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N The Machinery of Modern Bayesianism

1. J. Good once quipped that there are more forms of Bayesianism than
there are actual Bayesians. While the ever growing popularity of Bayes-
ianism may have invalidated the letter of this quip, its core message is still
sound: there are many rooms to the mansion that Bayes helped to build.
No attempt will be made here to systematically survey all of this real estate.
Bayesians of whatever persuasion can speak for themselves; indeed, they
do speak for themselves, often ad nauseam. My focus will be kept on issues
concerning the testing and confirmation of scientific hypotheses and theo-
ries, typically of 2 nonstatistical kind. Bayesian personalism will be the
starting point for most of my investigations. Issues in Bayesian decision
theory and technical issues in Bayesian statistics will be largely ignored,
although from time to time technicalia will intrude.

1 The Elements of Modern Bayesianism

Bayesians of all stripes are united in the convictions that qualitative ap-
proaches to confirmation, such as hypotheticodeductivism and Hempel’s
instance confirmation (see chapter 3), are hopeless and that an adequate
accounting of the way evidence bears on hypothescs and theories must be
quantitative. The form of Bayesianism I will track here follows in Thomas
Bayes’s footsteps by implementing the quantitative approach in terms of
degrees of belief regimented according to the principles of the probability
calculus. The form of probability theory needed for applications to issues
of confirmation will be presented in section 2. Bayes, as we saw in chapter
1, exploited the connection between degrees of belief and betting behavior
in an attempt to justify the principles of probability. Modern Bayesians
follow suit with their Dutch-book arguments, which will be examined in
sections 3 and 4.

Bayesians are also united on the importance of Bayes's theorem, a result
that Bayes himself never stated in modern form. If H, K, and E are
respectively the hypothesis at issue, the background knowledge, and the
new evidence, then one form of Bayes’s theorem states that

Pr(H/K) x Pr(E/H & K)
Pr(E/K)

Pr(H/E & K) = 2.1)

If{H;},i=12,... isaset of mutually exclusive and exhaustive hypoth-
eses, the principle of total probability allows (2.1) to be rewritten as
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Pr(H,/K) x Pr(E/H,; & K)
Y. Pr(E/H; & K) x Pr(H;/K)’

PriH,/E& K) = (2.2)
In Bayesian accounts of confirmation, the explanations of confirmational
virtues are couched largely in terms of the factors on the right hand sides
of (2.1) and (2.2} Pr(H/K), the prior probability of H; Pr(E/H & K), the
likelihood of E on H and K; and Pr(E/K), the prior likelihood of E.

The forms of Bayesianism to be examined here also share the tenet that
learning from experience is to be modeled as conditionalization. The rule

- of strict conditionalization says that if it is learned for sure that E and if E

is the strongest such proposition, then the probability functions Pr,, and

Pr,.,, representing respectively degrees of belief prior to and after acquisi-

tion of the new knowledge, are related by

P (") = Prog(-/E). (8C)

Bayes’s proposition 5 can, as we saw in chapter 1, be regarded as an
attempt te justify this rule. From the point of view of strict condition-
alization, Bayes’s theorem (2.1) makes explicit how the acquisition of new
“evidence impacts on previous degrees of belief to produce new degrees of
belief.?

A more sophisticated form of conditionalization that allows for uncer-
tain learning is due to Richard Jeffrey (1983b). If we observe a jelly bean
by dim and flickering candle light, we will rarely come away with certain
knowledge of the color of the bean, but our probabilities will have
changed.” We may have gone, for example, from complete ignorance as to
whether the bean is red, yellow, or green (as represented by probabilities
of 1/3 for each) to, say, a probability of 2/3 for red and a probability of 1/6
each for yellow and green. To generalize and formalize, let {E;}, i =1, 2,
..., be a partition of the probability space. Intuitively, the belief change
that takes place is supposed to be generated by the way in which the
experience bears on this partition (e.g., the color partition in the above
example). The belief change then accords with Jeffrey conditionalization
just in case

Pr,..(4) = M Prg(4/E;) % Pr (E;) forall 4, {IC)

)
Strict conditionalization is the special case where the new probability of
one of the clements of the partition is one. An application of total probabil-

ity shows that (JC) obtains under the condition of rigidity:
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Pr

n

el A/E) = Pry{A/E;) forall Aandalli (R)

Arguably, (R) should apply in the jelly bean case when we look but don’t
get to touch, smell, or taste the bean, so that any change in our degrees of
belief about the sweetness, scent, or texture of the bean should be due
entirely to changes in our degrees of belief about its color.?

In chapter 1 we saw that Bayes’s essay contained a tension between
personalism (probability as personal degree of belief) and objectivism
(probability as uniquely determined rational degree of belief). The tension
survives in modern Bayesianism. The pure personalists, as represented by
de Finetti and his followers, recognize the axioms of probability as the only
synchronic constraints on degrees of belief. Some personalists have also
refused to recognize any diachronic constraints, but it turns out that the
Dutch-book arguments used to justify the probability axioms can also be
used to justify rules of conditionalization (see, however, section 6 below).
Tempered personalists would add further constraints, such as Lewis’s prin-
cipal principle to be discussed below in section 7, or Shimony’s (1970)
injunction on the members of a scientific community to assign a nonzero
prior to any hypothesis seriously proposed by a fellow member of the
community. Objectivists, such as Harold Jeffreys (1961, 1973), carry the
tempering of priors to the extreme by proposing principles to uniquely fix
these numbers. Thomas Bayes himself seems to have failen into this camp,
at least with respect to the problem treated in his founding essay.

