Modern empiricism has been conditioned in large part by two dogmas. One is a belief in some fundamental cleavage between truths which are analytic, or grounded in meanings independently of matters of fact, and truths which are synthetic, or grounded in fact. The other dogma is reductionism: the belief that each meaningful statement is equivalent to some logical construct upon terms which refer to immediate experience. Both dogmas, I shall argue, are ill-founded. One effect of abandoning them is, as we shall see, a blurring of the supposed boundary between speculative metaphysics and natural science. Another effect is a shift toward pragmatism.

The two notions are the two sides of a single dubious coin.

Kant conceived of an analytic statement as one that attributes to its subject no more than is already conceptually contained in the subject. This formulation has two shortcomings: it limits itself to statements of subject-predicate form, and it appeals to a notion of containment which is left at a metaphorical level. But Kant’s intent, evident more from the use he makes of the notion of analyticity than from his definition of it, can be restated thus: a statement is analytic when it is true by virtue of meanings and independently of fact. Pursuing this line, let us examine the concept of meaning which is presupposed.

Meaning, let us remember, is not to be identified with naming. Frege’s example of ‘Evening Star’ and ‘Morning Star’, and Russell’s of ‘Scott’ and ‘the author of Waverley’, illustrate that terms can name the same thing but differ in meaning. The distinction between meaning and naming is no less important at the level of abstract terms. The terms ‘9’ and ‘the number of the planets’ name one and the same abstract entity but presumably must be regarded as unlike in meaning; for astronomical observation was needed, and not mere reflection on meanings, to determine the sameness of the entity in question.

The above examples consist of singular terms, concrete and abstract. With general terms, or predicates, the situation is somewhat different but parallel. Whereas a singular term purports to name an entity, abstract or concrete, a general term does not; but a general term is true of an entity, or of each of many, or of none. The class of all entities of which a general term is true is called the extension of the term. Now paralleling the contrast between the meaning of a singular term and the entity named, we must distin-
guish equally between the meaning of a general term and its extension. The general terms ‘creature with a heart’ and ‘creature with kidneys’, for example, are perhaps alike in extension but unlike in meaning.

Confusion of meaning with extension, in the case of general terms, is less common than confusion of meaning with naming in the case of singular terms. It is indeed a commonplace in philosophy to oppose intension (or meaning) to extension, or, in a variant vocabulary, connotation to denotation.

The Aristotelian notion of essence was the forerunner, no doubt, of the modern notion of intension or meaning. For Aristotle it was essential in men to be rational, accidental to be two-legged. But there is an important difference between this attitude and the doctrine of meaning. From the latter point of view it may indeed be conceded (if only for the sake of argument) that rationality is involved in the meaning of the word ‘man’ while two-leggedness is not; but two-leggedness may at the same time be viewed as involved in the meaning of ‘biped’ while rationality is not. Thus from the point of view of the doctrine of meaning it makes no sense to say of the actual individual, who is at once a man and a biped, that his rationality is essential and his two-leggedness accidental or vice versa. Things had essences, for Aristotle, but only linguistic forms have meanings. Meaning is what essence becomes when it is divorced from the object of reference and wedded to the word.

For the theory of meaning a conspicuous question is the nature of its objects: what sort of things are meanings? A felt need for meant entities may derive from an earlier failure to appreciate that meaning and reference are distinct. Once the theory of meaning is sharply separated from the theory of reference, it is a short step to recognizing as the primary business of the theory of meaning simply the synonymy of linguistic forms and the analyticity of statements; meanings themselves, as obscure intermediary entities, may well be abandoned.

The problem of analyticity then confronts us anew. Statements which are analytic by general philosophical acclaim are not, indeed, far to seek. They fall into two classes. Those of the first class, which may be called logically true, are typified by:

(1) No unmarried man is married.

The relevant feature of this example is that it not merely is true as it stands, but remains true under any and all reinterpretations of ‘man’ and ‘married’. If we suppose a prior inventory of logical particles, comprising ‘no’, ‘un-’, ‘not’, ‘if’, ‘then’, ‘and’, etc., then in general a logical truth is a statement which is true and remains true under all reinterpretations of its components other than the logical particles.

But there is also a second class of analytic statements, typified by:

(2) No bachelor is married.

