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Abstract

This paper presents a new semantics for inductive empirical knowledge. The
epistemic agent is represented concretely as a learner who processes new inputs
through time and who forms new beliefs from those inputs by means of a con-
crete, computable learning program. The agent’s belief state is represented hyper-
intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoid-
ance of error in the limit and as having converged to true belief from the present
time onward. Familiar topics are re-examined within the semantics, such as in-
ductive skepticism, the logic of discovery, Duhem’s problem and the articulation
of theories by auxiliary hypotheses, the role of serendipity in scientific knowledge,
Fitch’s paradox and deductive closure of knowability, whether one can know induc-
tively that one knows inductively, whether one can know inductively that one does
not know inductively, and whether expert instruction can spread common inductive
knowledge through a community, rather than merely exhibit it.

1 Introduction

Science formulates general theories. Can such theories count as knowledge, or are they
doomed perpetually to the status of mere theories, as the anti-scientific fringe perennially
urges? The ancient argument for inductive skepticism urges the latter view: no finite
sequence of observations can rule out the (relevant) possibility of future surprises, so
universal laws and theories are unknowable.

A popular strategy for responding to skeptical arguments appeals to possible world
semantics for subjunctive conditionals. The idea works well in the case of “ultimate”
brain-in-a-vat skepticism: if you are normally looking at a cat on a mat, you wouldn’t
hallucinate the cat if it weren’t there, so your belief is be sensitive to the truth (Nozick
1981, Roush 2007). Or if you were to believe that there is a cat on the mat, most worlds in
which you do so are remote worlds involving systematic hallucinations, so your belief is safe
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(Sosa 1999, Pritchard 2007, Williamson 2000). But does either idea extend to inductive
skepticism regarding laws and theories? If the true law were not Y = bX+a, would science
have noticed already? Are all worlds in which the truth is Y = cX2+bX+a safely bounded
away from Y = bX + a worlds in terms of similarity—regardless how small the coefficient
c is?1 One may fiddle with similarity metrics to obtain almost any desired result, but
similarity metrics are ultimately supposed to explain usage concerning counterfactual
conditionals, and it remains awkward to deny that science might be subject in the future
to more of the sorts of revolutionary surprises it has encountered in the past, even with
respect to its best-tested theories (Laudan 1981). The best one can expect of even ideally
diligent, ongoing scientific inquiry, it seems, is that it roots out error eventually. Perhaps
allowance for a time lag between the onset of knowledge and error-detection is essential
for knowledge of universal laws and theories.

There is a venerable tradition, expounded by Peirce (1878), James (1898), Reichenbach
(1949), Carnap (1945), Putnam (1963), and Gold (1967) and subsequently developed
by computer scientists and cognitive scientists into a body of work known as formal
learning theory (Jain et al. 1999), which models the epistemic agent as a learner who
processes information through time and who stabilizes, eventually, to true, inductive
beliefs. Inductive learning is a matter of finding the truth eventually and of avoiding error
eventually. It is natural to think of inductive knowledge that φ as having learned that φ.
Having learned that φ implies that one has actually stabilized to true belief that φ and
that one would have converged to true belief whether φ otherwise. The proposed semantics
is more lenient—one has knowledge that φ if and only if one has actually converged to
true belief that φ (as in having learned) and one would have avoided error whether φ
otherwise—one might simply suspend belief forever if the data are so unexpected that one
no longer knows what is going on. Allowance for suspension of belief is more plausible
sociologically, and it also turns out to be essential if the consequences of known theories
are to be themselves knowable by the same standard.2

The proposed semantics is not presented as a definitive analysis of inductive knowledge
in the traditional, exacting sense. It is intended merely to be the best available logical
framework for representing interactions between inquiry and inductive knowledge and to
cast a unifying light on some familiar issues in epistemology and the philosophy of science.
Such issues include: how learning produces inductive knowledge, how deductive inference
produces new inductive knowledge from old, how inductive knowledge can thrive in a
morass of inconsistency, why scientific knowledge should allow for a certain kind of luck
or “serendipity”, how one can know that one knows, why one can’t know that one doesn’t

1Nozick (1981) and Roush (2007) defend the idea that we would have noticed the failure of known
laws already because, if a given uniformity weren’t true, some distinct uniformity would have been. But
in the polynomial example, all the regularities are law-like. Vogel (1987) presents additional objections
to tracking as an adequate account of inductive knowledge.

2Alternatively, one could simply stipulate that the deductive consequences of inductive knowledge are
known, but then one would have no explanation why or how they are known, aside from the stipulation.

2



know, the invalidity of Fitch’s (1963) paradox of unknowability for inductive knowledge,
how students can acquire knowledge without being able to second-guess their teachers, and
how common scientific knowledge can emerge in a population of mostly non-experts. One
common thread running through the following results is epistemic parasitism. Deduction
can generate new inductive knowledge from old, a given agent can know inductively that
she knows, and education can transfer inductive knowledge from an expert to her pupils
but only if the new knowledge is mindlessly parasitic on the old—independent reasons
or insistence upon consistency between alternative lines of research can as easily destroy
knowledge as further it. Another recurrent theme is how hazardous and misleading it
can be to rely upon over-simplified logical languages and models that license unbounded
iteration of plausible but vaguely understood axioms.

Inclusion of the entire learning process within models of epistemic logic is consonant
with the current trend in epistemic logic (van Benthem 2011) toward more dynamic and
potentially explanatory modeling of the agent. Recently, there have been explicit studies
of truth tracking and safety analyses of knowledge (Holliday 2013) and of inductive learn-
ing within a modal logical framework (Gierasimcszuk 2010). Hendricks (2001) proposed
to develop learning models for inductive knowledge, itself. This paper carries that pro-
posal to fruition.3 Johan van Benthem has encouraged the development of connections
between learning theory and epistemic logic for decades, so it is a particular pleasure to
contribute this study to his festschrift.

2 Syntax

Let G = {1, . . . , N} be indices for a group of N individuals. Let Latom = {pi : i ∈ N} be
a countable collection of atomic sentences. Define the modal language LBIT in the usual
way with classical connective → and the following modal operators, where ∆ is a finite

3Some of the underlying ideas were presented informally in (Kelly 2001).
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set of sentences.4

⊥ : contradiction;

[Ḟ]φ : it is henceforth the case that φ;

[F]φ : it is henceforth the case that φ from now;

Nφ : φ is the case now;

@t φ : φ is the case at time t;

[ I ]i φ : information is available to i that φ is now the case;

[D]i φ : information is available to i that what φ says now is

determined to be the case by the learning program i has now;

[B]i φ : the learning method of i believes that what φ says now is true;

Si∆ : ∆ is doxastically stable for i;

[M]i φ : it is methodologically necessary for i that φ is the case now;

ψ 〈MD]→i,∆ φ : it is methodologically feasible for i to determine that φ is the case,

given that ψ is the case, and to do so in a way that holds

i’s belief whether ∆ fixed.

Let L@BIT denote the set of all LBIT sentences that are prefixed by an operator @t for
some t ∈ N, so L@BIT ⊆ LBIT.

Extend LBIT with definitions as follows. The classical connectives ¬,∧,∨, and > are
definable in the usual way. For each box operator [X]i listed above or defined later, assume
that the dual operator is defined as follows:

〈X〉i φ := ¬[X]i¬φ;

Define the standard notation:

Bφ := [B]i φ;

Gφ := [F]φ;

Fφ := 〈F〉 φ;

and similarly for Ḟ, Ġ. Introduce the abbreviations:

Si δ := Si{δ};
ψ 〈MD]→i,δ φ := ψ 〈MD]→i,{δ} φ;

〈MD]i φ := >〈MD]→i,∅ φ.

4The rich base language is consonant with D. Scott’s (1970) advice to seek epistemic principles in
interactions between operators.
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When Γ, ∆ are finite subsets of LBIT and Xi is an arbitrary modal operator, let:

XiΓ :=
∧
γ∈Γ

Xi γ;

∆→ Γ :=
∧
δ∈∆

δ →
∧
γ∈Γ

γ;

3 Computational Learning Models

Let E denote the set of possible external worlds. In a Kantian spirit, learning semantics
imposes no structure or restrictions whatever on E. Let T = N be interpreted as discrete
stages of inquiry. Let G = {1, . . . , N} be interpreted as a finite set of agents. Agent i ∈ G
is assumed to have some overall, discrete, physical sensory or receptive state that will be
called the agent’s current input state. Think of S = N as code numbers for those states.
Sensory states are not assumed to have propositional meanings (they are never assigned
truth values) but their occurrence makes propositional information available. Let S∗ be
the set of all finite sequences of input states, so each σ ∈ S∗ is a possible input history.

It is assumed that learning proceeds by a learning method that receives successive
inputs and that directs i to believe or to suspend belief on each φ ∈ LBIT by returning 1
or 0 in response to φ. One could go to the trouble of modeling changes to the learner’s
internal memory state as new inputs are received, but it is easier simply to observe that
the learning method determines a total function of type L : S∗ × L@BIT → {0, 1}: just
incrementally simulate the given learning method on the successive input states in history
σ ∈ S∗, provide input φ ∈ L@BIT, and return the result.

It remains to say what it means for L to be computable. Let Φk
c denote the k-ary partial

recursive function5 computed by the Turing machine with Gödel code c.6 Technically, the
k arguments to Φk

c are supposed to be natural numbers, so let 〈.〉 : N∗ → N be a fixed,
effective, bijective assignment of code numbers to input histories and let g : L@BIT → N be
a fixed, effective, bijective assignment of code numbers to L@BIT sentences. Then define,
for each σ ∈ S∗ and φ ∈ L@BIT:

Lc(σ, φ) = Φ2
c(〈σ〉 , g(φ)), (1)

Say that c is a learning method if and only if Φ2
c is total and Boolean-valued. Let C ⊂ N

denote the set of all learning methods.
Each learning method covers all future contingencies, but i’s learning method can

change from time to time through maturation, mishap, revelation, disease, and death. A

5In recursive function theory, one can write any number of inputs on the tape of a given Turing
machine, but the machine produces interesting outputs only for some fixed number of inputs k. The arity
superscript k is usually obvious from context and will be omitted.

6The standard notation is φi, but φ is also standardly employed in logic as a variable over sentences.
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joint method trajectory is a function c : (G × T ) → C that assigns a learning method
c ∈ C to each agent i ∈ G at each time t ∈ T . A possible world is a pair w = (e, c),
such that e ∈ E and each c is a joint method trajectory. The set of all possible worlds is
therefore definable as: W = E × ((G × T ) → C). Let ew denote the e component of w
and let cw denote the c component. Then one can define the method assignment function
c(i, w, t) = cw(i, t).

A proto computational learning model (PCLM) for agents G is a quadruple Mt∗ =
(E, s, V, t∗) such that E is a non-empty set, t∗ ∈ T and:

s : (G×W × T )→ N;

V : (Latom × T )→ Pow(W ).

Think of t∗ as the “now” of the epistemic context under discussion (Kamp 1971). Think
of V (p, t) as the proposition expressed by atomic sentence p in world w at arbitrary time
t, so V is the model’s valuation function. Think of s(i, w, t) as the signal state that w
presents to i at t in w, so s is the input assignment function.

Note that the method assignment function c and the input assignment function s
both have domain (G ×W × T ). Let g be a generic such function. For fixed i, w, t, let
gi,w,t = g(i, w, t). For fixed t and w let gt,w(i) = g(i, w, t), so that gw,t = (gw,1,t, . . . , gw,N,t)
is the g-profile of the agents in w at t. For fixed w, let gw(i, t) = g(i, w, t) so that
gw = (gw,0, . . . ,gw,t, . . .) is the joint g-trajectory of the agents in w and the restriction
gw|t = (gw,0, . . . ,gw,(t−1)) is the joint g-history of the agents in w up to t. For fixed w
and i let gw,i(t) = gi,w,t, so that gi,w = (gi,w(0), . . . , gi,w(t), . . .) is the g-trajectory of i in
w and gi,w|t is the g-history of i in w up to t. Thus, one may speak of the joint method
trajectory cw in w, of the input history si,w of i in w, etc.

The input history si,w|t′ of i in w has no truth value—it is a temporal sequence of
physical states—but it makes available the following cumulative propositional information
to i in w at t:

I(i, w, t) = {w′ ∈ W : si,w|t = si,w′|t}.

Call I the information assignment function. In Kripke semantics for modal epistemic
logic, available information is represented in terms of the binary relation “w′ is possible
for all that i has been informed in w (at time t)”:

Ii,t(w,w′) ⇔ w′ ∈ Ii,w,t.

For fixed i and t, (W, Ii,t, V ) is a standard Kripke model. Since Ii,t is an equivalence
relation, the corresponding, available information operator is S5, as is often assumed (van
Benthem 2010). Making propositional information available via physical signals is not
the same thing as inserting that information directly into i’s beliefs—it is still up to i’s
computable learning function Lcw,i,t to interpret the signals, to recover the information
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they afford, and to incorporate it smoothly into i’s hyper-intensional belief system—or to
fail to.

Possibilities of error that are incompatible with the information currently available
will be deemed irrelevant to learning and knowledge. Furthermore, it does not seem that
i needs to have been informed of her own learning method—the method merely has to
determine success in light of available information. Accordingly, define the determination
assignment function:

D(i, w, t) = {w′ ∈ Ii,t,w : ci,w,t∗ = ci,w′,t∗}.

Then Di,w,t is the strongest proposition determined at t by the learning strategy possessed
by i in w at t∗. The binary relation Di,t(w,w′) is again an equivalence relation that refines
Ii,t(w,w′).