The implications of these differing forms of Bayesianism for confirma-
tion theory will be discussed in later chapters. The present chapter concen-
trates on an elementary exposition of the common core of all forms of
Bayesian personalism.

2 The Probability Axioms

Since propositions are the object of belief and since probability is being
interpreted as degree of belief, probabilities will be assigned to objects that
express propositions, namely sentences. More specificaily, let o be a col-
lection of sentences. The content and structure of .« will vary from context
to context, but at a minimum it is assumed that . is closed under finite
truth-functional combinations. Then a probability function Pr is a map
from .o to R satisfying at least the foliowing restrictions:
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Pr{d} =0 forany Ae . (A1)
Prid)=1 ifE4d (A2)
Pr(4 v B) = Pr{4) + Pr(B) iff= 1 (4 & B) (A3)

Here = A means that A is valid in the sense that A is true in all models or
all possible worlds.* Again, the content and structure of the models or
possible worlds will depend upon the context. I assume at 2 minimum that
o respects propositional logic.® In this case (A1) to (A3) suffice to prove
many of the familiar principles of probability, including the following:

Pr(714) = 1 — Pr(4) (P1)
Pr(d) = Pr(B) ifrA<B (P2)
Pr(4 v B) = Pr(A) + Pr(B) — Pr(4 & B) (P3)
Pr(4) <Pr(B) fAd=B (P4)

Here A = B means that A semantically implies B in the sense that B is true
in every model or possible world in which 4 is true.
Conditional probability may be introduced as a defined concept:

Definition If Pr(B) # 0, then Pr(A4/B) = Pr(4 & B)/Pr(B).

Bayes’s theorem is now a simple consequence of this definition. An alterna-
tive approach takes conditional probability Pr(-/-) as primitive and de-
fines the associated unconditional probability Pr(-) as Pr(-/N), where N is
a necessary truth (ie., =N). The advantage of this approach is that Pr{4/B)
can be defined even when Pr(B) = 0. Conditional probability is discussed
in more detail in appendix 1 to this chapter.

Some of the applications to be considered in later chapters also assume.

a principle of continuity.

C If A4,es, i=1, 2, ..., are such that 4,,, = A, for each n and
{4;,4,,...} is inconsistent (i.e., the A; are not all true in any model or
possible world), then lim, _, . Pr(4,) = 0.

Actually, the axiom I will use most often is a weaker principle that applies
to first-order predicate logic. Let ‘P’ be a monadic predicate and let a,, a,,
... be a countably infinite sequence of individual constants. The principle
added as an additional axiom asserts that
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waﬁﬂvwauﬁma wﬂﬂ@ wsvu Qw&
r—+co isn

where &<, Pa; stands for Pa; & Pa, & ... & Pa,. If we require that
{Vi)Pa, = Pa, for every n and that { (Vi) Pa, Pa,,Pa,,...} be inconsis-
tent, then (A4) is shown to be a consequence of (C) by one’s taking
A, = (&;<. Pa; & T1(¥)Pa)). Tt also follows that Pr((3i)Pa,) = lim,_,,
Pr(\/ica Pa;), where <R,Lunm stands for Pa, v Pa, v ... v Pa, Axiom
(A4) can be regarded as an extension of the finite additivity principles (A3)
and (P3) to countable additivity.

In a manner of speaking, “half” of (Ad) is already a consequence of (A1)
through {A3). Since (Vi) Pa; |= &;<n Pa;, it follows by (P4) that Pr((Vi)Pa;} <
Pr(& <, Pa;). Moreover, Pr(Pa,), Pr(Pa, & Pa,), Pr(Pa; & Pa, & Paj),...
is a monotone decreasing sequence bounded from below (by (Al)), and
so it must have a limit. Thus Pr{(vi)Pa;} < lim,_ , Pr(&;«, Pa;). To turn
the “<’, into an ‘ =", as required by (A4), requires a new substantive
assumption.

Continuity or countable additivity does not come without intuitive cost.
Consider a denumerably infinite list H,, H,, ... of pairwise incompatible
and mutually exhaustive hypotheses. One might think that it should at
least be possible to treat these hypotheses in an evenhanded manner by
assigning them all the same probability. But this we cannot do consistently
with (C), since (C) implies that Y 22, Pr(H;) = 1. Continuity thus forces us
to play favorites. (Sticking to finite additivity would allow for a draconian
evenhandedness in the form Pr(H,) =0 for all i)} On the other hand,
abandoning countable additivity leads to results that Bayesians and non-
Bayesians alike find repugnant. Some of these results will be discussed in
appendix 1.

