- Intuitively, Expansion/Revision can be problematic:

\[
\begin{align*}
\text{Bel}_P'(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \neg \text{Bel}_P'(-Y_i \mid X) \\
\text{Bel}_P'(Y_i \mid Y_i \lor (X \land \neg(Y_1 \lor Y_2 \lor \ldots \lor Y_n)))
\end{align*}
\]

- Lottery’s revenge: For the same reason, if both \(P \) and \(\text{Bel} \) represent the same large finite lottery, then \(P(B_W) \) must be very close to 1!
Solving a Problem

A challenge to the theory:

- Intuitively, Expansion/Revision can be problematic:

\[
Bel_P^r(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \neg Bel_P^r(\neg Y_i \mid X) \\
Bel_P^r(Y_i \mid Y_i \lor (X \land \neg (Y_1 \lor Y_2 \lor \ldots \lor Y_n)))
\]

- Lottery’s revenge: For the same reason, if both \(P \) and \(Bel \) represent the same large finite lottery, then \(P(B_W) \) must be very close to 1!

In both cases, the solution is to make qualitative belief relativized to \textit{partitions} (which are employed by Levi, Skyrms, \ldots anyway):

Possible: \(Bel_P^{r, \{Z_j\}}(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \neg Bel_P^{r, \{Z_j'\}}(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X) \)