Since tensed statements have no truth value until the time is specified, the objects
of belief for i are understood to be true or false at the time of utterance t∗. The hyper-
intensional belief assignment function is then defined by:

B′(i, w, t) = {φ ∈ L@BIT : Lci,w,t(si,w|t,@t∗ φ) = 1}.

The belief state Bi,w,t of i in w at t is decided by the learning method ci,w,t that i actually
follows in w at t. So belief is sentential and computationally concrete.

In the long run, we are all dead. So if inductive knowledge depends upon i’s actual
convergence to true belief, then inductive knowledge is impossible and learning semantics
fails to deliver on its promise to sidestep inductive skepticism. One potential such story is
that i would converge to true belief if i were to continue to use her current method forever.
However, that would make it impossible for i to know inductively that all humans are
mortal, since i would be immortal if she were to follow her current method forever. What
matters is not what i would have believed had she really followed her learning method
forever, but simply what her current method would have directed her to believe. Then i
can know inductively that all humans are mortal because her own learning method would
simply chalk herself up as another confirming instance when her obituary is published.
She can also know inductively that it is dangerous to drive when intoxicated even though
she always believes the contrary when intoxicated, and so forth. That can be accomplished
semantically by basing i’s future, virtual beliefs on what i’s current learning method ci,w,t∗
at t∗ would direct i to believe in response the inputs si,w,t that are really available to i in
w at t. Accordingly, define the virtual belief assignment function as follows:

B(i, w, t) = {φ ∈ L@BIT : Lci,w,t∗ (si,w|t,@t∗ φ) = 1}.

Virtual belief coincides with belief at t∗ but may differ markedly thereafter, and that is a
good thing.

The aim is to interpret learnability, knowability, and the feasibility of knowing some
things given that you know other things. In order to interpret those modalities, one must
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entertain counterfactual changes in i’s method. However, it is not intended to model
counterfactual dependencies between i’s method and the external world (e.g., if i were
not a Bayesian then the history of statistics would be different) or between the methods
of distinct agents (e.g., i is an identical twin of j so their methods would be the same).
Instead, it is assumed that a simple substitution operation accomplishes the requisite
metaphysical voyage to the nearest possible world in which i’s method changes. The
joint method assignment c[d/i, t] that results from substituting learning program d for
the learning program ci,t∗ of i in c at t∗ as follows:

(c[d/i, t])(i′, t′) =

{
d if i′ = i ∧ t′ = t;
c(i′, t′) otherwise.

Let w = (e, c) ∈ W . Then the world in which i uses program d at t∗ in w is:

w[d/i, t] = (e, c[d/i, t]).

Counterfactual shifts of method open the door to the medieval problem of information
concerning future contingents, for since s(w, i, t) depends on w, which specifies i’s method
trajectory ci,w, we have the specter that si,w|t 6= si,w[d/i,t]|t—i.e., that the information
informing i’s choice of learning method at stage t could be yanked back by nature if that
choice were carried out—as when a member of the Calvinist elect decides to sin because
she is already saved. Learning semantics simply assumes that the information available to
i cannot be affected by future shifts in method. A computational learning model (CLM)
is, accordingly, a PCLM that satisfies the following, for all i ∈ G, d ∈ C, w ∈ W , and
t ∈ T :

si,w|t = si,w[d/i,t]|t. (2)

4 Learning Semantics

Let Mt∗ = (E, s, V, t∗) be a CLM. Define the proposition ‖φ‖tMt∗
expressed by φ in Mt∗

as follows. In the base case:

‖p‖tMt∗
= V (p, t).

Start with classical, propositional logic:

‖⊥‖tMt∗
= ∅;

‖φ→ ψ‖tMt∗
= (W \ ‖φ‖tMt∗

) ∪ ‖ψ‖tMt∗
.
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For the temporal operators, define:

‖[Ḟ]φ‖tMt∗
=

⋃
t′≥t∗
‖φ‖t′Mt′

;

‖[F]φ‖tMt∗
=

⋃
t′≥t∗
‖φ‖t′Mt∗

;

‖Nφ‖tMt∗
= ‖φ‖t∗Mt∗

;

‖@t′ φ‖tMt∗
= ‖φ‖t′Mt∗

.

Think of t∗ as “now”, or the time at which the truth of some statement is to be assessed,
and of t as a time that is considered in the evaluation of a future tense operator. Of
principal interest in the sequel is the contextual future tense operator [F], which quantifies
over all times from t∗ onward without resetting the contextual now. Alternatively, [Ḟ]
quantifies over all times from t onward and also resets the contextual now to the future
time visited. That allows one to speak of convergence to the truth at some time in the
future.

Information and determination are defined propositionally in the standard way and
both are S5 operators for reasons discussed above.

‖[ I ]i φ‖tMt∗
= {w ∈ W : Ii,w,t ⊆ ‖φ‖t

∗

Mt∗
};

‖[D]i φ‖tMt∗
= {w ∈ W : Di,w,t ⊆ ‖φ‖t

∗

Mt∗
}.

Virtual belief, on the other hand, is thoroughly and unabashedly hyper-intensional.

‖[B]i φ‖tMt∗
= {w ∈ W : φ ∈ Bi,t,w}.

Methodological necessity is straightforward—it is a universal quantifier over possible
learning strategies for i at t∗:

‖[M]i φ‖tMt∗
= {w ∈ W : (∀c ∈ C) w[c/i, t∗] ∈ ‖φ‖tMt∗

}. (3)

The dual operator 〈M〉i is crucial for interpreting theses concerning learnability and knowa-
bility.

To motivate conditional feasibility, consider the familiar modal logical thesis that i
knows that she knows what she knows: Ki φ→ KiKi φ. The thesis isn’t very plausible as
it stands—maybe i has no belief whatever concerning Ki φ. It becomes more plausible if
it is understood to say that i is in a position to guarantee that she knows that Ki φ via a
computable inference from her current beliefs, given that she knows that φ. Since i may
not be aware of what her learning program is in w, the inferential procedure should work
for any learning program compatible with her current information. The idea is not to

9



modify how i knows that φ, so the operation should also hold i’s beliefs whether φ fixed.
Define c ≡∆ d to hold if and only if the following conditions:

Lc(σ,@t∗ δ) = Ld(σ,@t∗ δ);

Lc(σ,@t∗¬δ) = Ld(σ,@t∗¬δ);

hold for all σ ∈ I∗ and δ ∈ ∆. Say that total recursive function h holds ∆ fixed if and
only if h(c) ≡∆ c, for all c ∈ C. Then let w ∈ ‖ψ 〈MD]→i,δ φ‖tMt∗

if and only if there
exists total recursive function h that holds ∆ fixed such that, for all u ∈ Ii,w,t∗ :

u ∈ ‖ψ‖tMt∗
⇒ u[h(ci,u,t)/i, t] ∈ ‖φ‖tMt∗

.

Conditional feasibility is witnessed by a total recursive (t.r.) transformation h of one
learning method into another. The following, standard lemma from recursive function
theory facilitates the construction of such functions.

Proposition 1. (∀ t.r. f)(∃ t.r. h)(∀c, x, y ∈ N) Φh(c)(x, y) = f(c, x, y).

Inference—even deductive inference—can be subtly treacherous in learning semantics.
Suppose that i contemplates changing her learning strategy c = ci,w,t∗ to d, which gen-
erates exactly the same belief state concerning premise δ that c does, in every possible
input situation. Assumption (2) guarantees that d results in the same belief whether δ
that c does given the same inputs, but the change from c to d could modify or even shut
off the flow of future inputs to i because other agents may detect the change in i (e.g.,
they may be subjects in a poorly blinded social psychology experiment and may desert
in protest when they discover the morally unflattering conclusions i intends to publish
about them if the experiment vindicates δ). Furthermore, the change from c to d could
make δ false if the truth of δ depends on what some or all of the agents believe (e.g., i is a
major player in the market). Either way, i’s election to adopt inferential strategy d could
be empirically or semantically self-defeating, in the sense that premise δ of the intended
inference becomes untestable or false as a consequence of the inference being performed.

Fortunately, it is part of good scientific practice to choose premises and experimental
designs that prevent one’s valid inferences from being self defeating, so it is useful to have
vocabulary expressing that such preventive measures have successfully been carried out for
some intended premise δ. It is too strong to say that the inputs to i would be exactly the
same whether she uses c or d because i would presumably receive some signals dependent
upon her own beliefs. It suffices that c and d do not base their beliefs concerning δ on
any inputs that would change if i were to replace c with d. Define w ∈ ‖Si ∆‖tMt∗

to hold
if and only if for all d ∈ C such that ci,w,t∗ ≡∆ d and for all u ∈ Di,w,t∗ , t ≥ t∗, and δ ∈ ∆:

u ∈ ‖δ‖t∗Mt∗
⇔ u[d/i, t∗] ∈ ‖δ‖t∗Mt∗

; (4)

Lci,u,t∗ (si,u|t,@t∗ δ) = Ld(si,u[d/i,t∗]|t,@t∗ δ); (5)

Lci,u,t∗ (si,u|t,@t∗¬δ) = Ld(si,u[d/i,t∗]|t,@t∗¬δ). (6)
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That concludes the inductive definition of ‖φ‖tMt∗
. Define validity in a model and

logical validity as follows:

Mt∗ |= φ ⇔ W = ‖φ‖t∗Mt∗
;

|= φ ⇔ Mt∗ |= φ, for each CLM Mt∗ .

Note that validity in a model initializes time to the model’s current epistemic context
time t∗. Finally, logical entailment and equivalence are defined as follows:7

φ |= ψ ⇔ |= (φ→ ψ);

φ ≡ ψ ⇔ |= (φ↔ ψ).

5 Example: Outcomes of a Repeated Experiment

CLMs accommodate a boggling range of learning situations, but a simple collection of
models suffices to illustrate many of the results that follow. Assume that each agent i
observes the successive values of a repeated experiment whose outcomes are effectively
coded as natural numbers. Identify possible external worlds with infinite outcome se-
quences ε : N→ N. Let E0 denote the set of all such sequences. Define, for k ∈ N:

s0(i, (ε, c), t) = ε(t);

V0(pk, t) = {ε ∈ E0 : ε(t) = k} × CN ;

Nt∗ = (E0, s0, V0, t
∗).

Temporal operators allow for compact expression of a range of increasingly complex
statements:

pk : the current outcome is k;

Gpk : the outcome will be k;

Fpk : the outcome is k from now on;

FGpk : the outcome will stabilize to value k;

GF pk : the outcome is k infinitely often.

A hypothesis is currently objective for i just in case i cannot alter its truth value by
changing her learning method:

Oi φ := [ I ]i(φ↔ [M]i φ).

7N.b. substitution of equivalents for equivalents under temporal operators does not preserve validity
(Kamp 1971). For example, |= G(φ↔ φ) and φ ≡ Nφ, but 6|= G(φ↔ Nφ).
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One special feature of model Nt∗ is that inputs do not depend on methods, so:

Nt∗ |= Oi φ→ Si φ. (7)

Another special property of Nt∗ is that it is empirical in the sense that the truth of
objective statements supervenes on the input stream:

(si,w = si,u ∧ w ∈ ‖Oi φ ∧ φ‖tNt∗ ) ⇒ u‖φ‖tNt∗ . (8)

6 Example: Agency, Games, and Experimentation

The agents in model Nt∗ are isolated, passive scientists who receive inputs from a fixed,
non-reactive nature and change their beliefs accordingly. But even an isolated scientist can
manipulate nature. Moreover, in a social system, the actions of the agents are observable
by other agents, resulting in potential cascades of interactive effects. Although LBIT has
no vocabulary describing acts other than belief, CLMs can represent arbitrarily complex
social interactions involving such acts. The trick is to locate agents’ diachronic strategies
for non-doxastic actions within the “external world” e ∈ E. Therefore, all of the valid
theses of learning semantics are valid for game-theoretic applications.

Here is one way to do it. Let X ⊆ N be a set of potential actions. Assuming that the
actions are observable by all of the agents, let S = XN . Then S∗ contains all possible
finite play histories. Let A denote the set of all a ∈ N such that Φa is total with range
included in X. The disposition to act computed by a looks at the current input history
and chooses how to act:

Aa(σ) = Φa(〈σ〉).

Dispositions to act can change through time just as dispositions to believe can. A joint
disposition trajectory a : (G × T ) → A assigns a profile of dispositions to the agents at
each time. In purely social applications, the “external world” e can be identified with a,
so possible worlds are pairs w = (a, c). In experimental science, one agent can represent
nature and the rest of the agents can be used to model socially distributed scientific
inquiry. The real inputs available to the agents at a given stage are generated by the
action dispositions of the agents at earlier stages. Let σ ∗ s denote the concatenation of
signal s ∈ S to finite sequence σ ∈ S∗.

ṡi,(a,c)|0 = ();

ṡi,(a,c)|(t+ 1) = ṡi,(a,c)|t ∗ (Aa1,t+1(ṡi,(a,c)|t), . . . , AaN,t+1
(ṡi,(a,c)|t)).

In the long run, all the players of an infinite game are dead, as are the dispositional prop-
erties of societies, economies, and terrestrial organisms. Hence, it is often more natural to
think of the agents as studying one another’s and nature’s current reactive dispositions,
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just as was done for belief. Information gathered by means of earlier dispositions remains
available.

si,(a,c)|t = ṡi,(a,c)|t;
si,(a,c)|(t+ 1) = si,(a,c)|t ∗ (Aa1,t+1(si,(a,c)|t), . . . , AaN,t+1

(si,(a,c)|t)).

Either way, assumption (2) is satisfied, so a CLM results when a valuation function V is
specified.

In game theory, each agent receives some utility in each world at each time, as a result
of what all the agents do. The utilities may also shift through time if we interpret the
agents as playing different games from time to time. All of that can be absorbed into
the definition of V—for example, some atomic sentence could be interpreted to say that
the players are currently in a (virtual) Nash equilibrium with respect to the game that V
tacitly assumes them to be playing at the time.

