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Margins and Iterations

§5.I KNOWING THAT ONE KNOWS

.. One can know something without being in a position to know that one
knows it. We reached that conclusion using the form of argument devel-
oped in the previous chapter, for by a gradual process one can gain or
- lose knowledge. Similarly, one can know that one knows something
. without being in a position to know that one knows that one knows it,
.for by a gradual process one can gain or lose knowledge that one
- knows. This chapter explores such limits to our ability to iterate knowl-
" edge. They stem from our need of margins for error in much of our
knowledge. Those limits make problems for common knowledge, in
which everyone knows that everyone knows that everyone knows
that . , .. Chapter 6 will apply the results to suggest a diagnosis of the
paradox of the Surprise Examination and related puzzles.

We first consider in some detail a variant argument against the Jomi-
nosity of the condition that one knows something. One can know with-
out being in a position to know that one knows.
~ Looking out of his window, Mr Magoo can see a tree some distance

off, He wonders how tall it is. Evidently, he cannot tell-to the nearest
“inch just by looking. His eyesight and ability to judge heights are noth-
ing like that good. Since he has no other source of relevant information
at the time, he does not know how tall the tree is to the nearest inch, For
‘no natural number i does he know that the tree is i inches tall, that is,
- more than i~o.5 and not more than i+o.5 inches tall. NevertheIess, by
) .lookmg he has gained some knowledge. He knows that the tree is not 6o
or 6,000 inches tall. In fact, the tree is 666 inches tall, but he does not
know that. For all he knows, it is 665 or 667 inches tall, For many natu-
“tal numbers i, he does not know that the tree is not 7 inches tall. More
. -precisely, for many natural numbers i h he does not know the proposition

: 'expressed by the result of replacing ‘#* in ‘The tree is not { inches tall’ by

" a numeral designating i. We are not concerned with knowledge of
propositions expressed by sentences in which 7 is designated by a defi-
nite description, such as ‘the height of the tree in inches’, for he may not
know which number fits the description.
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To know that the tree is i inches tall, Mr Magoo would have to judge
that it is 7 inches tall; but even if he so judges and in fact it is  inches tall,
he is merely guessing; for all he knows it is really i—1 or i+1 inches tall.
He does not know that it is not. Equally, if the tree is /—1 or i+1 inches
tall, he does not know that it is not i inches tall, Anyone who can tell by
looking that the tree is not i inches tall, when in fact it is i+ inches tall,
has much better eyesight and a much greater ability to judge heights
than Mr Magoo has, These reflections do not depend on the value of /.
For no natural number i is the tree i+x inches tall while he knows that it
is not i inches tall. In this story, Mr Magoo reflects on the limitations of
his eyesight and ability to judge heights. Mr Magoo knows the facts just
stated, Consequently, for each relevant natural number #

(r;} Mr Magoo knows that if the tree is #+1 inches tall, then he
does not know that the tree is not § inches tall.

We could make the case for (1;) even stronger by reducing the interval of
an inch to something much smaller, perhaps a millionth of an inch, but
that should not be necessary, To make the conditional “If the tree is i+1
inches tall, then he does not know that it is not # inches tall’ as uncon-
tentious as possible, we can read if’ as the truth-functional conditional,
the weakest of all conditionals, In effect, it merely denies the conjunc-
tion:“The tree is i+1 inches tall and he knows that it is not / inches tall’.

Suppose, for a reductio ad absurdum, that the condition that one
knows a proposition is luminous: if one knows it, then one is in a posi-
tion to know that one knows it. We may also assume that, in the case at
hand for each proposition p pertinent to the argument, Mr Magoo has
c,oqsu;lctcd whether he knows p. Consequently, if he is in a position to
knovy that he knows p, he does know that he knows p. Thus:

"(KKJ ‘For any pertinent proposition p, if Mr Magoo knows p then
« +° ‘he knows that he knows p.

Sratcment (KK) is a special case of the general ‘KK’ prmczple that if one
knows somethmg then one knows that one knows. it, but sufficiently
restricted to avoid many of the objections to the latter {for some of
which see Sorensen 1988: 242). For example, (KK) does not imply by
iterationithat if p is pertinent then Mr Magoo has every finite number of
lteratnons of knowlcd;,e of p, for it has not been granted that if p is per-
tmem then so too is the proposition that he knows p, The pertinent
proposxtmns are just those that occur in the argument below, which
form a strictly limited set. Statement (KK) is also immune to the objec-
t:oq tbat a simple creature without the concept kx#ows might still know,
bur wouid not know that it knew, for Mr Magoo has the concept knotws.
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We may legitimately assume that in the example Mr Magoo has been
it reflecting on the height of the tree and his knowledge of it so carefully
'~ that he has drawn all the pertinent conclusions about its height that fol-
i+ low deductively from what he knows; he has thereby come to know
1. those conclusions. Let us consider a time at which that process is com-
i plete, We can therefore assume:

# Q) If p and all members of the set X are pertinent propositions,
' is a logical consequence of X, and Mr Magoo knows each
member of X, then he knows p.