A different nomenclature is presupposed when mathematicians and stat-
isticians speak of probability. For them, a probability space is a triple
(Q, #, P1). ©Q, a set of elements, is called the sample space; #, a field of
subsets of Q, is the collection of measurable sets; and 2 is a nonnegative
{finitely or countably additive) function from # to R. (Here countable
additivity means that if Bje % i=1, 2, ... are pairwise disjoint, then
P&, B) = Y2, Pu(B;)) As is discussed in detail in chapter 6, one can
move from the Bayesian personalist conception of probability to the math-
ematical conception by taking Q to be the set of models of the language of
s, F to be a field generated by sets of models of the form mod(4) for a
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sentence A € <7, and 2 to be a measure satisfying P2(4) = Ps(mod(A4)).
One can aiso move in the opposite direction, although an awkwardness
occurs when # is a o field (see appendix 2) and probabilities gua degrees
of belief are assigned to sentences in a standard first-order language, for
then not every member of # will correspond to a sentence, since these
languages do not allow infinite conjunctions or disjunctions. We can often
smooth over this awkwardness by taking limits of probabilities of finite
conjunctions or disjunctions.

3 Dutch Bock and the Axioms of Probability

Rather than simply assuming that degrees of belief are regimented by the
principles of probability, one could try to exploit the interpretation of
probability as degree of belief as a means of getting a justification for the
probability axioms. We saw in chapter 1 that Thomas Bayes took this tack
by using the connection between degrees of belief and betting behavior.
Ramsey {1931} and de Finetti (1937) followed a related tack with their
Dutch-book strategy, although they were apparently unaware of the de-
tails of Bayes’s work, which contains, as we have seen in chapter 1, intima-
tions of Dutch book. The presentation given here follows Shimony 1955.

By a bet on A € & let us understand a contractual arrangement between
a bettor and a bookie by which the bettor agrees to pay the bookie the
amount $5 if A turns out to be false and the bookie agrees to pay the bettor
$aif A turns out to be true. The sum $(a + b) is called the stakes of the bet,
and the ratio b/a is called the bettor’s odds. If Pr is the bettor’s degree-of-
belief function, the expected monetary value of the bet for him is $a x
Pr{A4) — $b x Pr(71A). The bet is said to be fair (respectively, favorable,
unfavorable) to the bettor according as the expected value is zero (respec-
tively, positive, negative). Using the negation principle (P1), the condition
for a fair bet comes to Pr(4) = b/{a + b). This ratio is called the bettor’s
Sair betting guotient.

The idea of the Dutch-book argument is to turn this construction
around to produce a justification of the probability axioms: assume that
degree of belief functions as a fair betting quotient and then show that
something very nasty will happen if the degrees of belief fail to conform to
the probability axioms. Thus if Pr(4) = r is your degree of belief in A4, then
(the story goes) you shouid be willing to bet on A on the terms in table 2.1.
§ is allowed to be either positive or negative, which means that you are
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Table 2.1
Terms for betting on A
Pay Collect Net
A false rs 0 ey
A true rS hy 1—ns

Note: § stands for the stakes.

required o accept either end of the bet. If you do enter ,mcow an arrange-
ment, the nasty thing that threatens is Dutch book, a finite series of bets
such that no matter what happens, your net is negative (a violation of what
is called coherence for degrees of belief). The Dutch-book theorem shows
that if any one of the axioms (A1) to (A3) is violated, then Dutch book can
be made. The converse Dutch-book theorem shows that if (A1) through (A3)
are satisfied, then Dutch book cannot be made in a finite series of bets. This
converse is crucial to the motivation for conforming degrees of belief to the
principles of probability, for if such a conformity were not guarantce
against Dutch book, the threat of Dutch book would not be a very effective
inducement to conformity.-Only the proof of the Dutch-book theorem will
be sketched here. The interested reader can consult Kemeny 1955 and
Lehman 1955 for the converse.

To establish that (A1) is necessary to avoid Dutch book, suppose that

.. Pr(4) = r < 0. Choose S < 0 and note that the net is negative whether or

not A is true. Similarly, if Pr(4) =r > 1, choosing § > 0 leads to a loss,
come what may. We can now cstablish that (A2) is mecessary to avoid
Dutch book. For suppose that Pr(4) = r # 1 even though |= 4. By the
previous tesults, 0 < r < 1. Choosing § < 0 then leads to a loss in case 4
is true, which is the only possible case. Finally, to show the necessity of
(A3), suppose that = 71(4 & B) and consider a series of three bets: one on
A with a betting quotient Pr(4) = r, at stakes S,, one on B with a betting
quotient Pr(B) = r, at stakes S, and one on 4 v B with a betting quotient
Pr(A v B) =r; at stakes S;. There are three possible cases to consider
{table 2.2). The theory of linear equations then shows that the stakes can
be chosen so that the nets are all negative unless ry = ry + 72, i€, unless
(A3) hoids.