7 Correctness and Error

Define “i is in error that φ” as follows:

Ei φ := Bi φ ∧ N¬φ.

Define “i is in error whether φ” similarly, where the tilde is a mnemonic that the intended
reading is “whether”:

Ẽi φ := Ei φ ∨ Ei¬φ.

According to that definition, one cannot be in error whether φ unless one believes that
φ or believes that ¬φ. That is straightforward, if belief is deductively closed, but in the
present, hyper-intensional framework it is very weak—e.g.:

Ẽi φ 6≡ Ẽi¬φ; (9)

and belief that φ does not count as an error whether ¬φ. However, in order to interpret
successful learning whether φ, all that is required is some unambiguous convention for i
“getting φ wrong”, and the proposed convention suffices in a minimal, maximally para-
consistent way. Other computationally feasible conditions could plausibly be added (cf.
section 16.3 below) and, as a matter of fact, the results that follow are all provable under
the much more stringent condition that avoidance of error whether φ implies avoidance of
all error whatever. However, it is a considerable advantage of the present approach that
inductive knowledge is feasible before science is entirely error-free.

Correctness that φ is absence of error whether φ together with belief that φ. Correct-
ness whether φ might plausibly be defined as correctness that φ or correctness that ¬φ,
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but to maintain the minimal focus on φ and ¬φ so far as learning whether φ is concerned,
correctness whether φ is defined as belief whether φ together with absence of error whether
φ.8

B̃i φ := Bi φ ∧ Bi¬φ;

Ci φ := ¬Ẽi φ ∧ Bi φ;

C̃i φ := ¬Ẽi φ ∧ B̃i φ.

8 Inductive Learning

In formal learning theory, inductive learning whether φ is understood as guaranteed con-
vergence of i’s current learning method to correct belief whether φ:

L̃iφ := [D]iFGC̃i φ.

The truth conditions for L̃i φ can be expressed entirely in terms of the semantics of φ
along with i’s concrete learning program c and the concrete inputs it receives. Recalling
that ci,u,t∗ = ci,w,t∗ , for each u ∈ Di,w,t, we have that w ∈ ‖Li φ‖tMt∗

if and only if for all
u ∈ Di,w,t:

u ∈ ‖φ‖t∗Mt∗
⇒ ( lim

t→∞
Lci,w,t∗ (si,u|t,@t φ) = 1 ∧ (10)

lim
t→∞

Lci,w,t∗ (si,u|t,@t ¬φ) = 0);

u 6∈ ‖φ‖t∗Mt∗
⇒ ( lim

t→∞
Lci,w,t∗ (si,u|t,@t ¬φ) = 1 ∧ (11)

lim
t→∞

Lci,w,t∗ (si,u|t,@t φ) = 0).

That is essentially equivalent to saying, in formal learning theory, that i’s current method
ci,w,t∗ decides φ in the limit (Kelly 1996), except that learning semantics allows that the
data depend on the learning method, whereas most learning theoretic analyses do not.

Regarding death in the long run, note that:

|= ([D]iFG)φ→ ([D]iG)([D]iFG)φ;

so learning does imply learning forever, if the epistemic context is held fixed:

|= L̃i φ→ [D]iGL̃i φ.

At the same time, i may have been diagnosed with a terminal illness, so there exist models
Mt∗ in which:

Mt∗ |= L̃i φ ∧ [ I ]iḞĠ¬L̃i φ.
8I am indebted to Ted Shear for pointing out a flaw in an earlier version of this definition.
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9 Inductive Learnability

Just as the theory of computability concerns what can be computed, rather than how
we actually compute, formal learning theory focuses on learnability—the feasibility of
learning—rather than on learning, itself. Learning semantics affords at least four distinct
grades of feasibility, whose entailments are immediate from their truth conditions:

〈M〉i[D]i φ |= 〈MD]i φ |= 〈M〉i φ |= 〈M〉i〈D〉i φ. (12)

In the case of learnability, all of these concepts collapse to 〈M〉iL̃i φ, because the last
entails the first, since [D]i is an S5 operator:

〈M〉i[D]iL̃i φ ≡ 〈MD]i L̃i φ ≡ 〈M〉iL̃i φ ≡ 〈M〉i〈D〉iL̃i φ. (13)

Concretely, w ∈ ‖〈M〉iL̃i φ‖tMt∗
if and only if there exists d ∈ C such that (10) and (11)

hold with d substituted for ci,w,t∗ , for all u ∈ Ii,w[d/i,t∗],t. If φ satisfies Oi φ in Nt∗ , one can
also substitute Ii,w,t for Ii,w[d/i,t∗],t, in which case the truth conditions for learnability are
essentially the same as the conditions for decidability in the limit in (Kelly 1996).9

Universal truths and existential truths about the future are inductively learnable in
the empirical model Nt∗—just believe the universal hypothesis until it is refuted and
believe its negation thereafter, and do the dual thing in the existential case:

Nt∗ |= 〈M〉iL̃iGpk; (14)

Nt∗ |= 〈M〉iL̃iF pk. (15)

But not every empirical hypothesis is inductively learnable. In his “Paralogisms of Pure
Reason” Immanuel Kant (1782/1787) observes that hypotheses like the finite or infinite
divisibity of matter or the existence of a first moment in time “outpace all possible ex-
perience”. Suppose that the laboratory returns a 1 whenever a currently fundamental
particle is split and returns a 0 when an attempted split fails. Then the finite divisibility
of matter can be expressed as FGp0 and the finite divisibility of matter can be expressed
as GF p1. One intuitive sign that these hypotheses might pose empirical difficulties is that
neither is refuted by any finite sequence of inputs. In fact, the following are non-learnable
in Nt∗ , for all k:

Nt∗ |= ¬L̃iFGpk; (16)

Nt∗ |= ¬L̃iGF pk. (17)

It suffices to show, via a standard, learning theoretic diagonal argument that no c satisfies
convergence conditions (10) and (11).

9The differences concern mere conventions for coding the acceptance, rejection, or suspension of belief
of i with respect to φ.
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Learning semantics is a flexible framework for inductive learning and learnability that
allows one, for the first time, to rigorously iterate the learning operator, in order to analyze
precisely such statements as that it is learnable whether someone else is learning whether
φ. But the focus of this paper is on inductive knowledge, to which we now turn.

10 Inductive Knowledge

Agent i has learned whether (that) φ if and only if i is learning whether φ and, henceforth,
i virtually and correctly believes whether φ:

˜Ledi φ := GC̃i φ ∧ L̃i φ;

Ledi φ := GCi φ ∧ L̃i φ ≡ ˜Ledi φ ∧ φ.

Having learned inductively whether φ may sound odd, since the culmination of inductive
inquiry depends on what i’s current learning method would do in the future. But such
locutions are actually quite common: e.g., “I have quit smoking for good”.

It is natural from a learning perspective to expect that inductive knowledge is just
having learned. But there is a weighty consideration to the contrary: learnability is not
preserved under logical consequence—recall (14), (16), and (17) and that in temporal
logic:

|= Gφ → GFφ; (18)

|= Gφ → FGφ. (19)

Since having learned entails learnability, it follows that knowledge as having learned can-
not be closed under logical consequence. And the examples sound bad: we would know
that the laws of quantum mechanics apply invariably, but not that they apply infinitely
often or all but finitely often. It sounds better to say that we know that a predicate holds
infinitely often because we know that it holds invariably.

Pursuing that idea, suppose that i’s only reason for believing that GFφ is that she
believes Gφ and suppose that her reason for believing Gφ is that it has stood up to severe
testing so far (it might have been refuted by the data at each stage of inquiry). It is a
traditional theme in the philosophy of science that general theories are not testable until
they are articulated with auxiliary assumptions (Duhem 1914). Semantically speaking,
“articulation” amounts to the substitution of a logically stronger, testable hypothesis for
the untestable hypothesis, itself. Thus, one may think of Gφ as a testable articulation
of GFφ, since it posits a particularly simple way in which GFφ might be true. Then i
stabilizes to true belief that GFφ as soon as she stabilizes to true belief that Gφ, so the
actual convergence requirement is also met for GFφ. But what if Gφ were to be refuted,
say at time t? Maybe i has plausible ideas about how to re-articulate GFφ (e.g., as
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@t+1Gφ). In order to learn by such a strategy, i would require a contingency plan for re-
articulating GFφ that somehow hits upon a true articulation eventually in every possible
world in which GFφ is true. But it has already been shown that no such contingency plan
exists for GFφ, since it is not learnable—intuitively, there are uncountably many potential
such articulations, most of which posit uncomputable input streams that computable i
cannot even conceive of, much less hit upon by luck.

Another venerable theme in the philosophy of science is that there is “no logic of
discovery” (Hempel 1945, Popper 1935), which means, roughly, that science does not
have, and need not have, for purposes of empirical justification, an explicit contingency
plan for what to propose when old hypotheses are refuted. A standard argument for that
conclusion is historical rather than learning theoretic.10 The chemist Kekulé famously
claimed to come up with the idea that benzene molecules are cyclic by dreaming of a
snake biting its tail (Hempel 1945, Benfey 1958). Kekulé’s benzene hypothesis was a
testable articulation of the atomic theory of matter that stood up to test. It does not
seem to count against our knowledge of atomic theory, in light of subsequent testing, that
Kekulé possessed no systematic contingency plan for dreaming up alternative structures
had the ring structure failed. Scientists refer to luck that does not undermine scientific
knowledge as serendipity. Kekule’s dream was serendipitous in that sense, as is all luck
in hitting upon a true articulation of a hypothesis. Since untestable hypotheses like GFφ
cannot be learned, they can be known only via serendipity. So serendipity, the practice of
testing testable surrogates for untestable hypotheses, and the slogan that there is “no logic
of discovery” are all tightly bound to a logical consideration—the closure of knowability
under logical consequence.

Suppose that i is commanded by her thesis advisor to investigate GFφ by severely
testing Gφ. We know that i lacks a full logic of discovery for GFφ, since GFφ is not
learnable. Suppose, plausibly, that she has far less—if Gφ is ever refuted, she has no idea
what is going on, suspends belief forever whether GFφ, and switches to a more rewarding
career in business. If her advisor was right (serendipity), then she has already converged
to true belief that GFφ and, since her belief that GFφ is based solely on her belief that
Gφ, she is also guaranteed to root out error with respect to GFφ eventually. Her (actual)
convergence to true belief that the untestable hypothesis is true is serendipitous, but her
eventual avoidance of error is not lucky at all—it is guaranteed by her strategy to suspend
belief forever if GFφ is refuted. So in terms of rooting out error, i is no worse off for her
dearth of new ideas than she would have been had she possessed a full learning strategy
for GFφ.

In light of the preceding considerations, it is proposed that inductive knowledge that
φ is actual convergence to true belief that φ along with guaranteed, eventual avoidance

10A notable exception is (Putnam 1963), which argues against the logic of discovery based on a proof
that it is impossible to exactly identify the input sequence even assuming that the sequence is computable.
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of error whether φ:11

K̃i φ := GC̃i φ ∧ [D]iFG¬Ẽi φ;

Ki φ := GCi φ ∧ [D]iFG¬Ẽi φ ≡ K̃i φ ∧ φ.

As an immediate consequence, having learned implies knowing and learning implies that
you will know, but not conversely, which secures the relevance of learning to epistemology
without making it necessary for knowledge:

|= L̃i φ→ K̃i φ; (20)

|= Li φ→ Ki φ. (21)

In terms of concrete learning methods, the first conjunct of K̃φ is true in w at t if and
only if:

w ∈ ‖φ‖t∗Mt∗
⇒ ((∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t φ) = 1 ∧ (22)

(∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t ¬φ) = 0);

w 6∈ ‖φ‖t∗Mt∗
⇒ ((∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t φ) = 0 ∧ (23)

(∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t¬φ) = 1);

and the second conjunct is true in w at t if and only if for all u ∈ Iw,i,t:

u ∈ ‖φ‖t∗Mt∗
⇒ lim

t→∞
Lci,w,t∗ (si,u|t,@t ¬φ) = 0; (24)

u 6∈ ‖φ‖t∗Mt∗
⇒ lim

t→∞
Lci,w,t∗ (si,u|t,@t φ) = 0. (25)

Note that (24) and (25) weaken the corresponding conditions (10) and (11) for having
learned.