The characteristic of such a statement is that it can be turned into a logical truth by putting synonyms for synonyms thus (2) can be turned into (1) by putting ‘unmarried man’ for its synonym ‘bachelor’. We still lack a proper characterization of this second class of analytic statements, and therewith of analyticity generally, inasmuch as we have had in the above description to lean on a notion of ‘synonymy’ which is no less in need of clarification than analyticity itself.

In recent years Carnap has tended to explain analyticity by appeal to what he calls state-descriptions. A state-description is any exhaustive assignment of truth values to the atomic, or noncompound, statements of the language. All other statements of the language are, Carnap assumes, built up from their component clauses by means of the familiar logical devices, in such a way that the truth value of any complex statement is fixed for each state-description by specifiable logical laws. A statement is then explained as analytic when it comes out true under every state-description. This account is an adaptation of Leibniz’s ‘true in all possible worlds’. But note that this version of analyticity serves its purpose only if the atomic state-
ments of the language are, unlike 'John is a bachelor' and 'John is married', mutually independent. Otherwise there would be a state-description which assigned truth to 'John is a bachelor' and to 'John is married', and consequently 'No bachelors are married' would turn out synthetic rather than analytic under the proposed criterion. Thus the criterion of analyticity in terms of state-descriptions serves only for languages devoid of extra-logical synonym-pairs, such as 'bachelor' and 'unmarried man'—synonym-pairs of the type which give rise to the 'second class' of analytic statements. The criterion in terms of state-descriptions is a reconstruction at best of logical truth, not of analyticity.

I do not mean to suggest that Carnap is under any illusions on this point. His simplified model language with its state-descriptions is aimed primarily not at the general problem of analyticity but at another purpose, the clarification of probability and induction. Our problem, however, is analyticity and here the major difficulty lies not in the first class of analytic statements, the logical truths, but rather in the second class, which depends on the notion of synonymy.

2. DEFINITION

There are those who find it soothing to say that the analytic statements of the second class reduce to those of the first class, the logical truths, by definition; 'bachelor', for example, is defined as 'unmarried man'. But how do we find that 'bachelor' is defined as 'unmarried man'? Who defined it thus, and when? Are we to appeal to the nearest dictionary, and accept the lexicographer's formulation as law? Clearly this would be to put the cart before the horse. The lexicographer is an empirical scientist, whose business is the recording of antecedent facts and if he glosses 'bachelor' as 'unmarried man' it is because of his belief that there is a relation of synonymy between those forms, implicit in general or preferred usage prior to his own work. The notion of synonymy presupposed here has still to be clarified, presumably in terms relating to linguistic behaviour. Certainly the 'definition' which is the lexicographer's report of an observed synonymy cannot be taken as the ground of the synonymy.

Definition is not, indeed, an activity exclusively of philologists. Philosophers and scientists frequently have occasion to 'define' a recondite term by paraphrasing it into terms of a more familiar vocabulary. But ordinarily such a definition, like the philologist's, is pure lexicography, affirming a relation of synonymy antecedent to the exposition in hand.

Just what it means to affirm synonymy, just what the interconnections may be which are necessary and sufficient in order that two linguistic forms be properly describable as synonymous, is far from clear; but, whatever these interconnections may be, ordinarily they are grounded in usage. Definitions reporting selected instances of synonymy come then as reports upon usage.

There is also, however, a variant type of definitional activity which does not limit itself to the reporting of pre-existing synonymies. I have in mind what Carnap calls explicatio—an activity to which philosophers are given, and scientists also in their more philosophical moments. In explication the purpose is not merely to paraphrase the definiendum into an outright synonym, but actually to improve upon the definiendum by refining or supplementing its meaning. But even explication, though not merely reporting a pre-existing synonymy between definiendum and definiens, does rest, nevertheless, on other pre-existing synonymies. The matter may be viewed as follows. Any word worth explicating has some contexts which, as wholes, are clear and precise enough to be useful; and the purpose of explication is to preserve the usage of these favoured contexts while sharpening the usage of other contexts. In order that a given definition be suitable for purposes of explication, therefore, what is required is not that the definiendum in its antecedent usage be synonymous with the definiens, but just that
each of these favoured contexts of the definiendum, taken as a whole in its antecedent usage, be synonymous with the corresponding context of the definiens.