" Of course, (C) is not justified by some general closure principle about
knowledge We often fail to know consequences of what we know,
- ““because we do not know that they are consequences, Statement (C} is
_f simply a description of Mr Magoo’s state once he has attained reflective
" equilibrium over the propositions at issue, by completing his deduc-
. tions. Since Mr Magoo’s deductive capacities do not fully enable him to
" overcome the limitations of his eyesight and ability to judge heights, and
 he knows that they do not, (1;) remains true for all i,
" By (KK}, we can infer (3,) from {2):

(2} Mr Magoo knows that the tree is not / inches tall.

(33 Mr Magoo knows that he knows that the tree is not { inches
tall.

Now fet g be the proposition that the tree is i+1 inches tall, By (1), Mr

\4agoo knows g 2 ~(24); by (34, he knows {2,). Now, ~¢ is a logical con-
- sequence of g O ~(2;} and (2,). Consequently, by (C}, (1,) and (3) imply
i that Mr Magoo knows ~g: )

{2:,) Mr Magoo knows that the tree is not i+1 inches tall.

Consequently, from (KK), {C) and (2;) we can infer (2,.,). By repeating
"the argument for values of i from o to 66s, starting from (20) we reach
the conclusion {2¢¢):

{20y Mr Magoo knows that the tree is not o inches tall,
L {2666) Mr Magoo knows that the tree is not 666 inches tall,

.. Statement (24q6) is false, for the tree is 666 inches tall and knowledge is
. factive. Thus, given the premises (1o}, . + », (Iees)y {20}, (C), and (KK}, we
¢an deduce the false conclusion (2¢¢6). Therefore, at least one of (10}, .+
{14s5), (20}, (C), and (KK} is to be rejected. Premise (1) has already been
..defended for all 7, and {20} is obviously true. Consequently, either {C) or
“{KK) is to be rejected.
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Could we reject the assumption {C) that Mr Magoo’s knowledge of
the pertinent propositions is deductively closed? Assumption {C) is true
if deduction is a way of extending one’s knowledge: that is, if knowing
Pis + + o Py competently deducing g, and thereby coming to believe g is
in general a way of coming to know ¢. Call that principle intuitive clo-
sure..Since by hypothesis Mr Magoo satisfies the conditions for the
intuitive closure principle to apply, rejecting (C) is tantamount to reject-
ing intuitive closure. Robert Nozick’s counterfactual analysis of knowl-
edge is famously inconsistent with intuitive closure, but that is usually
taken as a reason for rejecting the analysis, not for rejecting closure,
Chapter 7 will provide arguments against counterfactual conditions on
knowledge even of quite a weak kind; a fortiori they are arguments
against Nozick’s analysis,

A different objection occasionally made to intuitive closure is that
even if one’s premises are individually probable enough to count as
known, one’s conclusion might not be, For a logical consequence of sev-
eral propositions may be less probable than each of them, If there arc a
million tickets in the lottery and only one wins, cach proposition of the
form *Ticket i does not win® has a probability of 0.999999, yet the con-
junction of all those propositions has a probability of o. But that objec-
tion misconceives the relation between probability and knowledge;
however unlikely one’s ticket was to win the lottery, one did not know
that it would not win, even if it did not (see also section 11.2). No prob-
abiligy short of 1 turns true belief into knowledge. Chapter 1o provides
a very different understanding of the connection between knowledge
and plobablllty, it does not threaten intuitive closure,

The appeal to probability is in any case unavailing, for the argument
can be reworked so that {C) is applied only to single-premise inferences;
if q is a logical consequence of p then ¢ is at least as probable as p. For
the conmderatnons that supported (1) also support:

{46 } Mr Magoo knows that {for all natural numbers m (if the tree
is m+1 inches tall then he does not know that it is not inch-
105 g tall) and (the tree is not o inches tall}).

Parentheses have been inserted to clarify scope. Now suppose, for some
given i .

(4) Mr Magoo knows that (for all natural numbers m (if the tree
_ : is m+1 inches tall then he does not know that it is not # inch-
l’ es tall) and {the tree is not { inches tall)).

By' (KK) we have:

RN
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- {57 Mr Magoo knows that he knows that (for all natural numbers
g m {if the tree is #1+1 inches tall then he does not know that it

i is not m inches tall} and (the tree is not / inches tall)},

“But Mr Magoo knows with certainty that if he knows a conjunction
then the first conjunct is true and he knows the second. Thus:

-t {6) Mr Magoo knows that (for all natural numbers m (if the tree
3 is m+1 inches tall then he does not know that it is not 7 inch-
es tall) and (he knows that the tree is not / inches tall)).

' But (C) for single-premise deductions applied to {6} gives:

{421} Mr Magoo knows that {for all natural numbers # (if the tree
3 is m+1 inches tall then he does not know that it is not m
RN inches tall) and {the tree is not i+1 inches tall)).

. ";,The inference from (4;) to {44.) is the required sorites step. If we iterate
. it for each i from o to 665, starting with {4o), we reach:

(46es) Mr Magoo knows that (for all natural numbers m (if the
tree is m+1 inches tall then he does not know that it is not m
inches tall) and (the tree is not 665 inches tall}).