11Hendricks (2001) presents several concepts of empirical knowledge, the closest of which to the fol-
lowing proposal is “realistic reliable true belief” or RRT knowledge. Hendricks’ informal gloss of RRT
knowledge (p. 181) amounts to the following proposal in the present notation: Krrti φ := Gφ ∧ L̃i φ
(the operator [D]i is dropped from the L̃i φ condition in the accompanying formal statement—presumably
unintentionally). RRT knowledge is very different from inductive knowledge as defined below. First of all,
RRT knowledge requires that Gφ, which would make it impossible for i to know, for example, that she
believes that φ, if that belief state is transient. Learning semantics sidesteps that difficulty by evaluating
the proposition believed at the “now” of utterance. Second, RRT knowledge does not require GBi φ, so
RRT knowledge does not even imply belief that φ, much less stable belief that φ—it may be years until
the learning process succeeds. Finally, RRT knowledge does imply learning whether φ, which implies that
RRT knowability cannot be closed under deductive consequence, as has just been explained. Hendricks’
claim that RRT knowledge validates the axioms of modal system S4 (proposition 12.3, p. 208) is therefore
false. The discrepancy is explained by the fact that, just prior to the proof of proposition 12.3, Hendricks
inadvertently modifies the concept of RRT knowledge a second time (p. 194) to Gφ conjoined with the
existence of a future time t′ such that it is determined now that i believes that φ forever after t′—whether
or not φ is true.
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11 Inductive Knowability

Learning semantics again affords the following notions of inductive knowability, in de-
scending strength:

〈M〉i[D]iKi φ |= 〈MD]i Ki φ |= 〈M〉iKi φ |= 〈M〉i〈D〉iKi φ. (26)

This time, the distinctions matter, due to the actual convergence requirement GC̃i φ for
knowledge. But the first three can be neglected, since they imply a version of inductive
skepticism, namely, that if it is logically valid that φ is knowable by i, then i has the
information that she has the power to have correct belief that φ now, which implies that
she has the information that she has the power to make φ true now.12

|= (〈M〉i[D]iKi φ ∨ 〈MD]i Ki φ ∨ 〈M〉iKi) ⇒ |= [ I ]i〈M〉i φ. (27)

That leaves the fourth, weak option, which requires only that it be feasible for i to make it
possible that she knows now—an idea consonant with allowance for serendipity in inductive
knowledge:

〈MD〉i φ := 〈M〉i〈D〉iK̃i φ (28)

≡ 〈M〉i〈D〉i(GC̃i φ ∧ [D]iFG¬Ẽi φ) (29)

≡ 〈M〉i(〈D〉iGC̃i φ ∧ [D]iFG¬Ẽi φ); (30)

where the last equivalence is due to [D]i being S5. Condition (30) expands to the existence
of d ∈ C such that for some u ∈ Iw,i,t:

u[d/i, t] ∈ ‖φ‖tMt∗
⇒ ((∀t ≥ t∗) Ld(su,i|t,@t φ) = 1 ∧ (31)

(∀t ≥ t∗) Ld(su,i|t,@t ¬φ) = 0);

u[d/i, t] 6∈ ‖φ‖tMt∗
⇒ ((∀t ≥ t∗) Ld(su,i|t,@t φ) = 0 ∧ (32)

(∀t ≥ t∗) Ld(su,i|t,@t ¬φ) = 1);

and for all u ∈ Iw,i,t:

u[d/i, t] ∈ ‖φ‖tMt∗
⇒ lim

t→∞
Ld(si,u|t,@t ¬φ) = 0; (33)

u[d/i, t] 6∈ ‖φ‖tMt∗
⇒ lim

t→∞
Ld(si,u|t,@t φ) = 0. (34)

Conditions (31) and (32) are trivially satisfiable by dogmatically believing that φ and
conditions (33) and (34) are trivially satisfiable by skeptically suspending belief whether
φ. But the conditions are not jointly trivial—the possibility of having converged to the
truth risks the possibility of error infinitely often, unless one has an appropriate strategy

12The third option does yield a non-trivial interpretation of knowability whether.
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for when to suspend judgment, as Popper (1935) recommended. For example, weak
knowability can fail when even the total input stream does not determine the truth of φ
in any world. In that case, say that φ is globally underdetermined—venerable examples
include “the Absolute is lazy” and Poincare’s (1904) perfect trade-off between shrinking
forces and geometry.

The logical positivists attempted to rule out globally underdetermined hypotheses by
deeming them meaningless, on empiricist grounds, but they lacked an explicit story con-
necting global determination with knowability. Here is one. Recall the strategy, discussed
above, of guessing a testable articulation ψ of φ, believing φ until ψ is refuted, and sus-
pending judgment thereafter. It witnesses the following, liberal knowability condition for
objective hypotheses in Nt∗ :

Proposition 2. Suppose that w ∈ ‖Oi φ‖t
∗

Nt∗
and there exists u ∈ Ii,w,t∗ such that u ∈

‖φ‖t∗Nt∗ and si,u is computable. Then w ∈ ‖〈MD〉i Ki φ ‖t
∗

Nt∗
.

As a corollary, we have the following, knowability result, in contrast to the non-learnability
results (16) and (17) above. Just let u satisfy si,u,t = si,w,t for t < t∗ and si,u,t = k for
t ≥ t∗:

Nt∗ |= 〈MD〉i(KiGpk ∧ KiF pk ∧ KiFGpk ∧ KiGF pk). (35)

The restriction to Nt∗ is crucial because there are models in which the Institutional Review
Board shuts down the research project as soon as i starts to draw useful conclusions from
it. It is also crucial that φ is true in some computable world. For example, take the setting
to be Nt∗ restricted to worlds that present binary data. Add a new atomic sentence q
with the valuation V (q) = {w ∈ W : si,u = g}, where g is a fixed, total, non-computable,
binary-valued function. Call the resulting model Bt∗ . Then we have:

w 6∈ ‖〈MD〉iKi q‖
t∗

Bt∗
. (36)

The restriction to binary sequences in the preceding, negative result is crucial. If the
range of inputs at each stage might be infinite, then one can add an atomic sentence to
Nt∗ that is knowable but true only in worlds that are empirically infinitely uncomputable
(cf. Kelly 1996, 7.19).

12 Fitch’s Paradox Redux

Proposition 2 provides a plausibly broad, sufficient condition for weak inductive knowa-
bility. It was also shown that the condition can fail—concrete, methodological issues
like underdetermination, uncomputability, or ethical considerations can stand in the way.
The knowability literature in traditional epistemic logic has focused on the more arcane
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possibility of unknowability due to epistemic self-reference. Consider the Moore sentence
for φ, defined as follows:

Moi φ := φ ∧ ¬Ki φ.

The Moore sentence is not knowable in standard epistemic logic, for suppose that i knows
it. Then since knowledge is true, Moi φ is also be true, so ¬Ki φ is true. But since Moi is
known, so is conjunct φ of Moi φ, so Ki φ is true. Contradiction. The proof requires only
(i) that the conjuncts of a known conjunction are known and (ii) that knowledge is true.

That is hardly surprising in itself, but it leads in one step13 to Fitch’s paradox, the
statement that any agent for whom every truth is knowable is already omniscient:

(∀φ) (φ→ ♦iKi φ)→ (∀φ) (φ→ Ki φ). (37)

For contraposition, suppose that the consequent of (37) is false. Then unknowable Moii φ
is true, which implies the denial of the antecedent.

Fitch’s paradox is not all that paradoxical after the “gotcha” moment when one realizes
that the denial of the consequent is the self-referential Moore sentence. Nevertheless, there
is a specialist literature devoted to refuting Fitch’s paradox, some authors going so far as
to blame proof by contraposition (Williamson 1993). Therefore, it may be of interest to
check whether the proof of (37) is valid in learning semantics, when the hazy modality ♦i
is sharpened to weak methodological feasibility 〈MD〉i:

(∀φ) (φ→ 〈MD〉iKi φ)→ (∀φ) (φ→ Ki φ). (38)

The step from i knowing that Moi φ to i knowing that φ evidently fails due to hyper-
intensionality—i need not even believe that φ. That makes it weakly possible to know
the Moore sentence of an arbitrary, objective, knowable statement φ in Nt∗ :

Nt∗ |= (Oi φ ∧ 〈MD〉iKi φ)→ 〈MD〉iKiMoi φ. (39)

However, the inference from φ ∧ ψ to φ is about as easy and plausible as deduction
gets, so one can reasonably expect i to be conjunctively cogent with respect to the Moore
sentence in the following sense:

Cocomoi φ := [ I ]i(BiMoi φ↔ (Bi φ ∧ Bi¬Ki φ)).

Can Moi φ be known even by a conjunctively cogent agent? Surprisingly, yes—at least in
the typical case in which i has not been informed outright that knowable, objective φ is
true:

Nt∗ |= (Oi φ ∧ ¬[D]i φ ∧ 〈MD〉iKi φ) → 〈MD〉i(KiMoi φ ∧ Cocomoi φ). (40)

13The ingenious step was taken by Alonzo Church (2009) in an anonymous referee report on Fitch’s
manuscript.
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Of course some sort of aphasia is required for that dubious feat, but it is now more plau-
sibly located in learning, rather than in failure to perform a trivial deductive inference.14

Think of i as taking φ as an object of blind faith, but whenever she is asked whether
she knows that φ, she is awakened from her dogmatic slumber to consider the evidence
whether φ. Since her dogmatism precludes her from knowing that φ, the knowability of
Moi φ reduces to that of φ, so she knows the former based on the evidence for the latter.
Thus, i trades knowledge that φ for knowledge that Moi φ. Some such trade is inevitable,
since it is impossible to know both that φ and that Moi φ because knowledge is true:

Nt∗ |= ¬〈MD〉i(Ki φ ∧ KiMoi φ). (41)

Nonetheless, one can know the conjunction of φ ∧ Moii φ of the two jointly unknowable
statements, and so forth, by the same trick—as long as one does not know that φ.

Nt∗ |= (¬[D]i φ ∧ 〈MD〉iKi φ)→ (42)

→ 〈MD〉i(Ki(Moi φ ∧ φ) ∧ Cocomoi(Moi φ ∧ φ)). (43)

None of that adds up to a counterexample to (38), whose validity in learning semantics
remains an open question. But the interest of that question is merely technical, because
every CLM can be augmented with an atomic sentence diag with the semantics “i believes
neither me nor my negation”:

‖diagi‖tMt∗
= {w ∈ W : Lci,w,t∗ (si,w|t,@t∗ diag) 6= 1 ∧ Lci,w,t∗ (si,w|t,@t∗¬diag) 6= 1}.

Then neither diag nor ¬diag is knowable, but one side or the other must be true, so (38)
is valid in each such model. There is nothing empirically or cognitively ineffable about
diag—its truth supervenes in a concrete, computational way on what i’s learning program
does in response to inputs. The restriction of proposition 2 to objective statements fends
off such examples.

More relevantly for the topics that follow, learning semantics allows for the construc-
tion of monsters like diag that invalidate just about any standard-looking thesis of epis-
temic logic: e.g., “i does not believe that she knows me”. The purpose of the doxastic
stability operator Si is to protect general theses of epistemic logic from the self-referential
onslaught. Under the hypothesis that Si φ obtains, knowledge, learning and having learned
are preserved under counterfactual changes of method that do not modify the agent’s cur-
rent learning disposition with respect to φ.

Proposition 3. Suppose that u ∈ ‖Si ∆‖t
∗

Mt∗
and d ≡∆ ci,u,t∗ and φ ∈ ∆. Then:

u ∈ ‖Ki φ‖t
∗

Mt∗
⇒ u[d/i, t∗] ∈ ‖Ki φ‖t

∗

Mt∗
; . (44)

and similarly for K̃i, L̃i, ˜Ledi and Ledi.

14Alternative learning strategies within the same agent are a familiar theme in the epistemology
literature—e.g., (Nozick 1981).
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13 Epistemic Logic Redux

Here is a standard menu of potential axioms of modal epistemic logic:

N : Ki φ, if |= φ;
K : Ki(φ→ ψ)→ (Ki φ→ Ki ψ);
T : Ki φ→ φ;
B : φ→ Ki¬Ki¬φ;
4 : Ki φ→ KiKi φ;
0.2 : ¬Ki¬Ki φ→ Ki¬Ki¬φ;
0.3 : Ki(Ki φ→ Ki ψ) ∨ Ki(Ki ψ → Ki φ);
0.4 : φ→ (¬Ki¬Kiφ→ ¬Ki φ);
5 : ¬Ki φ→ Ki¬Ki φ.

In conventional possible worlds models for epistemic logic, world accessibility is just a
formal trick for assigning a propositional knowledge state to agent i in world w as follows:

Kw,i,t = {u ∈ W : Ri,t(w, u)}.

The usual idea is to select plausible principles from the menu and then to impose them on
the assigned knowledge states. Modal semantics then serves as a silent bookkeeper that
faithfully manages the iteration of operators subject to those assumptions. For example,
principle T says, plausibly, that knowledge is true. In standard possible worlds models,
that corresponds to the imposition of reflexivity on the model’s accessibility relation.
Learning semantics also validates T in its standard form:

T: |= Ki φ→ φ. (45)

The rest of the principles on the list are plainly false, unless they are re-interpreted vaguely
in terms of abilities, obligations, or ideals. But then it would be better to distinguish
knowledge, itself, from the additional je ne sais quoit in order to shine a cold, logical
light on both and on their interactions. Conditional feasibility 〈MD]→i,φ provides one
clear and plausible interpretation. It allows one to say that there exists some effective
way for i to modify her learning method that is guaranteed to achieve the situation
described in the consequent given that the antecedent is true. The question addressed in
the following section is which, if any, of the traditional candidate axioms is valid under
that interpretation, and under what restrictions.

13.1 Deductive Cogency

Let ∆ be a finite set of premises and let Γ be a set of conclusions. Suppose that ∆ implies Γ,
in light of i’s information. Maybe she knows neither. But is there any concrete, inferential
disposition i could set up in herself to guarantee that if she knows the premises in ∆ then
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she knows the conclusions in Γ as well? Yes, if the premises are inferentially stable, for
learning semantics validates the following principle for finite, disjoint ∆, Γ ⊆ LBIT and
for arbitrary, finite superset ∆′ of ∆ that is disjoint from Γ:

FD: |= (Si∆
′ ∧ [ I ]i (∆→ Γ) ∧ Ki∆) 〈MD]→i,∆′ KiΓ; (46)

When ∆ = ∅ and Γ = {φ}, thesis (46) collapses to a feasible version of the rule N of
necessitation:

FN: |= [ I ]i φ 〈MD]→i,∆′ KiΓ. (47)

When ∆ = {ψ, ψ → φ} and Γ = {φ}, thesis (46) collapses to a feasible version of the
standard axiom K:

FK: |= (Si∆
′ ∧ Ki ψ ∧ Ki(ψ → φ)) 〈MD]→i,∆′ Kiφ. (48)

One may not infer rashly from FN and FK, as one may from the corresponding, traditional
axioms N and K, that the knowledge of i is closed under logical consequence or even that
it might someday be. The extension of knowledge by deduction must proceed, as it does
in the real world, by dint of feasible, cognitive exertion. The local inferential modification
that witnesses thesis (46) is pure deductive inference—believing the conclusions in Γ if and
only if one believes the premises in ∆ and never believing the negation of any conclusion in
Γ. Then convergence to correct belief that ∆ in the actual world results in convergence to
true belief in Γ in the actual world and guaranteed, eventual avoidance of error regarding
the premises in ∆ results in guaranteed, eventual avoidance of error regarding conclusions
in Γ. In that sense, pure deductive inference makes knowledge of Γ epistemically parasitic
on knowledge that ∆. If the parasitic relationship is disrupted because i has independent
reasons for believing some conclusion γ ∈ Γ, i might be disposed to fall into error with
respect to γ infinitely often in some possible worlds compatible with current information,
so it is crucial that i’s only reason for believing Γ is its deducibility from ∆.