Two alternative definiens may be equally appropriate for the purposes of a given task of explication and yet not be synonymous with each other; for they may serve interchangeably within the favoured contexts but diverge elsewhere. By cleaving to one of these definiens rather than the other, a definition of explicative kind generates, by fiat, a relation of synonymy between definiendum and definiens which did not hold before. But such a definition still owes its explicative function, as seen, to pre-existing synonymies.

There does, however, remain still an extreme sort of definition which does not hark back to prior synonymies at all: namely, the explicitly conventional introduction of novel notations for purposes of sheer abbreviation. Here the definiendum becomes synonymous with the definiens simply because it has been created expressly for the purpose of being synonymous with the definiens. Here we have a really transparent case of synonymy created by definition; would that all species of synonymy were as intelligible. For the rest, definition rests on synonymy rather than explaining it.

The word ‘definition’ has come to have a dangerously reassuring sound, owing no doubt to its frequent occurrence in logical and mathematical writings. We shall do well to digress now into a brief appraisal of the role of definition in formal work.

In logical and mathematical systems either of two mutually antagonistic types of economy may be striven for, and each has its peculiar practical utility. On the one hand, we may seek economy of practical expression—ease and brevity in the statement of multifarious relations. This sort of economy calls usually for distinctive concise notations for a wealth of concepts. Second, however, and oppositely, we may seek economy in grammar and vocabulary; we may try to find a minimum of basic concepts such that, once a distinctive notation has been appropriated to each of them, it becomes possible to express any desired further concept by mere combination and iteration of our basic notations. This second sort of economy is impractical in one way, since a poverty in basic idioms tends to a necessary lengthening of discourse. But it is practical in another way: it greatly simplifies theoretical discourse about the language, through minimizing the terms and the forms of construction wherein the language consists.

Both sorts of economy, though prima facie incompatible, are valuable in their separate ways. The custom has consequently arisen of combining both sorts of economy by forging in effect two languages, the one a part of the other. The inclusive language, though redundant in grammar and vocabulary, is economical in message lengths, while the part, called primitive notation, is economical in grammar and vocabulary. Whole and part are correlated by rules of translation whereby each idiom not in primitive notation is equated to some complex built up of primitive notation. These rules of translation are the so-called definitions which appear in formalized systems. They are best viewed not as adjuncts to one language but as correlations between two languages, the one a part of the other.

But these correlations are not arbitrary. They are supposed to show how the primitive notations can accomplish all purposes, save brevity and convenience, of the redundant language. Hence the definiendum and its definiens may be expected, in each case, to be related in one or another of the three ways lately noted. The definiens may be a faithful paraphrase of the definiendum into the narrower notation, preserving a direct synonymy as of antecedent usage; or the definiens may, in the spirit of explication, improve upon the antecedent usage of the definiendum; or finally, the definiendum may be a newly created notation, newly endowed with meaning here and now.

In formal and informal work alike, thus, we find that definition—except in the extreme case of the explicitly conventional introduction of new notations—hinges on
prior relations of synonymy. Recognizing then that the notion of definition does not hold the key to synonymy and analyticity, let us look further into synonymy and say no more of definition.

3. INTERCHANGEABILITY

A natural suggestion, deserving close examination, is that the synonymy of two linguistic forms consists simply in their interchangeability in all contexts without change of truth value—interchangeability, in Leibniz’s phrase, \textit{salva veritate}.3 Note that synonyms so conceived need not even be free from vagueness, as long as the vaguenesses match.

But it is not quite true that the synonyms ‘bachelor’ and ‘unmarried man’ are everywhere interchangeable \textit{salva veritate}. Truths which become false under substitution of ‘unmarried man’ for ‘bachelor’ are easily constructed with the help of ‘bachelor of arts’ or ‘bachelor’s buttons’; also with the help of quotation, thus:

‘Bachelor’ has less than ten letters.