. Statement {4ss6) is false, for the tree is 666 inches tall. Thus the problem
“does not depend on applying {C) to deductions with more than one
rernise,
"..; "We should in any case be very reluctant to reject intuitive closure, for
it s intuitive. If we reject it, in what circumstances can we gain knowl-
" edge by deduction? Moreover, the closely related anti-luminosity argu-
* ment in section 4.3 did not assume closure in any form, which suggests
*““that it is not the crucial premise.
' A different objection to the argument is that vagueness is somehow
*'tb blame. Section 4.5 discussed the same objection. Since the reasons for
" dismissing it are the same as before, they will not be repeated in detail
here. The crucial point is that the premises of the argument are not jus-
' tified by vagueness in ‘know’ but by limits on Mr Magoo’s eyesight and
~.’his knowledge of them, In checking that {1} remains true when ‘know’
“is sharpened, we must be careful because ‘know” occurs twice in (1),
*“which ascribes to Mr Magoo knowledge that he could express in the
*"words ‘If the tree is i+1 inches tall, then I do not know that the tree is
not i inches tall’. But if we sharpen ‘know’ by stipulating a high stan-
-, dard for its application, we make that conditional harder to falsify and
therefore easier to know, because the only occurrence of ‘know’ in the
sentence is negative, Since (1,) was clearly true prior to the sharpening, it
therefore remains true afterwards; we may legitimately assume that Mr
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Magoo has considered the sharpened sense of ‘know’. That will not
improve his eyesight, The argument does not rely on the vagueness of
‘know’.

Given (C) and (KK) as auxiliary premises, there is a valid argument
with otherwise true premises and a false conclusion, Premise (C) is
accepted, Therefore, (KK) is to be rejected. Mr Magoo knows some-
thing pertinent without knowing that he knows it, Since (KK} follows
from the assumption that the condition that one knows a proposition is
luminous and background assumptions about Mr Magoo, the luminos-
ity assumption is false. As in section 4.5, we can check that rejecting
luminosity really does meet the difficulty by constructing a formal
model of (C), (10}, .+, {1y . ., (20} and the negation of {2466) (Appendix
2 has more details),

Mr Magoo cannot identify the particular proposition for which (KK)
fails. In general, one cannot knowingly identify a particular counterex-
ample to the KK principle in the first person present tense. If 1 know
that I both know p and do not know that I know p, I must know the
first conjunct of that conjunction (since knowing a conjunction entails
knowing its conjuncts), that is, I must know that I know p, so the sec-
ond conjunct is false, so I do not know the conjunction after all (since
knowledge is factive); Chapter 12 discusses this kind of argument in
mor¢ depth. The point may help to explain the seductiveness of the KK
prmcane

The crucial features of the example are common 1o virtually all per-
cepgual knowledge. Thus the argument generalizes to show that our
knowledge is pervaded by failures of the KK principle. To the informed
obseryer, hearing glves some knowledge about loudness in decibels, and
touch ‘about heat in degrees centigrade. When I smell the milk [ have
some knowledge of the number of minutes since it was opened; when I
taste the tea I have some knowledge of how many grains of sugar were
plik i';i The point generalizes to knowledge from sources beyond present
perceptlon, such as memory and testimony. This is partly because they
pass; on inexact knowledge originally derived from past perception,
p'utfy because they add further ignorance themselves. How long was
my last walk in steps? How long was someone else’s walk, described to
me, as. ‘quite long’? In each case the possnble answers lic on a scale,
whlch can be divided so finely that if a given answer is in fact correct,
then one does not know that its neighbouring answers are not correct,
and one can know that one’s powers of discrimination have that limit.
The argument then proceeds as in the case of the distant tree.!

! The argument of section 5.1 is similar in form to the argument used by Nathan
Saimon {1982: 238—40, 1986, 1989) against the S4 principle Op O OO0p for metaphysical
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e
N §.2 FURTHER ITERATIONS
_ We can generalize the argument of section 5.1 to further iterations of
.knowledge. We define them inductively, One knows® p if and only if p is
. true. For any natural number k, one knows*! p if and only if one
knows* that one knows p, To know' p is to know p, to know? p is to
. know that one knows p, and so on. :

. Por any k, we can argue in parallel with section 5.1 that one can
"know* something without being in a position to know that one knows*
it For if we make suitably modified assumptions about the height and
. distance of the tree, Mr Magoo’s eyesight, his knowledge of its limita-
‘ tions, and his powers of reflection, we can construct a situation in

~which these modified assumptions are true for a given k and all /2
v (14 Mr Magoo knows* that if the tree is j+x inches tall, then he

does not know that the tree is not / inches tall.

{20%) Mr Magoo knows* that the tree is not o inches tall.

{C*) If p and all members of the set X are pertinent propositions,
p is a logical consequence of X, and Mr Magoo knows*
each member of X, then he knows* p.

< Now make these two assumptions, for a given number i
{24} Mr Magoo knows* that the tree is not 7 inches tall,

o :':‘__(KK‘:) For any proposition p, if Mt Magoo knows* p then he
< knows*! p.

""Since knowing*? is equivalent to knowing* that one knows, (2#) and
(KK*} entail:

"{3/) Mr Magoo knows* that he knows that the tree is not 7 inch-
es tall.