The validity of (46) is closely bound to allowance for serendipity. It has already been
shown in terms of Gpk and GF pk that (46) fails for learning:

Thesis (46) is invalid with L̃i, ˜Ledi, Ledi in place of Ki. (49)

Serendipity raises a cautionary moral about the role of deduction in natural science.
The world of science is a “dappled” pastiche of mutually incompatible models and theories
and missed connections (Cartwright 1999). Heisenberg and Schrödinger even battled over
logically equivalent hypotheses, each of which was rigorously tested over distinct domains
of phenomena.15 When contradictions are found, scientists steer around them until some

15For a version of the history, cf. (van der Werden 1973). Learning semantics allows for the possibility
that each scientist knew his own formulation of quantum mechanics at the same time he disputed the
competing formulation. Even neighborhood semantics (Scott 1970), which models belief as a set of
propositions, cannot model that situation.
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other experts resolve them. When new logical connections are found between formerly
disparate research programs, caution is exercised regarding the drawing of inferences from
one program to the other until they are cross-checked by new data. Learning semantics
explains that logical conservatism. For suppose that there are two independent research
programs studying hypotheses φ and ψ, respectively, on the basis of entirely disparate
phenomena. Suppose that the current articulation of φ is standing up well, but ψ looks
bad—its last five articulations were refuted and the current one is in trouble. What to
do? Inferring ψ from φ would generate new knowledge that ψ from knowledge that φ if
inquiry whether φ has culminated. But if inquiry whether ψ has culminated in knowledge
that ¬ψ, then inferring ψ from φ would destroy knowledge that ¬ψ. The contrapositive
inference from ¬ψ to ¬φ is fraught with a similar risk of destroying knowledge that φ.
Hyper-intensional refusal to fire either inference is guaranteed to preserve knowledge of
whichever hypothesis is known and leaves the door open to empirical evidence to resolve
the conflict—hardly a slam-dunk argument for the ideal of deductive closure in empirical
science.

13.2 KK

Suppose that i knows that φ. Evidently, she may fail to know that she knows that φ—she
may not even conceive of the question whether she knows that φ unless she is challenged.
Or φ may say “i does not believe that she knows me”. But inattention and Moorean tricks
aside, is i even capable of knowing that she knows, even though no bell rings (James 1896)
when inductive inquiry succeeds? The answer may appear to be negative:

. . .[Learning in the limit] does not entail that [the learner] knows he knows the
answer, since [the learner] may lack any reason to believe that his hypotheses
have begun to converge. (Martin and Osherson 1998).

Learning semantics delivers a strong, positive verdict: i cannot know infallibly that she
knows inductively, but there is an easy and natural inferential strategy i can adopt to
know inductively that she knows inductively that φ, and so on, to arbitrary iterations.
Define iterated knowledge as follows:

Ki
0φ := φ;

Ki
k+1φ := KiKi

kφ.

Define the following sets of sentences:

Kk
i (φ) = {Kik

′
φ : k′ ≤ k};

Kω
i (φ) =

⋃
k∈N

Kk
i (φ).
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Then for each finite ∆ containing φ and disjoint from Kω
i , we have:16

F4∗: |= (Si∆ ∧ Ki φ) 〈MD]→i,∆ Kω
i (φ). (50)

As a consequence, we have the following, feasible version of the standard (infeasible)
reflection principle 4, for each k:

F4: |= (Si∆ ∧ Ki φ) 〈MD]→i,∆ Ki
k φ. (51)

A simple inferential strategy that witnesses (51) is for i to believe at t that she knew that
φ at t∗ if she never stopped believing that φ from t∗ until t and to believe that did not
know that φ if the alternative case obtains. That inference is intuitive: if i remembers
that she retracted φ between t∗ and the current time t, then the retraction shakes her
confidence that she knew that φ already at t∗. Otherwise, from i’s viewpoint, she had
persuasive evidence for φ at t∗ and nothing in particular has dissuaded her since then, so
of course she thinks she knew that φ at t∗.

In contrast to the situation for deductive closure, learning that one is learning is easy—
learning implies that it is determined that one is learning and whatever is determined can
be learned by believing it no matter what and never believing its negation. Having learned
whether one has learned whether and having learned that one has learned that are both
valid by the same inferential strategy invoked to validate (51). So we have:

Thesis (51) remains valid with K̃i, L̃i, ˜Ledi, Ledi in place of Ki. (52)

13.3 The Insidious Unknown Unknown

For Plato (1949), the least flattering epistemic condition is hubris: failure even to know
that one does not know. The next step is to know, at least, that one does not know. That
motivates one to enter the path of inquiry, or seeking to know, which Plato optimistically
assumed would lead both to knowledge and to knowledge that one knows at the moment
of infallible “recollection”. It has been shown that learning is guaranteed to culminate
in inductive knowledge and that serendipity allows even for acquisition of knowledge of
unlearnable truths. Furthermore, it has just been shown that one can come to know
that one knows at the very same time, just as Plato proposed, even without Plato’s
commitment to infallible recollection. But what about Plato’s fateful first step—coming
to know that one does not know? In that case, learning semantics delivers a negative
verdict:

F5′: Nt∗ 6|= (Si φ ∧ ¬Ki φ) 〈MD]→i,φ Ki¬Ki φ. (53)

16Strictly speaking, one must restrict Kω
i (φ) to a finite set for the statement to be well-formed, but

the proof of validity works for the unrestricted version.
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The convergence required for knowing that one knows parasitically tracks the convergence
of knowledge itself. But failure to know inductively may be witnessed only by failure to
converge in the distant future, and the requirement to have converged already to true
belief that one will not converge in the future due to unforseen surprises occasions the
problem of induction, with which we began. For example, suppose that i has seen enough
evidence to convince her that Gpk until such time as some non-k input is received, at which
time she drops her belief that Gpk. Call i’s learning method c. Method c yields inductive
knowledge that Gpk in the constantly k world w in which Gpk is true. Now, suppose that
i possesses some magical inferential technique h that guarantees i knowledge now that she
does not know that Gpk if she does not know that Gpk and that the inferential technique
manages to avoid altering i’s beliefs whether Gpk. In particular, learning method h(c)
must be guaranteed to yield knowledge immediately that c does not produce knowledge
that Gpk. Let wm be the “grue-like” world in which i receives input k until stage m and
k + 1 thereafter. Statement Gpk is false in wm, so h(c) stabilizes to belief that ¬KiGpk
immediately in wm, for every m. So h(c) converges to ¬KiGpk in world w, since wm
agrees empirically with w until m. But, ironically, i knows that Gpk in w because Gpk is
objective in Nt∗ and h holds i’s beliefs whether φ fixed. So h(c) fails to avoid error in the
limit whether ¬KiGpk.

In fact, slight variants of the reflective problem of induction just described suffice to
invalidate feasible versions of all of the proposed axioms between .4 and 5, so among the
standard axioms, only T, FD, and F4 are valid in learning semantics:

FB: Nt∗ 6|= (Si φ ∧ ¬φ) 〈MD]→i,φ Ki¬Ki φ; (54)

F.2: Nt∗ 6|= (Si φ ∧ ¬Ki¬Ki¬φ) 〈MD]→i,φ Ki¬Ki φ; (55)

F.3: Nt∗ 6|= ((Si φ ∧ Si φ ∧ Ki¬Ki φ) 〈MD]→i,φ,ψ Ki¬Ki ψ) ∨ (56)

∨ ((Si φ ∧ Si φ ∧ Ki¬Ki ψ) 〈MD]→i,φ,ψ Ki¬Ki φ);

F.4: Nt∗ 6|= (Si φ ∧ ¬φ ∧ ¬Ki¬φ) 〈MD]→i,φ Ki¬Ki φ. (57)

It suffices to let φ = Gpk and ψ = Gpk′ , for distinct k, k′.
The same examples refute the corresponding versions of (53-57) for knowing whether,

having learned whether, and having learned that:

Theses (53-57) remain invalid with K̃i, ˜Ledi, Ledi in place of Ki. (58)

However, it is trivially feasible for i to be learning whether i is not learning whether
φ when i is not learning whether φ—it suffices for i to believe that she is not learning
whether φ no matter what, since learning begins with operator [D]i:

F5L: |= (Si φ ∧ ¬L̃i φ) 〈MD]→i,φ L̃i¬L̃i φ. (59)
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14 Joint Inductive Knowledge

Plato’s original question in the Meno (1949) was not what knowledge is, but whether
virtue can be taught. He merely assumed that knowledge can be taught, but when knowl-
edge is inductive, that answer is not so obvious. Of course, a knowledgable expert can
exhibit her inductive knowledge to her pupils, but can she transfer it to her pupils, so that
they know inductively what she knows inductively, rather than merely what she believes?
The transmission of inductive knowledge from expert to pupil throws a skeptical curve of
its own: it is too strict to require that the pupil have access to information concerning
the expert’s learning method—Physics 101 does not presuppose Psychology 601. But
the proposed, individualistic semantics for inductive knowledge requires something like
that, since the pupil must avoid error in the limit no matter what learning method the
mentoring expert might be using. That strict standard makes sense, if the pupil is a
cognitive scientist studying her mentor’s cognitive architecture or if the pupil is playing
a competitive game against her mentor, but when the pupil is merely learning from her
mentor, it is more natural to allow her knowledge to supervene jointly on her own learning
strategy and on her mentor’s. In that spirit, this section presents an alternative, joint
version of learning semantics that is friendlier to joint epistemic efforts like education. In
the following section, it is shown how it is jointly feasible for the expert and a room full
of pupils to acquire common knowledge of the expert’s inductive knowledge.

Let w ∈ W , cw,t = (cw,1,t, . . . cw,N,t) and d ∈ CN . Then let u[d/t] denote the result
of substituting d for cw,t in w at t. A joint CLM satisfies the following, joint invariance
postulate, for each i ∈ G, w ∈ W , d ∈ CN , and t ∈ T :

si,w|t = si,w[d/t′]|t. (60)

Joint information and determination are defined as follows:

IG,w,t =
⋃
i∈G

Ii,w,t;

Di,w,t = {u ∈ IG,w,t : cu,t = cw,t};

with corresponding operators:

‖[ I ]G φ‖tMt∗
= {w ∈ W : IG,w,t ⊆ ‖φ‖t

∗

Mt∗
};

‖[D]G φ‖tMt∗
= {w ∈ W : DG,w,t ⊆ ‖φ‖t

∗

Mt∗
}.

Joint information is weaker than individual information, but joint determination com-
pensates, somewhat, by holding everyone’s method fixed, as though they were a team
achieving a single goal. Joint information and determination are no longer S5 operators.
The transmission of common knowledge assumes that property, so it is useful to have a
concise notation for expressing it in the object language:

‖IS5G‖t
∗

Mt∗
= {w ∈ W : (∀u ∈ IG,w,t∗) IG,u,t∗ = IG,u,t∗}.

28



Define joint inductive knowledge for i as before, but with joint determination in place of
personal determination:

KG,i φ := GCi φ ∧ [D]GFG¬Ẽi φ.

Joint methodological possibility expresses the existence of a methodological coordination
among the agents that brings about φ:

‖〈M〉G φ‖
t
Mt∗

= {w ∈ W : (∃d ∈ CN) w[d/t∗] ∈ ‖φ‖tMt∗
}.

To define joint conditional feasibility, let h = (h1, . . . , hN) be an N -sequence of total
recursive functions, let h(c) = (h1(c1), . . . , hN(cN)), and let ∆ be an N -sequence of finite
subsets of LBIT. Define:

c ≡∆ d ⇔ (∀i ∈ G) ci ≡∆i
di.

Say that h holds ∆ fixed if and only if c ≡∆ h(c), for all c ∈ CN . Then let ‖ψ 〈MD]→G,∆

φ‖tMt∗
denote the set of all w ∈ W for which there exists N -sequence h of total recursive

functions such that h holds ∆ fixed and for all u ∈ IG,w,t:

u ∈ ‖ψ‖tMt∗
⇒ u[h/t∗] ∈ ‖φ‖tMt∗

.