If regarded as a definition, the formula given in section 1 for conditional
probability does not stand in need of a justification. But as in de Finetti
1937, the notion of the conditional probability of B on 4 can be introduced



40 Chapter 2

Table 2.2
Net payoffs for the three bets taken topether
Net
A true, B false (L —r)S; — S, +(1~r;5)8,
A false, B true =718+ (1 —1)8; + (T —r5)8,

A false, B false —#S; — 1382 — 15,

as a primitive and then operationalized in terms of a bet on B conditional
on A, the terms of which specify that if 4 obtains, a standard unconditional
bet on B is in effect, whereas if A4 fails, the bet is called off. Then (the story
goes) Pr{B/A) should be the agent’s critical odds for this conditional bet.
The agent is now offered three bets: a standard bet on A, a standard bet on
B & A, and a bet on B conditional on A. It is left as an exercise to show
that unless Pr(B/A) x Pr(A} == Pr(B & A), stakes can be chosen for the
three bets so that the agent has a sure net loss. This argument does not
Justify the rule of conditionalization, which requires a different argument
{see section 5 below).

The Dutch-book justification for continuity is not so pretty, and this is
perhaps one of the reasons it plays no role in the Bayesianism of Ramsey,
de Finetti, and Savage.® To Dutch-book a violation of (C) or (A4), which
is not also a violation of (A1) through (A3), requires laying an infinite series
of bets. But if I were to risk the same finite amount, no matter how small,
on each of these bets, then I would have to have an infinite bankroll, an
impossible dream. And if the dream should come true, I would not care
one whit about losing a finite or even an infinite sum if, as can always be
arranged, I have an infinite amount left over. To remedy this defect, we can
imagine that the bettor accepts an infinite series of fair bets but that the
total amount he risks is finite; e.g., he risks $(1/2) on the first bet, $(1/4) on
the second, $(1/8) on the third, and so on. With this setup, Adams (1961)
shows that a sure loss results from a violation of the general continuity
axiom (C) (see also Spielman 1977).

4 Difficulties with the Dutch-Book Argument

Qualms about the Dutch-book justification of the probability axioms are
so numerous and diverse that it is hard to classify them, For future refer-
ence I note that when the requirement of logical omniscience is dropped,
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as it must be for realistic agents, the situation becomes more complicated;
this matter is discussed in chapter 5. For the present context, which takes
logical omniscience for granted, T begin with three miscellaneous qualms.
First, the Dutch-book construction for countable additivity involves, in
Ernest Adams’s words, “extremely unrealistic systems” (1961, p. 8). For
those who insist that degrees of belief must be operationalized in terms of
economic transactions, this constitutes a reason to reject countable addi-
tivity. (Thus it is not surprising that countable additivity plays no role in
de Finetti’s personalism.) But for those of us who reject operationalism and
behaviorism and insist that countable additivity is needed, the difficulty is
a shortcoming of the Dutch-book construction. Second, the requirement
that the agent be willing to take either side of the bet (i.e,, the stakes § may
be either positive or negative) may not be satisfied by actual gamblers, and
in any case it already assumes the negation principle.” Third, a Bayes-
ianism that appeals to both Dutch book and strict conditionalization is on
a collision course with itself. The use of strict conditionalization leads to
situations where Pr(4) = 1 although = A. As a result, something almost as
bad as Dutch book befalis the conditionalizer; namely, she is committed
to betting on the contingent proposition 4 at maximal odds, which means
that in no possible outcome can she have a positive gain and in some
possible outcome she has a loss (a violation of what is called strict coher-
ence). It is too facile to say in response that this is a good reason for
abandoning strict conditionalization in favor of Jeffrey conditionalization
or some other rule for belief change; for all the results about merger of
opinion and convergence to certainty so highly touted in the Bayesian
literature depend on strict conditionalization (see chapter 6).

A more basic worry harkens back to Bayes’s insistence that probability
as a betting quotient be attached to “ecvents,” ie., decidable propositions
(see chapter 1). Bets on the outcome of the Kentucky Derby are one thing,
bets on scientific hypotheses are quite another. A hypothesis with the
quantifier structure (3x}(vy)Rxy can be neither verified nor falsified by
finite means. Thus a bet on such a hypothesis turns on a contingency that
can never be known for certainty to hold or to fail, and so the parties to
the bet have no sure way to settle the matter. To try to settle the bet by
appeal to the probable truth or falsity of the hypothesis runs afoul of the
fact that the parties can and often do disagree on whether the hypothesis
is probably true. But if the bet is never paid off, fear of being bilked
disappears.
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The response to this worry might be that bookies wearing wooden
shoes, money pumps, etc. are just window dressing. The underlying as-
sumption is that degrees of belief are manifested in preferences over the
kinds of bets described in section 3. This assumption granted, the Dutch-
book construction stripped of its decoration shows that the failure of
degrees of belief to conform to the probability calculus results in a structur-
al inconsistency in the individual’s preferences. Suppose that the individual
is nonsatiated in that she prefers more money to less. Then if this person
violates (A1) or (A2), the Dutch-book construction reveals that she is
literally inconsistent with herself, since she prefers the certainty of handing
over some $& > 0 to the status quo, despite her professed nonsatiation. In
the case of (A3) the argument is more involved, since it appeals to another
principle, “the package principle”; to wit, a person’s preferences are incon-
sistent if there is a finite series of bets such that she regards each as
preferable to the status quo while at the same time she regards the status
quo as preferable to the package of bets. If this hypothetical agent violates
(A3), we proceed to construct a finite series of bets each of which she finds
favorable. By the package principle, she should then find the package
favorable. But the package is shown to be equivalent to handing over
$2 > 0, which contradicts nonsatiation. Note that on this reading the
Dutch-book construction does not justify strict coherence, i.¢., the require-
ment that Pr(A4) = I only if = A, which I take to be a mark in favor of this
reading.