“Assumptions (1), {3/), and {C*) entail:
R
necessity. The form is valid; the question in each case is whether the premises are plavs-
ible. Williamson 1990a: 129 suggests that the plausibility of one of Salmon’s premises
_ comes from a source that generates sorites paradoxes; Salmon 1993 disagrees. It is hard
‘'to adjudicate disputes about whether intuitions have a common source, The structure of
- Salmon’s premise in itself does not commit him to a sorites paradox. On the other hand,
. if the validity of the S4 principle is built into our conception of unrestricted metaphysical
* possibility and necessity, those who find the major premises of sorites paradoxes plausi-
ble would also be fikely to find Salmon's premise plausible. The analogue of Salmon’s
“argument may be souucr for the restricted notions of possibility and necessity discussed in
section 5.3, which might also help to account for the plausible appearance of the premis-
es in Salmon’s original version,

].\
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{244*) Mr Magoo knows* that the tree is not i+1 inches tall.

Suppose that the tree is in fact # inches high. By repeated application of
the;argument from {2) to {2,,*), starting with 2(*), we reach:

1 .

(2,5} Mr Magoo knows* that the tree is not # inches tall,

Since knowledge® is as factive as knowledge, (2,%) is false. It was
deduced from the assumptions {1¢*), . . ., (Tui)s (26%), (C*), and (KK*).
By construction of the example, (1¢%), . + . (Tut*), (20*), and (C¥) are true;
therefore (KK*) is false. The replies to objections to the argument follow
the pattern of section 5.1, Thus one can know* something without being
in a position to know**! it, In other words, one can know* something
without being in a position to know that one knows* it.

By contrast, some other objections to the general KK thesis do not
threaten the corresponding generalization of (KK*) for k>1. For exam-
ple; a simple creature might know that it was snowing without knowing
that it knows that it was snowing because the latter, unlike the former,
requires it to have a concept of knowledge, which it lacks. But if k=2
and one knows* p, then one knows something concerning knowledge
and so has the concepts needed for knowing**' p,

Can we combine all finite iterations of knowledge? One knows® p if
and only if for every natural number & one knows* p. Can we mimic the
forégoing argument with o in place of k? The premises of the reductio
?‘,?*;f};‘??ﬂ.fdum are these:

1o Mr Magoo knowse that if the tree is i+1 inches tall, then he
‘ does not know that the tree is not ¢ inches tall.

(20"} Mr Magoo knows* that the tree is not o inches tall,

FILH{AS

!

Jud{Ce} If p and all members of the set X are pertinent propositions,
“yeone p s a logical consequence of X, and Mr Magoo knows®
~ert each member of X, then he knows® p.

(Q(K:) For any proposition p, if Mr Magoo knows® p then he
" knows® that he knows p.

VYT

Fot'some #, the false conclusion is this:
1o (24%) Mr Magoo knows® that the tree is not # inches tall.

Wemight conclude on the basis of (16°), . .« (11"} (26 and {C») that
MuMagoo is a counterexample to (KK“). But that is the wrong moral to
dralv from this example, for (KK») is a logical truth, If Mr Magoo
kndws" p, then for each natural number & he knows* p, which is to
know* that he knows p, so he knows® that he knows p. Thus {x°), . .
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1,49, (20%), and {C#} entail the false conclusion (2,) by themselves; one
-~ of them is false. Given a natural number k, we can construct an exam-
- ple in which (1f), . . ., (144%), and (26*) are true, by finite adjustments of
"“rthe original case, which are clearly possible. An infinite adjustment
- turns out to be impossible. That does not undermine the morals drawn
4 from the earlier versions of the argument. The crude point is that iterat-
" ing knowledge is hard, and each iteration adds a layer of difficuley.
" Knowledge® involves infinitely many layers of difficulty. Under some
-conditions, that amounts to impossibility. The next section develops
" ‘these remarks more systematically.
=" Knowledge” presents an interesting challenge to the generalized argu-
‘ment against luminosity in Chapter 3. Since it seems possible in princi-
ple to gain or lose knowledge”, one might expect the argument to show
that one can know® without being in a position to know that one
; knows®, But that conclusion is problematic. For if one knows* p, then
t one knows each member of the set containing the proposition that one
knows* p for each natural number k; thus one knows the premises of a
deductively valid argument to the conclusion that one knows® p; one is
therefore in some sense in a position to know that one knows” p, The
-condition that one knows® p seems to be luminous.
The argument might be challenged on the grounds that we are not in
a position to make inferences with infinitely many premises. Indeed,
~eyen when an inference has only finitely many premises, it is not obvi-
‘ous that we are always in a position to know that which follows deduc-
twcly from what we know. Only in a rather attenuated sense are we in a
‘pQSItIOH to know all the consequences of the axioms of Peano
.+, :Arithmetic, However, this response is not wholly satisfying, for the orig-
;mal argument against luminosity made no appeal to limits on powers of
.inference. If the condition that one knows® p is luminous in the attenu-
ated sense, why does the original argument not generalize to this case?
. Knowing® may fail the gradualness requirement. Although someone
. can gain or lose knowledge®, the change may necessarily be sudden.
After all, it is the change from finitely many iterations of knowledge to
infinitely many or vice versa; how could it be gradual? If knowing does
‘faif the gradualness requirement, it will be a hard state to enter or leave:
how is one to jump instantaneously from the finite to the infinite or
back again? The kind of common knowiedge that we are supposed to
have of conventions is usually defined in a way that requires us to
know‘“. For example, if John knows that Jane knows that John knows
“that Jane knows that John knows p, then John knows that John knows
that John knows p, if he is sufficiently reflective. Common knowledge
would therefore be a convenient idealization, like a frictioness plane,
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The convenience need not be confined to the theoretician, Perhaps some
everyday practices of communication and decision-making depend on a
pretence that we have common knowledge. That hardly comes as a sur-
prise, for infinitely many of the propositions involved in common
knowledge are too complex for humans to be psychologically capable
of éntertaining them, The present point is that the obstacles to enter-
taining them are not the only obstacles to knowing them.?