Such counter-instances can, however, perhaps be set aside by treating the phrases ‘bachelor of arts’ and ‘bachelor’s buttons’ and the quotation ‘‘bachelor’’ each as a single indivisible word and then stipulating that the interchangeability \textit{salva veritate} which is to be the touchstone of synonymy is not supposed to apply to fragmentary occurrences inside of a word. This account of synonymy, supposing it acceptable on other counts, has indeed the drawback of appealing to a prior conception of ‘word’ which can be counted on to present difficulties of formulation in its turn. Nevertheless, some progress might be claimed in having reduced the problem of synonymy to a problem of wordhood. Let us pursue this line a bit, taking ‘word’ for granted.

The question remains whether interchangeability \textit{salva veritate} (apart from occurrences within words) is a strong enough condition for synonymy, or whether, on the contrary, some heteronymous expressions might be thus interchangeable. Now let us be clear that we are not concerned here with synonymy in the sense of complete identity in psychological associations or poetic quality; indeed no two expressions are synonymous in such a sense. We are concerned only with what may be called \textit{cognitive} synonymy. Just what this is cannot be said without successfully finishing the present study; but we know something about it from the need which arose for it in connection with analyticity in §1. The sort of synonymy needed there was merely such that any analytic statement could be turned into a logical truth by putting synonyms for synonyms. Turning the tables and assuming analyticity, indeed, we could explain cognitive synonymy of terms as follows (keeping to the familiar example): to say that ‘bachelor’ and ‘unmarried man’ are cognitively synonymous is to say no more nor less than that the statement:

(3) All and only bachelors are unmarried men

is analytic.4

What we need is an account of cognitive synonymy not presupposing analyticity—if we are to explain analyticity conversely with help of cognitive synonymy as undertaken in §1. And indeed such an independent account of cognitive synonymy is at present up for consideration, namely, interchangeability \textit{salva veritate} everywhere except within words. The question before us, to resume the thread at last, is whether such interchangeability is a sufficient condition for cognitive synonymy. We can quickly assure ourselves that it is, by examples of the following sort. The statement:

(4) Necessarily all and only bachelors are bachelors

is evidently true, even supposing ‘necessarily’ so narrowly as to be truly applicable only to analytic statements. Then, if ‘bachelor’ and ‘unmarried man’ are interchangeable \textit{salva veritate}, the result:
(5) Necessarily all and only bachelors are unmarried men

of putting 'unmarried man' for an occurrence of 'bachelor' in (4) must, like (4), be true. But to say that (5) is true is to say that (3) is analytic, and hence that 'bachelor' and 'unmarried man' are cognitively synonymous.

Let us see what there is about the above argument that gives it its air of hocus-pocus. The condition of interchangeability salva veritate varies in its force with variations in the richness of the language at hand. The above argument supposes we are working with a language rich enough to contain the adverb 'necessarily', this adverb being so construed as to yield truth when and only when applied to an analytic statement. But can we condone a language which contains such an adverb? Does the adverb really make sense? To suppose that it does is to suppose that we have already made satisfactory sense of 'analytic'. Then what are we so hard at work on right now?

Our argument is not flatly circular, but something like it. It has the form, figuratively speaking, of a closed curve in space.

Interchangeability salva veritate is meaningless until relativized to a language whose extent is specified in relevant respects. Suppose now we consider a language containing just the following materials. There is an indefinitely large stock of one-place predicates (for example, 'F' where 'Fx' means that x is a man) and many-place predicates (for example, 'G' where 'Gxy' means that x loves y), mostly having to do with extra-logical subject-matter. The rest of the language is logical. The atomic sentences consist each of a predicate followed by one or more variables 'x', 'y', etc.; and the complex sentences are built up of the atomic ones by truth functions ('not', 'and', 'or', etc.) and quantification. In effect such a language enjoys the benefits also of descriptions and indeed singular terms generally, these being contextually definable in known ways. Even abstract singular terms naming classes, classes of classes, etc., are contextually definable in case the assumed stock of predicates includes the two-place predicate of class membership. Such a language can be adequate to classical mathematics and indeed to scientific discourse generally, except in so far as the latter involves debatable devices such as contrary-to-fact conditionals or modal adverbs like 'necessarily'. Now a language of this type is extensional, in this sense: any two predicates which agree extensionally (that is, are true of the same objects) are interchangeable salva veritate.5

In an extensional language, therefore, interchangeability salva veritate is no assurance of cognitive synonymy of the desired type. That 'bachelor' and 'unmarried man' are interchangeable salva veritate in an extensional language assures us of no more than that (3) is true. There is no assurance here that the extensional agreement of 'bachelor' and 'unmarried man' rests on meaning rather than merely on accidental matters of fact, as does the extensional agreement of 'creature with a heart' and 'creature with kidneys'.