Schick (1986) has questioned the normative status of the package princi-
ple. Its plausibility, he argues, rests on accepting the notion of value
additivity, which holds that the value of the package of bets is the sum of
the values of the individual bets. But, Schick claims, an agent who refuses
to conform her degrees of belief to the probability axioms may read the

Dutch-book construction as a reason to reject value additivity. Schick’s

objection may not at first seem very moving, but it gains force in the
context of the sequential decision making that comes into play in the
attempted diachronic Dutch-book justification for conditionalization (see
section 6).

Although the above reconstrual of the Dutch-book construction is a
step forward, it 1s still too closely tied to the behavioristic identification of
belief with dispositions to place bets. Once it is admitted that betting
behavior is only indicative of, and not constitutive of, underlying belief
states, it must also be admitted that belief and behavior are mediated by
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many factors and that these factors can weaken to the breaking point the
simpleminded linkage assumed in the Dutch-book construction. In poker,
for example, betting high may be a good way to scare off the other players
and win the pot (see Borel 1924). And generally, a knowledge of the
tendencies of opponents may make it advisable to post odds that differ
from one’s true probabilities (see Adams and Rosenkrantz 1980).%

Two responses can be made to this complaint. First, one can drop the
Dutch-book approach in favor of a justification of the probability axioms
that focuses directly on the nature of belief and the cognitive aims of
inquiry and eschews altogether preferences for goodies, monetary or other-
wise. Some candidates for such a justification will be examined in the next
section. Second, one can continue to push the Dutch-book approach by
taking into account in a more systematic manner the preference structure
of the agent. I will follow this theme in the remainder of this section.

The opening melody of this theme is that the Dutch-book construction
rests on the assumption that utility is linear with money, or equivalently,
that agents are risk neutral, an assumption known to be false for many if
not most real-world agents.® To iltustrate the complications that can arise
in trying to use betting behavior to elicit degrees of belief for such real-
world agents, let us analyze from the point of view of expected-utility
theory the elicitation device Bayes himself used. Let 3¢ be the maximum
amount the agent is willing to pay for a contract that awards $r if A is true
and $0 otherwise. If U is the agent’s utility function and Pr(dw/4) and
Pr(dw/ 71.4) are the agent’s conditional probability distributions for weaith
exclusive of the contract prize, then a little aigebra shows that the expected-
utility hypothesis implies that the agent’s degree of belief in A is

{ ; - fUw+r—gq) — Ss:?ae&g
[(Uw) — Uw — g)Pr(dw/ 14}

(see Kadane and Winkler 1987). If the agent is risk neutral, ie, if U is
linear, then the degree of belief is seen to be equal to g/r, as Bayes thought.

If Pr(dw/A) = Pr(dw/14) (i.e., the agent’s wealth apart from the contract

payofl is not probabilistically dependent on A4) but the agent is not risk
neutral, then Pr{4) will differ from g/r: if the agent is risk-averse, g/r will
understate Pr(A4), while if she is risk-positive, g/r will overstate Pr(4). And
if Pr(dw/A) # Pr{dw/ 1 A), ¢/r is an even more distorted measure of Pr(A4).
The moral is that the direct elicitation of degrees of belief by betting
behavior is doomed to failure. Degrees of belief and utilities have to be
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elicited in concert. In the standard developments of this concerted elic-
itation the aim is to show that preferences satisfying (what are taken to be)
rationality constraints can be represented in terms of expected utility, with
the probabilities being uniquely determined and the utilities determined up
to positive linear transformations. But the alleged rationality constraints
are open to challenge (see, for example, the paradoxes in Allais 1953 and
Ellsberg 1961). Moreover, when the utilities are dependent not just on
the prizes but also on the propositions whose utilities are being elicited,
then the probabilities may not be uniquely determined (see Schervish,
Seidenfeld, and Kadane 1990 and Seidenfeld, Schervish, and Kadane
1990). Here I must break off the discussion, since I have strayed beyond
the scope of this work.

5 Non-Dutch-Book Justifications of the Probability Axioms

Aside from a fear of being bilked by Dutch bookies, there are a number of
other motivations for conforming degrees of belief to.the probability calcu-
lus, three of which will be mentioned here.