§.3 CLOSE POSSIBILITIES

A reliability condition on knowledge was implicit in the argument of
section 5.1 and explicit in sections 4.3 and 4.4, We have seen that such a
condition generates an obstacle to iterating knowledge. We can better
understand the nature of the obstacle by considering reliability in the
more general context of a family of related notions such as safety, sta-
bility, and robustness.

Imagine a ball at the bottom of a hole, and another balanced on the
tip of a cone. Both are in equilibrium, but the equilibrium is stable in the
former case, unstable in the latter, A slight breath of wind would blow
t!hg{;'sgcond ball off; the first ball is harder to shift. The second ball is in
dapger of falling; the first ball is safe. Although neither ball did in fact
fall, the second could easily have fallen; the first could not. The stable
equilibrium is robust; the unstable equilibrium, fragile.

Reliability and unreliability, stability and instability, safety and dan-
ger, Tobustness and fragility are modal states. They concern what could
easily have happened. They depend on what happens under small varia-
tions in the initial conditions. If determinism holds, it follows from the
initial conditions and the laws of nature that neither ball falls. But it
does not follow that both balls were in stable equilibrium, safe from
falling, for the initial conditions themselves could easily have been
slightly different. There is a danger in a given case that an event of type
E will occur {for example, that the ball will fall) if and only if in some
sufficiently similar case an event of type E does occur. The danger is
slight if E occurs in very few sufficiently similar cases, but that is not the
s:alg}.g‘i,(as a distant danger, which occurs only in insufficiently similar

e

. Fagin, Halpern, Moses, and Vardi 1995: 395422 discuss some weakenings of the
nétion of common knowledge, In general, forms of almost-common knowledge do not
imply almost the same behaviour as common knowledge itself, which raises difficult
probleins beyond the scope of this book. Shin and Williamson 1996 discuss common
bp}}gf in a context of inexact knowledge.
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~_ cases. The relevant similarity is in the initial conditions, not in the final
,  outcome (with the laws presumably held fixed). “Initial’ here refers to
““the time of the case, not to the beginning of the universe; I may be safe
~"once [ have caught the last flight out of the besieged city, even though I
©could easily have been a few minutes late and missed the flight, in which
- case | should now have been in danger. Safety and danger are highly
" "contingent and temporary matters, Just how similar the case must be to
- Tone in which an event of type E occurs for the term ‘danger’ to apply

to4i depends on the context in which the term is being used.’
1 Reliability resembles safety, stability, and robustness. These terms
i'can all be understood in several ways, of course. For present purposes,
- we are interested in a notion of reliability on which, in given circum-
‘stances, something happens reliably if and only if it is not in danger of
. not happening. That is, it happens reliably in a case o if and only if it
“+happens (reliably or not) in every case similar enough to «. In particular,
" one avoids false belief reliably in o if and only if one avoids false belief
““in every case similar enough to o, When the danger is a matter of
-+ degree, reliability involves a trade-off between the degree 1o which the
+ ~danger is realized and the closeness of the case in which it is realized, A
“'very high degree of realization in a not very close case and a lower
“degree of realization in a closer case both make for unreliability. The
argument of section 4.3 involved such a trade-off, the closeness of case
: Ot to case o, compensating for the slightly lower degree of belief in .1,
2. On a topological conception, a point x counts as safely in a region R
. -.i:f‘gind only if x is in the interior of R. If R is a region in a metric space
N defined by some real-valued measure of distance, x is in the interior of R
- +if and only if for at least one positive real number ¢, every point whose
- distance from x is less than ¢ belongs to R. More generally, x belongs to
. “the interior of R if and only if x belongs to some open subset of R. There
. is no difficulty in iterating safety on this conception, for the interior of
'+ “the interior of R is just the interior of R. Thus x is safely safely in R—
.that is, safely in the region that contains all and only the points that are
safely in R—if and only if x is safely in R. For if x is safely in R, then, for
_some non-zero distance ¢, every point less than ¢ from x is in R, so every
. point less than ¢f2 from a point less than ¢/2 from x is in R, so cvery
point less than c/z from x is safely in R, so x is safely safely in R, On a
'gprfesponding conception of stability, a ball balanced in an indentation
; on the tip of the cone is in stable equilibrium, no matter how small and

. shallow the indentation.