It remains only to define a joint version of inferential stability. Let w ∈ ‖SG,i∆‖tMt∗

hold if and only if for all d ∈ CN such that cw,t∗ ≡∆ d and for all u ∈ DG,w,t∗ , t ≥ t∗, and
δ ∈ ∆i:

u ∈ ‖δ‖t∗Mt∗
⇔ u[d/t∗] ∈ ‖δ‖t∗Mt∗

; (61)

Lci,u,t∗ (si,u|t,@t∗ δ) = Ldi(si,u[d/t∗]|t,@t∗ δ); (62)

Lci,u,t∗ (si,u|t,@t∗¬δ) = Ldi(si,u[d/t∗]|t,@t∗¬δ). (63)

A joint version of proposition 3 holds:

Proposition 4. Suppose that φ ∈ ∆i and u ∈ ‖SG,i∆‖t
∗

Mt∗
and let d ∈ CN satisfy

d ≡∆ cu,t∗. Then:

u ∈ ‖KG,i φ‖t
∗

Mt∗
⇒ u[d/t∗] ∈ ‖KG,i φ‖t

∗

Mt∗
. (64)

15 Common Inductive Knowledge

Given the joint perspective outlined in the preceding section and some basic assumptions
about how the expert and pupils interact, it is jointly feasible for the expert and her pupils
to acquire the expert’s inductive, theoretical knowledge that φ. It suffices that the pupil
believe that φ if the expert does and suspend belief that φ otherwise—just as a scientist is
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entitled to suspend belief when the current articulation of her hypothesis is refuted. The
pupil thereby becomes an epistemic parasite of the expert, just as the expert becomes an
epistemic parasite of herself when she infers deductive consequences of what she knows.
Educated pupils can serve, in turn, as experts, resulting in a cascade of joint scientific
knowledge through the population—as long as the pupils have knowledgable instructors.

It is a further question whether the pupils and the expert jointly know that they
know, know that they know that they know, etc, all the way to joint, common inductive
knowledge that φ. Define joint, mutual knowledge to degree n as follows:

KG
0 φ := φ;

KG
k+1 φ :=

∧
i∈G

KG,iKG
k φ.

Define common knowledge that φ as the set of sentences:

Kω
G(φ) = {KGk φ : k ∈ N}.

It is plausible that a completely trusted, infallible, public announcement that φ can gener-
ate common knowledge that φ. It is less obvious that fallible, common inductive knowledge
is feasible in a room full of pupils who place blind trust in their instructor. Learning se-
mantics yields a positive result based on epistemic parasitism and serendipity, in close
analogy to the preceding proof of positive introspection.

The expert must communicate with the pupils in some way in order to instruct them.
It is assumed that the pupil somehow receives sufficient information to correctly believe
whether the expert believes that φ—it is not assumed that the expert actually causes the
pupil to believe that φ, although that is always nice. Let e ∈ G be the designated expert
and let G− = G \ {e} be the set of pupils. Define the operator “e teaches the pupils in
G− whether φ” as follows:

TG,e φ :=
∧
j∈G−

[ I ]GGC̃jBe φ.

Now it is possible to state and prove the joint feasibility of common inductive knowledge
thesis, which is valid if ∆e contains φ and ∆i is disjoint from Kω

G(φ), for all i ∈ G:

FC: |= (IS5G ∧ TG,e φ ∧ SG,e∆ ∧ KG,e φ) 〈MD]→G,∆ Kω
G(φ). (65)

Although the FC principle concerns common inductive knowledge generated and promul-
gated by a single expert, it sets the stage for a series of similar results that involve common
inductive knowledge generated through the cooperation of a team of experts—a topic of
current interest in social epistemology (e.g., Mayo-Wilson 2011).

In dynamic epistemic logic, there are models in which public announcements generate
common knowledge of what has been announced (van Benthem 2010). But how do public
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announcements result in anything more than common knowledge of the fact that the
announcement was made? Plausibly, common knowledge of what has been announced is
common inductive knowledge grounded in the community’s joint strategy to disbelieve
sources caught in inconsistencies or lies. One potential extension of FC is to validate the
possibility of common inductive knowledge of what is reported in a public announcement
in such a model.

A familiar assumption in game theory is that the agents have common knowledge of ra-
tionality (Aumann 1995). But how is such knowledge possible? Recall the game-theoretic
model described in section 6 above. Violation of the kth level of mutual rationality are
detectable by horizontal play in a centipede game of corresponding length. If all of the
agents have the disposition to continue playing down at the first move in ever longer
centipede games, learning semantics provides a determinate, explanatory, account of how
common knowledge of rationality is jointly feasible in such a group. And if the agents are
all disposed to cooperate a bit by playing sideways, the group can just as easily develop
inductive common knowledge of partial cooperation!17

16 Extensions

The proposed semantics of inductive knowledge is schematic and lenient by design, which
opens the door to potentially fruitful refinements and restrictions, a few of which are
sketched in a preliminary way below.

16.1 Inductive Knowledge of Stochastic Theories

Most real scientific applications are statistical, so probabilities should be added to learning
semantics. Think of s1,w,t, . . . , sN,w,t as random variables jointly distributed in w at t
according to Pw,t. Think of Pw,t as the underlying, joint probability distribution in world
w at time t. Of course, chance dispositions can change—even coins wear out if they are
flipped too many times. Inductive learning from stochastic inputs is standardly defined
in terms of convergence in probability rather than actual convergence. Since the past is
settled, the inputs presented prior to t′ in w are assigned probability 1 by Pw,t. Therefore,
the chance of error at t∗ is tacitly referred to some prior reference time t∗∗—e.g., the time
at which the experimental design for the current epistemic context (w, t∗) was set up.
Let Ki φ be true in w at t∗ relative to reference time t∗∗ if and only if (i) the learning
method ci,w,t∗ of i correctly believes that φ in w at t∗ in light of the actual sample inputs
received in w; (ii) according to Pw,t∗∗ , for every t ≥ t∗, method ci,w,t∗ is probably correct
that φ at t∗ and its probability of correctness rises to 1 as t increases and (iii) according
to Pw,t∗∗ , the chance that i adopts a method at t∗ that commits an error whether φ at t

17This application was suggested via personal communication by Jennifer Juhn.
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drops (non-monotonically) to 0.18

It is anticipated that stochastic learning semantics validates principles very similar
to those validated above, but there is an important difference. In the non-probabilistic
learning semantics developed above, the outcomes of future random events are inductively
knowable (Hendricks 2001). In the stochastic semantics just sketched, they are unknow-
able, since convergence in probability is grounded in chances operative at reference time
t∗∗ prior to the predicted events and a high chance in w at t∗∗ of believing what will hap-
pen in a future coin flip implies failure to drive the chance of error toward 0 in alternative
worlds. That does not rule out inductive knowledge of stochastic laws and theories, since
they predict only chances of random outcomes, not the outcomes themselves.

16.2 Empirical Justification and Ockham’s Razor

The proposed learning semantics also says nothing about confirmation by evidence, which
is traditionally identified with the “justification” condition for inductive knowledge. One
expedient response is simply to tack on some ad hoc condition of “sufficient confirma-
tion”, but then the requirement is not explained in terms of truth-conduciveness. Of
course, information is required to converge to the truth, but no amount of information
is “sufficient” to do so—semantically, the question whether Gpk remains isomorphic to
itself as one restricts it to any compatible, finite data set. Conditional probabilities may
converge to 1 as evidence accumulates, but those probabilities are just opinions, and i
is already has her opinions. As for the Bayesian ideal of coherence, learning semantics’
allowance for scientific knowledge in the face of outright inconsistency is an intended
improvement.

But scientists do have systematic, short-run preferences for simpler or more cross-
testable theories, a disposition known as Ockham’s razor, and it would be nice to have
a unified, learning semantic explanation of that preference. Of course, a systematic bias
toward simple theories can be encoded in prior probabilities imposed upon the semantics,
but that does not explain why one should have such a bias (Glymour 1980). It would be
better to explain Ockham’s razor in terms of truth-conduciveness.

Here is a way to do so, following (Kelly 2010). It is plausible, from the viewpoint
of virtue epistemology (Sosa 1980), that “knowledge” is a socially sanctioned encomium
that motivates improved truth-conduciveness in the community. Then one would expect
the standards for knowledge to shift in order to provide achievable aims in alternative
epistemic contexts of varying intrinsic difficulty. Truth-conduciveness is just learning
ability. Recall that learning was dropped as a condition for knowing because GF pk is
not learnable but follows deductively from learnable Gpk. From a virtue epistemological

18Method ci,w,t∗ may have been chosen after peeking at the sample taken from t∗∗ to t∗. That is the
actual method generating i’s actual belief, so it is the one that matters for knowledge at t∗. But the
peeking may have affected i’s probability of error in other worlds. Condition (iii) therefore considers the
possibility of dependence of the i’s method on the sample.
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viewpoint, that is not a reason to drop the learning requirement entirely—learning should
be required whenever it is feasible. Furthermore, learning, itself, is not a one-size-fits-all
concept. Virtuous pursuit of truth, like virtuous pursuit of anything, should be direct
and efficient—the best designed anti-aircraft missile may need to swerve to intercept an
evasive target, but a missile that chases its own tail for no reason is surely defective. The
epistemological equivalent of swerving is retraction of one’s prior belief whether φ in light
of new information. So the virtuous pursuit of truth whether φ, and, hence, knowledge
whether φ, should require that i learn with minimal retractions, if learning is possible at
all. Otherwise, serendipitous knowledge in the sense defined above suffices. Retraction
minimization makes sense for agents in CLMs, but LBIT must be enriched in order to
express it.

The method of believing that Gpk until it is refuted and disbelieving it thereafter
results in knowledge that Gpk if Gpk is true, because the method learns with one retraction
(from Gpk to ¬Gpk) and no learning method learns whether Gpk with fewer retractions. It
remains true that pure deduction of GF pk from knowledge that Gpk results in knowledge
that GF pk because GF pk is not learnable. For a more interesting example, consider the
statement that exactly one of inputs 0, 1 will occur in the future:

δ := (F p0 ∨ F p1) ∧ (G¬p0 ∨ G¬p1). (66)

Statement δ is learnable by saying no until either 0 or 1 is observed, by saying yes until
the alternative digit is observed, and by converging to no thereafter, which adds up to
two retractions ending with no. No better learning performance is possible. Suppose that
i believes δ prior to seeing either 0 or 1. Then nature can withhold both 0 and 1 until,
on pain of not eliminating error in the limit, i is forced to say no. Now nature can show
digit 0 and withhold 1 as long as it takes to force i to say yes, and so on, resulting in
three retractions ending with no, so i is not optimally truth-conducive (i.e., virtuous),
and, hence, does not know. But after seeing the first digit, i is as efficient as anyone who
shares her doxastic history, so i knows that δ from that moment onward.

Think of waiting for 0 or for 1 as waiting for an empirical effect predicted by δ. To
relate the logical idea to real scientific inquiry, consider the following story. Scientist i
arbitrarily believes hypothesis φ that the standard particle theory is correct, except that
one must add one new kind of particle—the platon. The reactivity of the platon is an
unknown parameter that must be estimated from the data and that may be arbitrarily
small. Suppose that i’s theory happens to be true. Suppose, further, that i’s laboratory is
diligently seeking some predicted effect of the platon by means of a huge detector that is
guaranteed to notice some effect of the platon, eventually, with a delay depending on the
platon’s unknown reactivity. As it happens, i’s confidence wavers and she stops believing
in the platon if no tell-tale effects are detected within the next four years (think of the
“null” results of experimental attempts to detect the ether drift). However, if φ is true, the
detector does capture a noticeable effect eventually, after which i again believes that φ.
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Then nature can reveal effects of yet another particle, the sophiston, causing i to retract
φ and admit the new particle as well. So i says yes, no, yes, no, which adds up to two
3 retractions. Had she refrained from believing in the platon until its tell-tale signs were
observed, she would at worst have learned the truth with 2 retractions—no, yes, no. So
optimal truth-conduciveness—i.e., epistemic virtue—implies that i should not multiply
entities without empirical necessity.

Recall the example of polynomial laws with free parameters, with which we began.
Each such law has the same learning complexity as δ—it is learnable with two retractions
ending with no. Therefore, it cannot be known until empirical effects bounding each of
the law’s coefficients away from 0 have been observed. Thus, one can know only the
simplest such form compatible with experience at any given time. Ockham’s razor is not
an ad hoc, additional condition for knowledge—it has just been derived from optimal
truth-conduciveness.

16.3 Coherence

The thoroughgoing hyper-intensionality of learning semantics is a refreshing change from
habitual over-rationalization in epistemic logic, but a bit more coherence should be im-
posed. It is easy to get a perfect score on a multiple choice test if you get to choose every
answer. Something like that can happen in learning semantics. Recall that scientist i can
know that the input sequence is ε by guessing that it is ε until ε is refuted. Suppose that
scientist i simultaneously believes every hypothesis of the form “the input stream is ex-
actly primitive recursive sequence ε”, and is disposed to drop each such hypothesis when
it disagrees with the data. Suppose, by serendipity, that the true input stream ε is primi-
tive recursive, so the hypothesis corresponding to ε is true. Then i knows that the future
will conform to ε, even though i believes every possible primitive recursive input stream
compatible with current information. That sounds too easy. Furthermore, for someone
as aphasic as i, the very concept of belief is called into question. What would i predict to
happen at the next stage? Certainly not what she “knows” will happen, since she cannot
pick her known theory out of the raft of her alternative, incompatible beliefs. Science may
be incoherent overall, but each of its insular paradigms is coherent enough to generate
consensus concerning determinate predictions. So normal science within a paradigm is
not trivial the way i’s knowledge is, even though science is globally incoherent. In a more
sophisticated version of learning semantics, paradigms would be individuated by questions
and success in a question would require that the agent never believe more than one answer
to the question. Other logical foibles would still be permitted.

16.4 Prediction

The predictions of a known law are knowable with serendipity via thesis KD—plausibly,
believe a given prediction as long as you believe the law that entails it and drop belief in
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both if the prediction is refuted. But one can also serendipitously know a given prediction
in isolation—make a lucky guess about what will happen at t ≥ t∗ and retract that guess
if it fails to be vindicated at t. That sounds too lenient–it is nothing more than lucky
true belief.