The first is articulated by Rosenkrantz (1981), who follows de Finetti
(1972). Comsider a partition {H;}, i=1, 2, ..., N, and an agent who
distributes her degrees of belief x; over the H; in accord with the constraint
that 0 < x; < 1 but not necessarily obeying the condition ) ;x; =1, as
would be the case if she obeyed the probability calculus. Suppose that
when H; is the true hypothesis, the inaccuracy of her degrees of belief is
measured by the least-squares function

IGH)=xi+ -+ x2, + (1 —xP +xky + 4+ x3 (2.3)

If the x; do not sum to 1, there is an alternative set of degrees of belief y;
that do sum to 1 and that dominate the x; in the sense that I(y; H)) <
I(x; H;), whatever the value of j. This conclusion continues to hold when
(2.3} is generalized to a weighted least-squares measure where the weights
reflect judgments of how far the false alternatives are from the true hypoth-
esis. If the conclusion could be further generalized to any “reasonable”
measure of inaccuracy, we would be entitled to draw the moral that failure
to obey the axioms of probability undermines the goal of accuracy. A
discussion of what conditions constitute a reasonable measure of inaccu-
racy, together with a review of resuits and conjectures about the sought
after generalization, are found in Rosenkrantz 1981 (see also Lindley 1982).
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A second kind of justification is best construed as directed at well-
tempered personalists who aim at rational degrees of belief. It can be found
in various versions in Aczél 1966; Cox 1946, 1961; Good 1950; and also in
Shimony 1970, the version I will report here. It works on the concept of
conditional probability. Let Pr(H/E) be a real-valued function defined on
pairs of sentences (H, E), where H is a member of a nonempty set < of
sentences closed under truth functional operations and E is a member of
the noncontradictory elements #° of # < o (see appendix 1). It is further
supposed that Pr(-/-) satisfies the following six conditions:

Cl Pr(H/E) = Pr(H//E}if =H < H and =E—E.

C2 For any E € #°, there is an r, such that for any contradiction C € &
and any H € & Pr(C/E) = r, < Pr{H/E).

C3 There is an r, such that for all E, F € #°, Pr(E/E) = Pr(F/F)=

C4 Pr(H & E/E) = Pr(H/E).

C5 For any E, F ¢ #°, there is a function fg such that Pr(H & F/E) =
Je(Pr(H/F & E), Pr(F/E)).

C6 For any E m%o,,.‘mﬂﬂn is a continuous and monotone increasing
function gy in both variables such that if E = 71(H & J), then Pr(H v J/E)
= gp(Pr(H/E), Pr(J/E)).

Then there exists a ooﬁw_cbn\m/ and monotone increasing function h such
that h(ry) = 0, h(ry} = 1, and Pr(H/E) = h(Pr(H/E)) satisfies the standard
axioms for conditional probability.

The usefulness of this technical result for the justification of the proba-
bility axioms depends on the persuasiveness of two further assumptions:
first, that (C1) through (C6) should be satisfied for any rational conditional
degree of belief function and, sccond, that if Pr is a suitable measure of
rational degree of belief, then so is any monotone function of Pr, which
leaves us free to choose a Pr that satisfies the standard axioms. Neither of
these assumptions recommends itself with overwhelming force.

A third mode of justification starts from Carnap’s (1950) remark that
rational degrees of belief can, in some instances, be construed as estimates
of relative frequencies. Thus if H is of the form ‘Pa’, my degree of belief in
H may be interpreted as my estimate of the relative frequency of individ-
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uals with the property designated by ‘P’ in some appropriate reference
class.'® If my personal probabilities for propositions of this form are not
to be precluded a priori from being accurate estimates of frequencies, they
must fulfill the standard probability axioms, since frequencies do (see van
Fraassen 1983a and Shimony 1988).

Although attractively straightforward, such frequency-driven justifica-
tions have their limitations. As a result of calculation or of consulting
theories like quantum mechanics, my degree of belief in H may be an
irrational number. If ‘frequency’ means finite frequency, i.e., the ratio of the
number of individuals that have the property to the total number of
individuals in the (finite) reference class, then I am automatically precluded
from having an exactly accurate estimate. Limiting relative frequencies in
infinite sequences do not share this shortcoming, but such frequencies can
lead via the continuity axiom to a conflict with other probability assign-
ments we may want to make. Thus, for example, my estimate of the
limiting relative frequency for events such as Pa; may be 0 for each i, in
which case I set Pr(\/;¢, Pa;} = 0 for every n. But at the same time I may be
convinced that at ieast one of the individuals must be a ‘F’, which contra-
dicts (A4). More generally, for the multiply quantified hypotheses encoun-
tered in the advanced sciences, there is no obvious or natural way in which
one’s degree of belief can be regarded as an estimate of relative frequency
in either the finite or limiting sense. Of course, I can calibrate my degree
of belief in H with frequencies by finding an H’ such that Pr(H) = Pr(H")
and such that Pr(H") does have a natural interpretation as an estimate of
a frequency. But without further restrictions, there is no guarantee that the
probabilities assigned to the class of hypotheses so calibrated will satisfy
the probability axioms.

Although Dutch book and the other methods of justification investi-
gated in this section are all subject to limitations and objections, collective-
ly they provide powerful persuasion for conforming degrees of belief to the
probability calcnlus.

6 Justifications for Conditionalization

Dutch-book justifications can be given for both strict conditionalization
(Teller 1973, 1976) and Jeffrey conditionalization (Skyrms 1987).'* To
consider the former, suppose without any real loss of generality that upon
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learning E the agent shifts from Pr,4 to Pr.,, where y = Pr4(A/E) ~
Pr,...(4) > 0 and x = Pr,,(4/E) > 0. The diachronic Dutch bookie first
sells the agent three bets b;: [$1; 4 & EJ, by: [$x; T1E]L, and byt [$y; E], at
what the agent computes to be their fair values. (Recall that [$z; C] stands
for the contract that pays $z if C obtains and 30 otherwise.) If E proves to
be false, the agent has a net loss of $yPr,4(E). On the other hand, if E turns
out to be true, the bookie buys back from the agent the bet b,: [$1; A] for
its then expected value to the agent (8Pr,,,,(4) = $(Pry4(A4/E) — ¥)). The
agent then has a net loss of $yPr,4(E), regardless of whether 4 obtains.