" For most practical purposes, the topological conception is not the

Y
., # See Sainsbury 1997 and Peacocke 1999: 310--28 for more discussion of the notion of

easy possibility. It is applied in Williamson 1994b: 226-30.
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otie we need. The indentation must be of a-certain size and depth for the
ball not to be blown off by prevalent light breezes. To be safe on the top
of a cliff, a young child must be at least three feet from the edge; it is not
enough to be some positive distance or other, no matter how small,
from the edge. Naturally, features of the context may contribute to fix-
ing the margin for something to count as ‘safe’; for example, the severi-
ty of the consequences if one succumbs. Suppose that in some context a
point is safely in a region if and only if every point less than three feet
away is in the region. Then a point can be safely in a region R without
being safely safely in R, for if the nearest point to % not in R is four feet
away, ¥ is safely in R but only two feet from a point two feet from a
point not in R, so x is two feet from a point not safely in R, so x is not
safely safely in R, The notion of what could easily happen behaves like
the dual of safety; ‘It could easily have been F’ is close to ‘It was not
safely not F. If it could easily have happened that an event of type E
could easily have happened, it does not follow that an event of type E
could easily have happened, For example, if exactly i humans were now
alive, then it would be the case that it could easily have happened that
exactly i+1 humans were now alive, but for some sufficiently large num-
ber £ it would not be the case that it could easily have happened that
exactly i+k humans were now alive. If the actual number is 4, then it
¢could casily have happened that it could easily have happened . . . [k
ti}l:l’l‘i;s:]' . . . that exactly i+k humans were alive now, but it could not eas-
ity haye happened that exactly i+k humans were alive now, Thus itera-
tions of ‘it could easily have happened that’ do not collapse.
;- the failures of knowledge to iterate observed in sections 5.1 and 5.2
are closely related to the failure of safety and reliability to iterate. One
can be safe without being safely safe. In particular, one can be safe from
error without being safely safe from error. One can be reliable without
lZ’i‘?-i-% reliably reliable. Since knowledge requires reliability, it is hardly
sgi;i)irising that one can know without knowing that one knows,
_Safety is hard to iterate. For each natural number &, we can define x
to be safely* in R if and only if x is safely safely .. . (k times] ... in R; x
is safely” in R if and only if x is safely* in R for every natural number &.
$§;i§pose that for some fixed non-zero distance ¢, a point is safely in a
r_de:gi_'ép if and only if every point less than ¢ from the poine is in the
r.g?'ggn. In n-dimensional Euclidean space, any two points are linked by
a finite sequence of intermediate points each less than ¢ from the next.
Thus, unless R is the whole space, no point is safely® in R, A luminous
condition resembles a region every point in which is safely in it; conse-
quently, every point in such a region is safely® in it, In this instance, the
o'rilx such regions of Euclidean space are the whole space and the null

Ll
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ik reglon Similarly, we might think of a formula A as luminous in a system
" s . of epistemic logic if and only if A D KA is a theorem, The analogous fea-
3 ture would then be that A D KA is a theorem only if either A is a theo-
fu rem (A corresponds to a region that is the whole space} or its negation
:is a theorem (A corresponds to the null region). Some natural systems
+.have that property (see Appendix 2z and Williamson 1992a).

; }:: If R is the complement in full Euclidean space of a non-null bounded
reglon (a sphere, for example}, then for every natural number & some
_points are safely* in R, even though no point is safely” in R, But if R

o 1tself is a bounded region, then for some natural number & no point is

. even safely* in R.
Euclidean space is not the only kind of space, of course. We should
‘-not assume without argument that the space of possibilities in which we
*“are interested has a Euclidean structure. In principle, it might consist of
“several disconnected regions. Every point in one of those regions might
“be safely in it; consequently, every point in the region is safely” in it, We

_also cannot assume that the required margin for safety ¢ is uniform

_ throughout the space. Prevailing winds may be stronger in some areas

* than in others. If they have a prevailing direction, one may be more eas-
ily blown from x to ¥ than from y to x. Suppose, for example, that the
closer one comes to a fixed pomt 2o the more conditions favour stabili-
ty We can :magme contexts in which the required margin for safety at

each point is its distance from zo. Thus, unless x is 2o itself, any pomt ¥
llS easily accessible from x if and only if y is closer to x than zo is; x is
safely in a region R if and only if every point easily accessible from x is
inR. If we fix a margm for safety at 2, too, every point has a margin for
safety But since 2o is accessible from no point other than itself, every
point in the region consisting of the whole space except for 2o is safely in
that region. Thus every point in that region is safely® in it. Formally,
quch examples model non-trivial luminous conditions. Chapter 4 indi-
éates that such a model would not be an accurate representation of

1knowledge
- Suppose that one is in a position to know only if one is safe from
b error in the relevant respect. We might try to deduce that, if a condition
C can obtain without safely obtaining, then C can obtain even if one is
not in a position to know that C obtalns, and therefore that C is not
luminous, The idea would be that one is in a position to know that C
obtams only if one is safe from error in believing that C obtains, which
requlres C to obtain safely, But that is too quick. To be safe from error
Lin, believing that C obtains is to be safe from falsely believing that C
obmms Thus in a case @ one is safe from error in believing that C
- obtams if and only if there is no case close to « in which one falsely
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believes that C obtains. But even if in o one believes that C obtains and
is safe from error in doing so, it does not follow that C obtains in every
case close to o, for there may be cases close to o in which C does not
obtain and one does not believe that it obtains. One can believe that C
obtains and be safe from error in doing so even if C does not safely
obtain, if whether one believes is sufficiently sensitive to whether C
obtains. For example, one may be safe from error in believing that the
child is not falling even though she is not safe from falling, if one isin a
good position to see her but not to help her.