Alternatively, predictions are not knowable in advance in the retraction-minimal sense,
since one can achieve 0 retractions if one waits until the the predicted event occurs—
ironically, they are unknowable because they are easier to learn than laws are and, hence,
are subject to a higher standard of virtue (a general reason to doubt closure of knowability
under logical consequence in virtue epistemology). Hence, thesis FD fails for retraction
minimal knowledge, since the predictions of known laws are unknowable. That sounds
awkward—some think that only the predictions matter in science and they turn out not
to be knowable until it is too late to act upon them!

One response is that predictive knowledge of observable events is different from in-
ductive knowledge of laws and theories. Virtues are dispositions. From that viewpoint,
predictive knowledge may imply that one has a disposition to continue to correctly pre-
dict events of the same type in the future and that one would eventually avoid mistakes
regarding predictions of that type in alternative worlds. Then knowing a law implies
predictive knowledge of its predictions, but not conversely—a reliable predictive method
would suffice for predictive knowledge.

It would be better to have a univocal account of inductive knowledge for theories and
for decidable statements, but there may not be one. Prediction is where normative talk
adapted to direct perception collides with normative talk adapted to universal statements
and scientific method, so it is to be expected that the concept of predictive knowledge is
subject to a cross-current of epistemic standards and intuitions.
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19 Proofs of Propositions

Proof of proposition 2. Just let Ld(σ, ψ) return 1 if ψ = @t∗ φ and σ is an initial segment
of si,u,t and return 0 otherwise.

Proof of proposition 3. Abbreviate:

c = ci,u,t∗ ;

x = u[d/i, t∗].

Assume that φ ∈ ∆ and that:

d ≡∆ c; (67)

u ∈ ‖Si∆‖t
∗

Mt∗
; (68)

u ∈ ‖Ki φ‖t
∗

Mt∗
. (69)

From (69) we have:

u ∈ ‖GCi φ‖t
∗

Mt∗
; (70)

y ∈ ‖FG¬Ẽi φ‖t
∗

Mt∗
, for all y ∈ Di,u,t∗ . (71)
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It suffices to show that:

x ∈ ‖GCi φ‖t
∗

Mt∗
; (72)

y ∈ ‖FG¬Ẽi φ‖t
∗

Mt∗
, for all y ∈ Di,x,t∗ . (73)

From (67-68), we have that:

u ∈ ‖φ‖t∗Mt∗
⇔ x ∈ ‖φ‖t∗Mt∗

; (74)

u ∈ ‖G[B]i φ‖t
∗

Mt∗
⇔ x ∈ ‖G[B]i φ‖t

∗

Mt∗
; (75)

u ∈ ‖G〈B〉i φ‖
t∗

Mt∗
⇔ x ∈ ‖G〈B〉i φ‖

t∗

Mt∗
. (76)

So requirement (72) follows from (70).
For requirement (73), let y ∈ Di,x,t∗ . Then si,y|t∗ = si,x|t∗ = si,u[d/i,t∗]|t∗. So si,y|t∗ =

si,u|t∗, by (2). Let z = y[c/i, t∗]. So si,z|t∗ = si,u|t∗, again by (2) and, hence, z ∈ Di,u,t∗ .
So it follows from (71) that:

z ∈ ‖FG¬Ẽi φ‖t
∗

Mt∗
; (77)

and from (67-68) that:

y ∈ ‖φ‖t∗Mt∗
⇔ z ∈ ‖φ‖t∗Mt∗

; (78)

y ∈ ‖FG[B]i φ‖t
∗

Mt∗
⇔ z ∈ ‖FG[B]i φ‖t

∗

Mt∗
; (79)

y ∈ ‖FG〈B〉i φ‖
t∗

Mt∗
⇔ z ∈ ‖FG〈B〉i φ‖

t∗

Mt∗
. (80)

Requirement (73) follows directly from (77-80).

Proof of proposition 4. Let d ∈ CN and let u ∈ W . Abbreviate:

c = ci,u,t∗ ;

x = u[d/t∗].

Assume that φ ∈ ∆i and that:

di ≡φ ci; (81)

u ∈ ‖SG,i∆‖t
∗

Mt∗
; (82)

u ∈ ‖KG,i φ‖t
∗

Mt∗
. (83)

Proceed as in the preceding proof, with DG,u,t∗ , DG,x,t∗ in place of Di,u,t∗ , Di,x,t∗ . The
argument for requirement (72) is the same as before. For requirement (73), let y ∈ DG,x,t∗ .
So y ∈ Di,x,t∗ , for some i ∈ G. Then si,y|t∗ = si,x|t∗ = si,u[d/t∗]|t∗. So si,y|t∗ = si,u|t∗, by
(60). Let z = y[c/t∗]. So si,z|t∗ = si,u|t∗, again by (60) and, hence, z ∈ Di,u,t∗ ⊆ DG,u,t∗ .
Continue as in the preceding proof.
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20 Proofs of Selected Statements

Proof of (14) and (15). Let w ∈ W be given. To witness the first claim, define learning
method c so that:

Lc(σ, φ) =


1 if φ = @t∗Gpk and (∀t : t∗ ≤ t ≤ lh(σ)) σ(t) = k;
1 if φ = @t∗¬Gpk and (∃t : t∗ ≤ t ≤ lh(σ)) σ(t) 6= k;
0 otherwise.

The method that witnesses the second claim is similar, except that ¬ and 6= are moved
from the second clause to the first.

Proof of (16) and (17). The proof of the second statement is similar to that of the first.
For the first statement, suppose for contradiction that c satisfies (10) and(11). It suffices
to construct ε ∈ E0 such that (10) and (11) are both false in arbitrary world w such that
ew = ε. A purely learning theoretic argument suffices. Construct ε by adding chunks in
successive stages as follows, where c = h(cw′,i,t∗). At stage 0, present σ. Let n > 0. At
stage 2n, present k until Lc returns 1 for @t∗FGpk. Learning function Lc must return
1 for @t∗FGpk eventually, because if Lc never takes the bait, you continue to present k
and Lc fails to converge to belief that @t∗FGpk even though it is true, contradicting the
hypothesis. At that point, proceed to stage 2n+ 1. At stage 2n+ 1, the demon presents
k + 1 until Lc returns 0 for @t∗FGpk. Learning function Lc must return 0 for @t∗FGpk
eventually, because if Lc never takes the bait, you continue to present k + 1 and Lc fails
to converge to belief that @t∗¬Gpk even though it is true, contradicting the hypothesis.
At that point, proceed to stage 2n + 2. You pass through each stage, producing ε that
satisfies (*).

Proof of (36). The proof follows (Kelly 1996, proposition 7.15). Suppose the contrary.
Then we can use the witnessing Ld and u ∈ Ii,w,t∗ to compute g(t), for t ≥ t∗ (for t < t∗

use a lookup table). Say that finite input sequence σ of length t is t′-dead if and only if
Ld(σ

′,@t∗ φ) = 0, for each extension σ′ of σ of length t′. By (31), g|(t+1) is never t′-dead,
but by König’s lemma and (34), there exists t′ ≥ t + 1 such that every σ of length t + 1
that is distinct from g|t is t′-dead. Then g|(t + 1) is the unique sequence σ that is not
t′-dead. Return the last entry of that sequence.

Proof of (39). By hypothesis, φ is knowable in w at t∗. Since φ is knowable, let Lc and
world u ∈ Ii,w,t∗ witness that fact. Let Ld suspend belief whether φ in all circumstancces
(to avoid knowing that φ) and then believe, deny, or suspend belief for both ¬Ki φ and
Moi φ whenever Lc does the same for φ. Recall that in Nt∗ , (i) the inputs to i do not
depend on i’s learning method and (ii) the truth value of φ does not depend on i’s learning
method. Due to Ld’s dogmatic belief that φ, the case hypothesis, and (i) and (ii), there
is no world in Ii,w,t∗ in which Kiφ is true, so we have that [ I ]i(Moi φ↔ φ) is true in w. So
by (i) and (ii), agent i knows that Moi φ. But, by construction, i is conjunctively cogent
with respect to Moi φ.
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Proof of (40). Let Ld be as in the proof of (39), except that this time Ld believes that
φ no matter what (to ensure that i does not know that φ in any world in Ii,w,t∗ , since
φ is false in some such world) and believes both that Moi φ and that ¬Ki φ whenever Lc
believes that φ.

Proof of (41). Carry out the construction given in the proof of (40) for φ ∧ Moi φ rather
than for Moi φ.

Proof of (46). Let ∆, Γ be finite and mutually disjoint subsets of LBIT. Let ∆ ⊆ ∆′ and
∆′ ∩ Γ = ∅. Define total recursive g such that:

g(c, 〈σ〉 , g(φ)) =


1 if φ = @t∗γ ∧ γ ∈ Γ ∧ (∀δ ∈ ∆) Lc(σ,@t∗δ) = 1;
0 if φ = @t∗¬γ ∧ γ ∈ Γ;
Lc(σ, φ) otherwise.

Apply proposition 1 to obtain total recursive h such that Lh(c)(σ, φ) = g(c, 〈σ〉 , g(φ)). By
the definition of h and the fact that ∆′ is disjoint from Γ, we have that:

c ≡∆′ h(c); (84)

for each c ∈ C and that for all z ∈ W , t ∈ T and γ ∈ Γ:

Lh(c)(si,z|t,@t∗¬Kik γ) = 0; (85)

Lh(c)(si,z|t, @t∗Ki
k γ) = 1 ⇔ (∀δ ∈ ∆)Lh(c)(si,z|t′,@t∗ δ) = 1. (86)

Suppose that u ∈ Iw,i,t∗ satisfies:

u ∈ ‖Si∆′‖t
∗

Mt∗
; (87)

u ∈ ‖[ I ]i(∆→ Γ)‖t∗Mt∗
; (88)

u ∈ ‖Ki∆‖t
∗

Mt∗
. (89)

Abbreviate:

c = ci,u,t∗ ;

x = u[h(c)/i, t∗].

So from (84),(87) and (89), obtain via proposition 3 that for each δ ∈ ∆:

x ∈ ‖Ki δ‖t
∗

Mt∗
. (90)

So for each δ ∈ ∆:

x ∈ ‖GCi δ‖t
∗

Mt∗
; (91)

y ∈ ‖FG¬Ẽi δ‖t
∗

Mt∗
, for all y ∈ Di,x,t∗ . (92)
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It suffices to show the following requirements, for each γ ∈ Γ:

x ∈ ‖GCi γ‖t
∗

Mt∗
; (93)

y ∈ ‖FG¬Ẽi γ‖t
∗

Mt∗
, for all y ∈ Di,x,t∗ . (94)

Let γ ∈ Γ. For requirement (93), we have by (2) that x ∈ Ii,u,t∗ , so (88) and (91) yield
that:

x ∈ ‖γ‖t∗Mt∗
. (95)

So (91) and (95), together with properties (85-86), yield requirement (93). For requirement
(94), suppose that y ∈ Di,x,t∗ . So by (2), y ∈ Ii,u,t∗ . So (*) together with (88) and (92)
yield requirement (94).

Proof of statement (51). Define total recursive f as follows:

f(c, 〈σ〉 , g(ψ)) =



1 if (∃k) ψ = @t∗Ki
kφ ∧

(∀t′ : t∗ ≤ t′ ≤ t)(ψ = @t∗Ki
kφ ∧ Lc(σ|t′, φ) = 1);

0 if (∃k) ψ = @t∗Ki
kφ ∧

(∃t′ : t∗ ≤ t′ ≤ t)(ψ = @t∗Ki
kφ ∧ Lc(σ|t′, φ) = 0);

0 if (∃k) ψ = @t∗¬Kikφ ∧
(∀t′ : t∗ ≤ t′ ≤ t)(ψ = @t∗Ki

kφ ∧ Lc(σ|t′, φ) = 1);

1 if (∃k) ψ = @t∗¬Kikφ ∧
(∃t′ : t∗ ≤ t′ ≤ t)(ψ = @t∗Ki

kφ ∧ Lc(σ|t′, φ) = 0);
Lc(σ, φ) otherwise.

Apply proposition 1 to obtain h such that Lh(c)(σ, ψ) = f(c, 〈σ〉 , g(ψ)), for all c ∈ N.
Suppose that ∆ includes φ and is disjoint from Kω

i (φ). By the definition of h, we have
that for all c ∈ C:

c ≡∆ h(c); (96)

so h holds ∆ fixed, and that for all z ∈ W , t ∈ T , and k ∈ N:

Lh(c)(si,z|t,@t∗Ki
k φ) = 1 ⇔ (∀t′ : t∗ ≤ t′ ≤ t)Lh(c)(si,z|t′,@t∗ φ) = 1; (97)

Lh(c)(si,z|t,@t∗¬Kik φ) = 1 ⇔ (∃t′ : t∗ ≤ t′ ≤ t)Lh(c)(si,z|t′,@t∗ φ) = 0. (98)

Suppose that u ∈ Iw,i,t∗ satisfies:

u ∈ ‖Si∆‖t
∗

Mt∗
; (99)

u ∈ ‖Kiφ‖t
∗

Mt∗
. (100)
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Abbreviate:

c = ci,u,t∗ ;

x = u[h(c)/i, t∗].

From (96), (99) and (100), obtain via proposition 3 that x ∈ ‖Ki φ‖t
∗

Mt∗
= ‖Ki1 φ‖t

∗

Mt∗
.

Therefore, x ∈ ‖φ‖t∗Mt∗
= ‖Ki0 φ‖t

∗

Mt∗
. So we have the base case x ∈ ‖K1(φ)‖t∗Mt∗

.