For most purposes extensional agreement is the nearest approximation to synonymy we need care about. But the fact remains that extensional agreement falls far short of cognitive synonymy of the type required for explaining analyticity in the manner of §1. The type of cognitive synonymy required there is such as to equate the synonymy of 'bachelor' and 'unmarried man' with the analyticity of (3), not merely with the truth of (3).

So we must recognize that interchangeability salva veritate, if construed in relation to an extensional language, is not a sufficient condition of cognitive synonymy in the sense needed for deriving analyticity in the manner of §1. If a language contains an intensional adverb 'necessarily' in the sense lately noted, or other particles to the same effect, then interchangeability salva veritate in such a language does afford a sufficient condition of cognitive synonymy; but such a language is intelligible only in so far as the notion of analyticity is already understood in advance.

The effort to explain cognitive synonymy first, for the sake of deriving analyticity from
it afterward as in §1, is perhaps the wrong approach. Instead we might try explaining analyticity somehow without appeal to cognitive synonymy. Afterward we could doubtless derive cognitive synonymy from analyticity satisfactorily enough if desired. We have seen that cognitive synonymy of 'bachelor' and 'unmarried man' can be explained as analyticity of (3). The same explanation works for any pair of one-place predicates, of course, and it can be extended in obvious fashion to many-place predicates. Other syntactical categories can also be accommodated in fairly parallel fashion. Singular terms may be said to be cognitively synonymous when the statement of identity formed by putting ' = ' between them is analytic. Statements may be said simply to be cognitively synonymous when their biconditional (the result of joining them by 'if and only if') is analytic. If we care to lump all categories into a single formulation, at the expense of assuming again the notion of 'word' which was appealed to early in this section, we can describe any two linguistic forms as cognitively synonymous when the two forms are interchangeable (apart from occurrences within 'words') salva (no longer veritate but) analyticitolate. Certain technical questions arise, indeed, over cases of ambiguity or homonymy; let us not pause for them, however, for we are already digressing. Let us rather turn our backs on the problem of synonymy and address ourselves anew to that of analyticity.

4. SEMANTICAL RULES

Analyticity at first seemed most naturally definable by appeal to a realm of meanings. On refinement, the appeal to meanings gave way to an appeal to synonymy or definition. But definition turned out to be a will-o'-the-wisp, and synonymy turned out to be best understood only by dint of a prior appeal to analyticity itself. So we are back at the problem of analyticity.

I do not know whether the statement 'Everything green is extended' is analytic. Now does my indecision over this example really betray an incomplete understanding, an incomplete grasp of the 'meanings', of 'green' and 'extended'? I think not. The trouble is not with 'green' or 'extended', but with 'analytic'.

It is often hinted that the difficulty in separating analytic statements from synthetic ones in ordinary language is due to the vagueness of ordinary language and that the distinction is clear when we have a precise artificial language with explicit 'semantical rules'. This, however, as I shall now attempt to show, is a confusion.

The notion of analyticity about which we are worrying is a purported relation between statements and languages: a statement S is said to be analytic for a language L, and the problem is to make sense of this relation generally, that is, for variable 'S' and 'L'. The gravity of this problem is not perceptibly less for artificial languages than for natural ones. The problem of making sense of the idiom 'S is analytic for L', with variable 'S' and 'L', retains its stubbornness even if we limit the range of the variable 'L' to artificial languages. Let me now try to make this point evident.