~We need a further assumption to generate an argument against lumi-
nosity. If we combine the safety from error requirement on knowledge
with limited discrimination in the belief-forming process and some
plausible background assumptions, then we can deduce failures of lumi-
nosity. That is not intended to formalize the anti-luminosity argument
of ‘Chapter 4, which depends on applying reliability considerations in a
subtler way to degrees of confidence. The argument below models those
considerations under highly simplified assumptions, which permit us to
restrict our attention to the binary contrast between believing and not
believing. It explains how the model falsifies luminosity and verifies a
mdrgin for error principle.

Suppose that for some parameter v, such as the height of the tree, for
every case o, whether the condition C obtains in o depends only on the
value v(a) of v in o For example, C might be the condition that the tree
igﬁt\lnjgst fifty feet high. We may assume for s.implicity that v takes non-
r‘lg';g\'a‘t.ilye, real numbers as values. To be explicit:

«}(z)i For all cases o and B, if #{c) = »(B) then C obtains in o if and
i enly if C obtains in f3,

Ip:inany examples, something like the following will hold, for some
siall positive real number c:

" (8)- For all cases o and non-negative real numbers , if lu—v{a)l<c
.+ and in & one believes that C obtains then, for some case f close
i+ to o, ¥(B) = uand in B one believes that C obtains.

Lééﬁ;'formally: if one has the belief, then one could easily still have had it
if ¢he parameter had taken a given slightly different value. One’s belief is
n'&itt'(‘é‘rfectiy discriminating, As already noted, iterations of close possi-
bility do not collapse, so {8) does not entail tha, if one has the belief,
then one could easily still have had it if the parameter had taken a very
différent value. If one believes that the tree is at most fifty feet high, then
one could easily still have believed that if the tree had been an inch high-
er, but not if it had been one hundred feet higher.
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i

- Now assume a connection between knowledge and safety from error:

{9} For all cases o and B, if B is close to a and in o one knows that
C obtains, then in B one does not falsely believe that C obtains,

':in' a more careful version of {9), we might qualify both ‘know’ and
“believe’ by ‘on a basis B’. Knowledge on one basis {for example, sceing

 Yan event) is quite consistent with false belief in a close case on a very dif-

ferent basis {for example, hearing about the event}, We might also rela-
tivize (8) and (9) to a subclass of cases by restricting the quantifiers over

. cases to that subclass, The argument below will still go through if we

mod:fy the other propositions in the same way, For simplicity, we may

‘" ignore these complications.

- We must also articulate a connection between knowing and being in
a position to know. One is in a position to know something determined
*by the value of a parameter only if one can know without changing the

- value of the parameter:

(10} For all cases a, if in a one is in a position to know that C
obtains then, for some case B, v{a) = »(B) and in P one
knows that C obtains.

Statement (10) can be understood as a stipulation about the meaning of
. “in a position to know’.

- Finally, we assume that knowledge implies belief:

{11} For ali cases a, if in o one knows that Cobtains then in o one
believes that C obtains,

L " From (7)=(x1} and the assumption (L) that C is a luminous condition,
" .we can deduce this:

" {12) For all cases o and B, if lv{a)-v(B)lxc then C obtains in o if
and only if C cbtains in f.

For suppose that C obtains in o and lp{a)-~v(B)l<c. By (L), in o, one is in
‘a4 position to know that C obtains. By (10), for some case o, Yo} =
'_v((_x } and in o* one knows that C obtains, Thus [v{a*)—v(p)l<c and, by
{11), in a* one believes that C obtains. Consequently, by {8), for some
dase p* close to o*, v(p*) = v(p) and in B* one believes that C obtains.
Smce B* is close to a* and in a* one knows that C obtains, by {9)
lin #* one does not falscly believe that C obtains. Therefore, C obtains
in B*. Since v(B*) = v(p), C obtains in B by (7). This shows that if
v{a)—v{B)l<e then C obtams in o only if C obtains in B. The converse is
similar.
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. Statement (r2) is a disastrous conclusion if the parameter v can vary
continuously in this sense:

T
i

(13) For all non-negative real numbers #, for some case o, v{a) = u,
For (12) and (r3) entail:

{14) For all cases o and B, C obtains in « if and only if C obtains

" inB.

For any real number can be reached from any other in a series of arbi-
trarily short steps; there will be a sequence of non-negative real numbers
toy .+« Hy such that #o = v{a), #, = v(B), and, for all i, (o=i<n),
lit/=us1l<c. By (x3), there is a corresponding sequence of cases dig, .« ., O
such that »{a) = w; for all i (o<i=<n), where op = o and o, = p. Con-
sequently, for all i (osi<n), lv{a;)—v{oua )<, so, by (12), C obtains in o
if and only if C obtains in ay,.. By the transitivity of the biconditional, C
obtains in o if and only if C obtains in p. Thus C obtains in all cases or
in rione; it is trivial, Contrapositively, if C is not trivial and the assump-
tions {7)-(11) and (x3) hold, then C is not luminous.

If we like, we can replace the assumption {13} that the parameter v
vaties continuously by the weaker assumption that v varies in an
approximately continuous way, in the sense that for every non-negative
realniimber u there is a case o such that lu—v{a)l<e/s.
<\When we drop the luminosity assumption (L), we can still deduce
thE? consequence from (7)-{11):

i

(15) For all cases o and B, if lv{a}—v(B)l<c and in & one is in a
" position to knaw that C obtains then C obtains in p.