We can assess this argument for conditionalization in the light of the
distinction drawn above in section 4 between two readings of the Dutch-
book construction. If the central concern is to escape being systematically
bilked by a bookie, there is a simple solution that doesn’t commit you to
conditionalization: don’t publicly announce your strategy for changing
belief in the face of new evidence. If you are worried about clairvoyant
bookies who can read your mind, then don’t make up your mind in
advance; just wait to see what evidence comes in and then wing it. (This is,
in fact, what many of us do in practice.) This will make you proof against
systematic bilking, save by those bookies who have the ability to foresee
your future belief states. But from such precognitive bookies not even good
Bayesian conditionalizers are safe. Of course, if you do not conditionalize,
there will be a hypothetical lucky bookie who by chance rather than
system hits on a series of bets that guarantees you a net loss, but then even
if you do conditionalize, there will be a hypothetical lucky bookie who
takes you for a loss. .

On the more pristine reading of the original synchronic Dutch-book
construction, the bookies in wooden shoes were only window dressing, and
what was really being revealed (so the story went) was a structural incon-
sistency in the preferences of an agent who did not conform her degrees of
belief to the probability calculus. In applying this reading to the diachronic
setting, we need to divide cases. Consider first the case of an agent who
eschews preset rules for changing degrees of belief. In this instance it is hard
to see how the charge of inconsistency can legitimately be leveled. For how
can such an agent’s preferences over bets at t; be inconsistent with her
preferences over bets at ¢, any more than her preferences over wines at ;
can be inconsistent with her preferences over wines at ¢,? Perhaps in
response it will be urged that without melding together preferences at
different times to form an integrated whole, it wouldn’t be proper to speak
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of an enduring agent. That is certainly true, but surely the requirements for
personal identity over time cannot be taken to entail rationality con-
straints—and conditionalization is allegedly such a constraint-—since a
person who behaves irrationally does not cease to be a person.

The agent who has adopted a rule for belief change is more open to the
charge of inconsistency, since she has already committed herself at ¢, to
what her preferences over bets will be at t,. It would then seem that we can
apply at t, the package principle introduced in the discussion of synchron-
ic Dutch book: if an agent prefers each of a finite series of bets to the status
quo, then she also prefers the package of bets to the status quo. To make
this principle vield the desired consequence in the present setting, ‘prefer’
must be taken to mean prefer when the decision is viewed as an isolated
one, which is the tacit understanding in effect when the critical odds for a
bet on A are used to elicit the agent’s degree of belief in 4. But an agent
who is not a conditionalizer can satisfy the package principle by taking
‘prefer’ to mean prefer when the decision to accept or reject the bet is
placed in the context of a sequential decision problem. If we view the
diachronic Dutch-book construction as a sequential decision process, the
decision tree looks as in figure 2.1. The principles of rational decision
making require that at decision node 1 the agent face up to what she knows
about what her preferences will be at node 2, should she get there (see
Seidenfeld 1988). She knows that at node 2 the tiniest premium will lead
her to prefer to sell back to the bookie the bet on A, and she sees that in

loss

loss

[ = decision node e = chance node

Figure 2.1
Diachronic Dutch book on a decision tree B
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the decision context this choice leads to a sure loss. She sees also that she
gets to node 2 if at node 1 she chooses to buy b, to b; and E obtains, and
further that if she chooses to buy b, to by and E fails, she incurs a sure net
loss. Thus, all things considered, she sees that buying b, to b, is unfavor-
able. It is on just these grounds that Maher (1992} maintains that the
diachronic-Dutch-book argument is fallacious (see also Levi 1987).

To the extent that these decision-theoretic considerations are effective in
undermining the diachronic-Dutch-book justification for conditionaliza-
tion, they also bring into question the Dutch-book justification for the
axioms of probability. In essence, the decision-theoretic message is to look
before you leap. Such advice is just as valid in the synchronic setting as in
the diachronic or multitemporal setting. And in the former setting, the
advice clashes with the package principle needed in the argument for the
principle of additivity of the probabilities of exclusive alternatives, which
brings us full circle back to Schick’s (1986) objection to Dutch-book argu-
ments. The circle leaves me in an unsettled position. I agree, for example,
that if T adopted a rule of belief change other than conditionalization and
if I were cagey enough to draw up the decision tree for diachronic Dutch
book, then I would refuse to accept the initial béts. But since I regard each
of these bets as fair, should I not therefore reco mENM_ that there is something
amiss in my opinion/preference structure? QSE_& for a definitive answer
do not exist, or if they do, I do not know of them."