For artificial languages and semantical rules we look naturally to the writings of Carnap. His semantical rules take various forms, and to make my point I shall have to distinguish certain of the forms. Let us suppose, to begin with, an artificial language L₀ whose semantical rules have the form explicitly of a specification, by recursion or otherwise, of all the analytic statements of L₀. The rules tell us that such and such statements, and only those, are the analytic statements of L₀. Now here the difficulty is simply that the rules contain the word 'analytic', which we do not understand! We understand what expressions the rules attribute analyticity to, but we do not understand what the rules attribute to those expressions. In short, before we can understand a rule which begins 'A statement S is analytic for language L₀ if and only if . . .', we must understand the general relative term 'analytic for'; we must understand 'S is analytic for L' where 'S' and 'L' are variables.
Alternatively we may, indeed, view the so-called rule as a conventional definition of a new simple symbol ‘analytic-for-L_0’, which might better be written untendentiously as ‘K’ so as not to seem to throw light on the interesting word ‘analytic’. Obviously any number of classes $K, M, N,$ etc. of statements of L_0 can be specified for various purposes or for no purpose; what does it mean to say that K, as against $M, N,$ etc., is the class of the “analytic” statements of L_0?

By saying what statements are analytic for L_0 we explain ‘analytic-for-L_0’ but not ‘analytic’, not ‘analytic for’. We do not begin to explain the idiom ‘S is analytic for L’ with variable ‘S’ and ‘L’ even if we are content to limit the range of ‘L’ to the realm of artificial languages.

Actually we do know enough about the intended significance of ‘analytic’ to know that analytic statements are supposed to be true. Let us then turn to a second form of semantical rule, which says not that such and such statements are analytic but simply that such and such statements are included among the truths. Such a rule is not subject to the criticism of containing the un-understood word ‘analytic’; and we may grant for the sake of argument that there is no difficulty over the broader term ‘true’. A semantical rule of this second type, a rule of truth, is not supposed to specify all the truths of the language; it merely stipulates, recursively or otherwise, a certain multitude of statements which, along with others unspecified, are to count as true. Such a rule may be conceded to be quite clear. Derivatively, afterward, analyticity can be demarcated thus: a statement is analytic if it is (not merely true but) true according to the semantical rule.

Still there is really no progress. Instead of appealing to an unexplained word ‘analytic’, we are now appealing to an unexplained phrase ‘semantical rule’. Not every true statement which says that the statements of some class are true can count as a semantical rule—otherwise all truths would be ‘analytic’ in the sense of being true according to semantical rules. Semantical rules are distinguishable, apparently, only by the fact of appearing on a page under the heading ‘Semantical Rules’; and this heading is itself then meaningless.

We can say indeed that a statement is analytic-for-L_0 if and only if it is true according to such and such specifically appended semantical rules, but then we find ourselves back at essentially the same case which was originally discussed: ‘S is analytic-for-L_0 if and only if . . . ’ Once we seek to explain ‘S is analytic for L’ generally for variable ‘L’ (even allowing limitation of ‘L’ to artificial languages), the explanation ‘true according to the semantical rule of L’ is unavailing; for the relative term ‘semantical rule of’ is as much in need of clarification, at least, as ‘analytic for’.

It may be instructive to compare the notion of semantical rule with that of postulate. Relative to a given set of postulates, it is easy to say what a postulate is: it is a member of the set. Relative to a given set of semantical rules, it is equally easy to say what a semantical rule is. But given simply a notation, mathematical or otherwise, and indeed as thoroughly understood a notation as you please in point of the translations or truth conditions of its statements, who can say which of its true statements rank as postulates? Obviously the question is meaningless—as meaningless as asking which points in Ohio are starting-points. Any finite (or effectively specifiable infinite) selection of statements (preferably true ones, perhaps) is as much a set of postulates as any other. The word ‘postulate’ is significant only relative to an act of enquiry; we apply the word to a set of statements just in so far as we happen, for the year or the moment, to be thinking of those statements in relation to the statements which can be reached from them by some set of transformations to which we have seen fit to direct our attention. Now the notion of semantical rule is as sensible and meaningful as that of postulate, if conceived in a similarly relative spirit—relative, this time, to
one or another particular enterprise of schooling unconversant persons in sufficient conditions for truth of statements of some natural or artificial language L. But from this point of view no one signification of a subclass of the truths of L is intrinsically more a semantical rule than another and, if ‘analytic’ means ‘true by semantical rules’, no one truth of L is analytic to the exclusion of another.