The argument for {15) is like the argument for (r2}, but without the
initial application of (L). Statement (15) is a margin for error principle:
one knows that a condition obtains only if it obtains in all cases in
which the relevant parameter differs at most slightly in value. The disas-
trqus conclusion (14} that C is trivial follows easily from (13), {15}, and
(L), Since {13) or a suitable weakening of it is usually uncontentious, the
matgin for error principle usually blocks luminosity.

The margin for error ¢ may depend on the condition C. However, if
conditions Co, . . ., Cx satisfy {15) with respect to margins for error
Crss «», Cu respectively {for the same parameter v), then of course Co, . . .,
Cs all satisfy (x5) with respect to the minimum of ¢o, . . ., ce. But an infi-
nite class of conditions each with a positive margin for error might not
have a common positive margin for error, for the greatest lower bound
of their individual margins for error might be o,
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The argument of this section does not justify us in believing that
. every condition satisfies a principle like (15). The argument for (1)
depends on the premise (8), that one’s belief is not perfectly discriminat-
..ing with respect to the underlying parameter. That assumption is not
b »pbvmus, espeaally if the underlying parameter itself constitutively
., -depends on one’s belief, as some philosophers postulate for phenomena
~.that they would classify as response—dependent. For example, they hold
that the intensity of one’s pam constitutively depends on one’s beliefs
":about the intensity of one’s pain, Such cases require the subtler argu-
:ment of Chapte1 4. Nevertheless, the assumptions (7)—(11) and {13) are
piausnble in a wide range of cases; they explain margins for error and
the failure of luminosity. In particular, if the condition that one knows
(or that one knows*) that C obtains satisfies anything like (15} in place
.of C—naturally, with a parameter v that encodes enough about the case
o determine whether one knows—then one will expect just the kind of
7 dlfflculty in iterating knowledge that sections 5.1 and 5.2 observed. In
" particular, the crucial premises (1)) and (1} simply attribute to Mr
“Magoo knowledge of a contraposed instance of the margin for error
““principle (15). Every iteration requires a further margin,

5.4 POINT ESTIMATES

k,mlght reach my belief about the height of a tree by estimating its
helght and then applying an upper bound on the inaccuracy of my esti-
; fnate 4 For example, I estimate that the tree is 55 feet high, and come to
beheve that it is between so and 6o feet high, on the grounds that in
these circumstances my estimate will not be out by more than 5 feet, In
effect, I deduce (18) from the premises {z6) and (17):

s (16) 1 estimated that the tree is fifty-five feet high.

(17) My estimate of the height of the tree differs from the height
of the tree by at most five feet.

“:{18) The tree is between fifty and sixty feet high.

§mce I reached the conclusion (18) by inference from (16) and (17}, I

know {18} if and only if I know {16) and (17). Suppose that in these cir-
cumstances my estimates are never out by more than five feet, but are
§omet;mes out by as much as five feet. Thus I might estimate that the

.3.}7 _
% Sections 5.4 and 5.5 answer points raised by Peter Mott 1998 and others,
- Williamson zooob CO!]SidEFS some further details of Mott’s arguments.
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tree is fifty-five feet high when it is in fact fifty feet high, In that case, it
may appear, I can know (18) without satisfying any principle like {z5). If
the tree were even slightly less tall, my belief would be false,

The objection assumes that I can know that my estimate was out by
at most five feet when it was in fact out by exactly five feet, That is in
effect to assume that I need no margin for error in my knowledge of the
accuracy of my own estimates, But my belief about my own accuracy
has no more exact basis than my perceptual beliefs. If I were further
away from the tree, or the light were worse, my estimate could be out
by more than five feet. My judgement that my estimate of the height of
this tree is out by at most five feet depends on my perceptual beliefs
about my distance from the tree and the quality of the light, If I believe
that my estimate is out by at most five feet, when in fact it is out by
exactly five feet, then I could easily have formed that belief in slightly
different circumstances in which my estimate was out by slightly more
than five feet. Certainly the objector has not shown that one can know
in the envisaged circumstances that one’s estimate is out by at most five
feet when in fact it is out by exactly five feet. There is almost no limit to
how far out my estimates can be on a really bad day.

If my estimate is more than five feet out, I cannot know that it is at
most five feet out, simply because knowledge is factive, A margin for
error principle exhibits a further way in which my knowledge of the
accuracy of my estimate depends on the accuracy of that estimate.

. Naturally, we can imagine situations in which one knows exactly

how far out one’s estimate can be, just as we can imagine situations in
which one knows exactly how tall the tree is. But those situations
involve ways of knowing quite different from those we actually employ.
The objector has done nothing to show that our actual methods enable
us to dispense with margins for error. When C is the condition that one’s
estimate is out by at most five fect, the premises of the argument for (x5}
remain plausible, If one’s knowledge of upper bounds on the inaccuracy
of one’s estimate of the height of the tree satisfies margin for error prin-
ciples, then one’s derivative knowledge of the height of the tree will sat-
isfy a corresponding margin for error principle,

Lob i
s

seit el §.5 ITERATED INTERPERSONAL XNOWLEDGE
ISR

lterating knowledge is hard, whether -it_is knowing about one’s own
knowledge or knowing about another’s, Do miargin for error principles
make it too hard? e
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