Next, assume for induction that x ∈ ‖Kk+1(φ)‖t∗Mt∗
. So:

x ∈ ‖KiKik φ‖t
∗

Mt∗
; (101)

and, therefore:

x ∈ ‖GCiKik φ‖t
∗

Mt∗
; (102)

y ∈ ‖FG¬ẼKik φ‖t
∗

Mt∗
, for all y ∈ Di,x,t∗ . (103)

For x ∈ ‖Kk+2(φ)‖t∗Mt∗
, it suffices to show that: x ∈ ‖KiKiKik φ‖t

∗

Mt∗
. For that, it suffices,

in turn, to show:

x ∈ ‖GCiKiKik φ‖t
∗

Mt∗
; (104)

x ∈ ‖FG¬ẼKiKik φ‖t
∗

Mt∗
, for all y ∈ Di,x,t∗ . (105)

Requirement (104) expands to the requirements:

x ∈ ‖KiKik φ‖t
∗

Mt∗
; (106)

x ∈ ‖G[B]iKiKi
k φ‖t∗Mt∗

; (107)

x ∈ ‖G〈B〉iKiKi
k φ‖t∗Mt∗

. (108)

Requirement (106) is just (101). Hence, (102) yields:

x ∈ ‖G[B]iKi
k φ‖t∗Mt∗

; (109)

x ∈ ‖G〈B〉iKi
k φ‖t∗Mt∗

. (110)

Requirements (107-108) follow from (109-110) and properties (97-98) of h.
For requirement (105), suppose that y ∈ Di,x,t∗ . It suffices to show that for all y ∈

Di,x,t∗ :

y ∈ ‖GF[B]i¬KiKik φ‖t
∗

Mt∗
⇒ y 6∈ ‖KiKik φ‖t

∗

Mt∗
; (111)

y ∈ ‖GF[B]iKiKi
k φ‖t∗Mt∗

⇒ y ∈ ‖KiKik φ‖t
∗

Mt∗
. (112)

(113)
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For requirement (111), suppose that:

y ∈ ‖GF[B]i¬KiKik φ‖t
∗

Mt∗
(114)

Then by property (98) of h, there exists t ≥ t∗ such that y 6∈ ‖Bi φ‖tMt∗
, so by property

(97), we have that y 6∈ ‖BiKik φ‖t
∗

Mt∗
. So y 6∈ ‖KiKik φ‖t

∗

Mt∗
.

For requirement (112), suppose that:

y ∈ ‖GF[B]iKiKi
k φ‖t∗Mt∗

(115)

For the consequent y ∈ ‖KiKik φ‖t
∗

Mt∗
, it suffices, as usual, to show the requirements:

y ∈ ‖GCiKik φ‖t
∗

Mt∗
; (116)

z ∈ ‖FG¬ẼKik φ‖t
∗

Mt∗
, for all z ∈ Di,y,t∗ . (117)

Requirement (117) is just (103), since Di,y,t∗ = Di,u,t∗ . Requirement (116) expands to:

y ∈ ‖Kik φ‖t
∗

Mt∗
; (118)

y ∈ ‖G[B]iKi
k φ‖t∗Mt∗

; (119)

y ∈ ‖G〈B〉iKi
k φ‖t∗Mt∗

. (120)

For requirement (118), we have from (115) and property (97) of h that y ∈ ‖GF[B]iKi
k φ‖t∗Mt∗

.

So y ∈ ‖Kik φ‖t
∗

Mt∗
, by (103). For requirement (119), note that (115), along with prop-

erty (97) of h implies that y ∈ ‖G[B]i φ‖t
∗

Mt∗
, which implies requirement (119) in light of

property (97) and requirement (120) in light of property (98).

Proof of statement (52). For the Ledi case, follow the proof of (51) with Ledi in place of
Ki and C̃i in place of Ẽi. For the L̃i case, make corresponding substitutions and ignore
the actual convergence requirements. For the ˜Ledi case, add cases for actual convergence
to true belief that ¬φ. For the K̃i case, do the same, but retain C̃i in place of Ẽi.

Proof of statement (53). Let w = (ε, c) be a world in Nt∗ . Let total recursive h hold belief
whether φ = Gpk fixed. Let c∗ be as in the proof of statement (14). Let c ∈ CN and let
wε′ = (ε′, c[c∗/i]t∗), for arbitrary ε′ ∈ E0. Let τ(t) = ε(t) for t < t∗ and let τ(t) = k for
t ≥ t∗. Let τt(t

′) = τ(t′) for t′ ≥ t and let τt(t
′) = k+ 1 for t′ ≥ t. It is easy to verify that

for all t ≥ t∗:

wτ ∈ ‖KiGpk‖t
∗

Nt∗
; (121)

wτt ∈ ‖¬KiGpk‖t
∗

Nt∗
. (122)

Since the truth of Gpk does not depend on methods in Nt∗ , we have for all t ≥ t∗ that:

wτt ∈ Iw,i,t∗ ∩ ‖Si Gpk‖t
∗

Nt∗
∩ ‖¬KiGpk‖t

∗

Nt∗
. (123)
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So it suffices to show that wτt [h(c∗)/i, t∗] 6∈ ‖Ki¬KiGpk‖t
∗

Nt∗
. For that it suffices to show

that at least one of the following statements holds:

wτt [h(c∗)/i, t∗] 6∈ ‖GCi¬Ki φ‖t
∗

Mt∗
; (124)

wτt [h(c∗)/i, t∗] 6∈ ‖[D]iFG¬Ẽi¬Ki φ‖t
∗

Mt∗
. (125)

Case 1: wτt [h(c∗)/i, t∗] 6∈ ‖GBi¬KiGpk‖t
∗

Nt∗
, for some t ≥ t∗. So (124) holds, in light of

(122).
Case 2: wτt [h(c∗)/i, t∗] ∈ ‖GBi¬KiGpk‖t

∗

Nt∗
, for all t ≥ t∗. Then since τ |t = τt|t, for

each t ≥ t∗, we have that wτ [h(c∗)/i]≥t∗ ∈ ‖GBi¬KiGpk‖t
∗

Nt∗
. Note that wτ ∈ Iwτt ,i,t∗ by

construction and (2). So (125) holds, in light of (121).

Proof of statements (54-57). One merely has to check that the respective antecedents of
the various conditionals are satisfied by each world wτt in the proof of (53). For (54),
observe that ¬φ is true in wτt , by construction. For (55), observe that c∗ suspends belief
concerning ¬Ki¬φ. For (57), observe both that c∗ suspends belief concerning ¬φ and that
¬φ is true in wτt . For (56), let w ∈ W and let total recursive h hold both φ and ψ fixed.
To refute the second disjunct of (56) in w, let c∗∗ follow the strategy of c∗ with respect
to φ, except that c∗∗ believes that ¬Ki ψ no matter what. Then, due to c∗∗’s suspension
of belief whether ψ at t∗, we have that c∗∗ witnesses the truth of Ki¬Ki ψ in every world,
so the argument for (53) establishes the falsehood of the second disjunct of (56) in w.
Reversing the roles of φ and ψ establishes that the first disjunct of (56) is also false in
w.

Proof of statement (65). Define total recursive fe just as in the proof of (51), except that
Ki

kφ is replaced with KG
kφ. For j ∈ G−, define total recursive fj just like fe, but with

the condition Lc(σ|t′,Bi φ) = 1) in place of condition Lc(σ|t′, φ) = 1). Apply proposition
1 to each fi to obtain respective, total recursive function hi. Let h = (h1, . . . , hN).

Suppose that φ ∈ ∆e and that ∆i ∩Kω
G = ∅, for each i ∈ G. By the definition of h,

we have that for all c ∈ CN :

c ≡∆ h(c); (126)

so h holds ∆ fixed, and we also have that for all i ∈ G, z ∈ W , t ∈ T , and k ∈ N:

Lh(c)(si,z|t,@t∗¬KGk φ) = 1 ⇔ Lh(c)(si,z|t,@t∗KG
k φ) = 0; . (127)

Suppose that u ∈ Iw,i,t∗ satisfies:

u ∈ ‖IS5G‖t
∗

Mt∗
; (128)

u ∈ ‖TG,e φ‖t
∗

Mt∗
; (129)

u ∈ ‖SG,e∆‖t
∗

Mt∗
; (130)

u ∈ ‖KG,e φ‖t
∗

Mt∗
. (131)
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Abbreviate:

c = ci,u,t∗ ;

x = u[h(c)/i, t∗].

From (126), (130) and (131), obtain via proposition 4 that:

x ∈ ‖KG,e φ‖t
∗

Mt∗
. (132)

Note that for j ∈ G− and z ∈ W we have by the definition of h that:

Lhe(ce)(si,z|t,@t∗KG
k φ) = 1 ⇔ (∀t′ : t∗ ≤ t′ ≤ t)Lhe(ce)(si,z|t′,@t∗ φ) = 1; (133)

Lhj(cj)(si,z|t,@t∗KG
k φ) = 1 ⇔ (∀t′ : t∗ ≤ t′ ≤ t)Lhj(cj)(si,z|t′,@t∗BG,e φ) = 1;(134)

Let y ∈ DG,x,t∗ ⊆ IG,x,t∗ . So y ∈ IG,u,t∗ by (60). Then by (129), we have for all j ∈ G−
that y ∈ ‖GC̃jBe φ‖t

∗

Mt∗
. Hence, by (133-134), we have for all i ∈ G, y ∈ DG,x,t∗ , and

k ∈ N:

Lhi(ci)(si,y|t,@t∗KG
k φ) = 1 ⇔ (∀t′ : t∗ ≤ t′ ≤ t)Lhe(ce)(si,y|t′,@t∗ φ) = 1; (135)

By (132), (127), and (135), we have that x ∈ ‖KG,j φ‖t
∗

Mt∗
, for all j ∈ G−, so again by

(132) we have x ∈ ‖KG1 φ‖t∗Mt∗
, and hence, that x ∈ ‖φ‖t∗Mt∗

= ‖KG0 φ‖t∗Mt∗
. Thus, we have

the base case ‖K1
G(φ)‖t∗Mt∗

.

Next, assume for induction that x ∈ ‖Kk+1
G (φ)‖t∗Mt∗

and show that x ∈ ‖Kk+2
G (φ)‖t∗Mt∗

.
By the induction hypothesis, we have, for each i ∈ G that:

x ∈ ‖KG,iKGk φ‖t
∗

Mt∗
; (136)

and, therefore:

x ∈ ‖GCiKGk φ‖t
∗

Mt∗
; (137)

y ∈ ‖FG¬ẼKGk φ‖t
∗

Mt∗
, for all y ∈ DG,x,t∗ . (138)

For x ∈ ‖Kk+2
G (φ)‖t∗Mt∗

, it suffices to show, for each i ∈ G, that: x ∈ ‖KG,iKG,iKGk φ‖t
∗

Mt∗
.

For that, it suffices, in turn, to show:

x ∈ ‖GCiKG,iKGk φ‖t
∗

Mt∗
; (139)

x ∈ ‖FG¬ẼKG,iKGk φ‖t
∗

Mt∗
, for all y ∈ DG,x,t∗ . (140)

Requirement (139) expands to the requirements:

x ∈ ‖KG,iKGk φ‖t
∗

Mt∗
; (141)

x ∈ ‖G[B]iKG,iKG
k φ‖t∗Mt∗

; (142)

x ∈ ‖G〈B〉iKG,iKG
k φ‖t∗Mt∗

. (143)
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Requirement (141) is just (136). Hence, (137) yields:

x ∈ ‖G[B]iKG
k φ‖t∗Mt∗

; (144)

x ∈ ‖G〈B〉iKG
k φ‖t∗Mt∗

. (145)

Requirements (142-143) follow from (144-145) and properties (127) and (135) of h.
For reuirement (140), suppose that y ∈ DG,x,t∗ . It suffices to show that for all y ∈

DG,x,t∗ :

y ∈ ‖GF[B]i¬KG,iKGk φ‖t
∗

Mt∗
⇒ y 6∈ ‖KG,iKGk φ‖t

∗

Mt∗
; (146)

y ∈ ‖GF[B]iKG,iKG
k φ‖t∗Mt∗

⇒ y ∈ ‖KG,iKGk φ‖t
∗

Mt∗
. (147)

For requirement (146), suppose that y ∈ ‖GF[B]i¬KG,iKGk φ‖t
∗

Mt∗
. Then by properties

(135) and (127) of h, we have that y 6∈ ‖G[B]iKG
k φ‖t∗Mt∗

. So y 6∈ ‖KG,iKGk φ‖t
∗

Mt∗
.

For requirement (147), suppose that:

y ∈ ‖GF[B]iKG,iKG
k φ‖t∗Mt∗

(148)

For the consequent y ∈ ‖KG,iKGk φ‖t
∗

Mt∗
, it suffices, as usual, to show the requirements:

y ∈ ‖GCiKGk φ‖t
∗

Mt∗
; (149)

z ∈ ‖FG¬ẼiKGk φ‖t
∗

Mt∗
, for all z ∈ DG,y,t∗ . (150)

Requirement (150) is just (138), since DG,y,t∗ = DG,u,t∗ by (128).19 Requirement (149)
expands to:

y ∈ ‖KGk φ‖t
∗

Mt∗
; (151)

y ∈ ‖G[B]iKG
k φ‖t∗Mt∗

; (152)

y ∈ ‖G〈B〉iKG
k φ‖t∗Mt∗

. (153)

For requirement (151), we have from (148) and property (135) of h that y ∈ ‖GF[B]iKG
k φ‖t∗Mt∗

.

So y ∈ ‖KGk φ‖t
∗

Mt∗
, by (138). For requirement (152), note that (148), along with property

(135) of h implies that y ∈ ‖G[B]i φ‖t
∗

Mt∗
, which again, in light of property (135) implies

requirement (152). Requirement (153) is then immediate by property (127) of h.

19This is the proof’s only appeal to the S5 property for information.
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