It might conceivably be protested that an artificial language L (unlike a natural one) is a language in the ordinary sense plus a set of explicit semantical rules—the whole constituting, let us say, an ordered pair; and that the semantical rules of L then are specifiable simply as the second component of the pair L. But, by the same token and more simply, we might construe an artificial language L outright as an ordered pair whose second component is the class of its analytic statements; and then the analytic statements of L become specifiable simply as the statements in the second component of L. Or better still, we might just stop tugging at our bootstraps altogether.

Not all the explanations of analyticity known to Carnap and his readers have been covered explicitly in the above considerations, but the extension to other forms is not hard to see. Just one additional factor should be mentioned which sometimes enters: sometimes the semantical rules are in effect rules of translation into ordinary language, in which case the analytic statements of the artificial language are in effect recognized as such from the analyticity of their specified translations in ordinary language. Here certainly there can be no thought of an illumination of the problem of analyticity from the side of the artificial language.

From the point of view of the problem of analyticity the notion of an artificial language with semantical rules is a *feu follet par excellence*. Semantical rules determining the analytic statements of an artificial language are of interest only in so far as we already understand the notion of analyticity; they are of no help in gaining this understanding.

Appeal to hypothetical languages of an artificially simple kind could conceivably be useful in clarifying analyticity, if the mental or behavioural or cultural factors relevant to analyticity—whatever they may be—were somehow sketched into the simplified model. But a model which takes analyticity merely as an irreducible character is unlikely to throw light on the problem of explicating analyticity.

It is obvious that truth in general depends on both language and extra-linguistic fact. The statement ‘Brutus killed Caesar’ would be false if the world had been different in certain ways, but it would also be false if the word ‘killed’ happened rather to have the sense of ‘begat’. Thus one is tempted to suppose in general that the truth of a statement is somehow analyzable into a linguistic component and a factual component. Given this supposition, it next seems reasonable that in some statements the factual component should be null; and these are the analytic statements. But, for all its a priori reasonableness, a boundary between analytic and synthetic statements simply has not been drawn. That there is such a distinction to be drawn at all is an unempirical dogma of empiricists, a metaphysical article of faith.

NOTES

2. According to an important variant sense of ‘definition’, the relation preserved may be the weaker relation of mere agreement in reference. But definition in this sense is better ignored in the present connection, being irrelevant to the question of synonymy.
4. This is cognitive synonymy in a primary, broad sense. Carnap ((1), pp. 56 ff.) and Lewis ((2), pp. 83 ff.) have suggested how, once this notion is at hand, a narrower sense of cognitive synonymy which is preferable for some purposes can in turn be derived. But this special ramification of concept-building lies aside from the present purposes and must not be confused with the broad sort of cognitive synonymy here concerned.
5. This is the substance of Quine (1), *121.
7. The foregoing paragraph was not part of the present essay as originally published; it was prompted by Martin (see Bibliography).

BIBLIOGRAPHICAL REFERENCES

LEWIS, C. I. (1), A Survey of Symbolic Logic (Berkeley, 1918).
———(2), An Analysis of Knowledge and Valuation (La Salle, Ill.: Open Court, 1946).

There Is at Least One A Priori Truth

HILARY PUTNAM

In a number of famous publications (the most famous being the celebrated article ‘Two dogmas of empiricism’) Quine has advanced the thesis that there is no such thing as an (absolutely) a priori truth. (Usually he speaks of ‘analyticity’ rather than apriority; but his discussion clearly includes both notions, and in his famous paper ‘Carnap and logical truth’ he has explicitly said that what he is rejecting is the idea that any statement is completely a priori. For a discussion of the different threads in Quine’s arguments, see [‘“Two Dogmas’ Revisited”, Realism and Rea-

son (Cambridge University Press, 1983)]. Apriority is identified by Quine with unrevisability. But there are at least two possible interpretations of unrevisability: (1) a behavioral interpretation, namely, an unrevisable statement is one we would never give up (as a sheer behavioral fact about us); and (2) an epistemic interpretation, namely, an unrevisable statement is one we would never be rational to give up (perhaps even a statement that it would never be rational to even think of giving up). On the first interpretation, the claim that we might revise even the laws of logic becomes merely the claim that certain phenomena might cause us to give up our belief in some of the laws of logic; there would be no claim being made that doing so would be rational. Rather the notion of rationality itself would have gone by the board.