A different and more modest justification for conditionalization has
been given by Teller (1976), who argues that there are specifiable circum-
stances under which it can be maintained that if any change in belief is
reasonable, then such a change must be via conditionalization. To identify
some of these circumstances, Teller proves the following formal result (see
also Teller and Fine 1975). Suppose that Pr,4(E) > 0 and that the agent’s
domain .of of beliefs is full in the sense that for any number g and any
A e o such that Pr4(4A) = rand 0 € g < rthereisa B e o/ such that B |=
A and Pr,, (B} = g. Suppose further that Pr,,,(-) is such that Pr,  (E) =1
and that for all A, B € & such that 4 = E and B = E, if Pr,;4(A4) = Pr,4(B),
then Pr, ., (4) = Pr,.(B). Then Pr,,,(-) = Pr, (- /E).

As can easily be verified under the assumption that Pr,,4(E) = 0, Teller’s
crucial condition C(E) is equivalent to C'(E):

C(E) Forall A, Be .« suchthat A= E and B = E, if P1,4(A) = Pr,4(B),
then Pr,..(4) = Pr,..(B).
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C'(E) For all 4, Be o/ (whether or not they entail E), if Pr,,(4/E) =
HUH.SQA.W\.@V» then M-H:mi?ﬁv = wﬂﬂoiﬁwv

There are clear cases where we want to impose C(E) or C'(E) for at least
some A and B. Thus, let A be the proposition that Dancer will win the
Derby, B the proposition that Prancer will win the Derby, and E the
proposition that one or the other has won. Suppose that an agent is
initially equally confident of 4 and B. She now learns precisely that E—
that and no more. It would seem that, in accord with C(E), she would be
unreasonable in these circumstances to adjust her degrees of belief so that
Dancer is now preferred to Prancer (or vice versa). But to invoke the
formal result, we need to extend the argument to all pairs of initially
equally probable propositions entailing E. It is hard to see how this can be
done for any particular & that is sufficiently rich without using reasoning
that would apply equally to any .+ and would thus abandon the modesty
of the approach.

The basis for an immodest justification can perhaps be found in van
Fraassen's (1989) result that under the assumption of the fullness of <
C(E)isimplied by the requirement that the new probability of any proposi-
tion A € o is a function solely of the evidence E and the old probability
of A. It is well to note, however, that van Fraassen himself would not take
such a justification to imply that conditionalization is necessary for ratio-
nality, since in his view rationality does not require that belief change
follows a preset rule (see van Fraassen 1989 and 1990).

A different motivation for Jeffrey conditionalization starts from the idea
that one should make as small a change as possible in one’s overall system
of beliefs compatible with the shift in those beliefs directly affected by the
learning experience. Consider a probability function Pr on «, thought of
as giving the probabilities prior to making an observation. Let {E;} be a
partition, intended as the locus of belief change, and let Pr* be a measure
on {E;} such that Pr*(E,) > 0 and ) ; Pr*(E;) = 1, intended to give the new
probabilities of the E; after observation. One would like to extend Pr* to
a probability measure Pr** on .« in such a way that Pr** makes as
minimal a change as possible in Pr. Relative to several natural distance
measures, the probability obtained by Jeffrey conditionalization fits the
bill, although for some distance measures it may not do so uniquely (see
Diaconis and Zabell 1982).

- When the effect of observation is not so simple as to be localizable in a
single partition, the method for updating probabilities becomes problem-
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atic. Suppose that one’s experience results in new degrees of belief for each
of the partitions {E;} and {F;}. It is not guaranteed a priori that these
degrees of belief are mutually coherent in the sense that they are extendible
to a full probability on /. A necessary and sufficient condition for the
existence of such an extension is supplied by Diaconis and Zabell {1982).
Assuming coherence, one could proceed to produce a mew probability
function by successive Jeffrey conditionalizations on the two partitions.
But the order of conditioning may matter. If we denote the results of Jeffrey
conditionalizing on {E;} (respectively {F;}) by Prg(-) (Prg(')), then the
order does not matter in that Prgp(-) = Prpg(-) just in case Prg(E;) =
Pr(E,) and Prg(F;) = Pr(F,}foralliand j.1? The interested reader is referred
to Diaconis and Zabell 1982 and van Fraassen 1989 for more discussion
of these and related matters.

‘While the cumulative weight of the various justifications for condition-
alization seems impressive, it should be noted that the starting assump-
tions of strict and Jeffrey conditionalization are left untouched. The former
assumes that learning experiences have a precise propositional content in
the sense that there is a proposition E that Wﬁrafmaﬁnﬁwﬁm learned in
the experience, while the latter assumes that if there is. no precise proposi-
tional content, still the resuiting belief changes can be localized to a parti-
tion. One or the other of these assumptions is surely correct for an interest-
ing range of cases, but it is doubtful that they apply across the board. And
where the doubt is realized, the present form of Bayesianism is silent.

In the remainder of this book I will concentrate on cases where strict
conditionalization applies.

7 Lewis’s Principal Principle

What David Lewis (1980, 1986) calls the principal principle (PP) may be
viewed both as a rationality constraint on personal probabilities and as an
implicit definition of objective probabilities. To paraphrase Lewis, (PP)
requires that if Pr(-) is a rational degree of belief function, 4 a proposition
asserting that some specified event occurs at time ¢ (e.g., a given coin lands
heads up when flipped at #), 4, the proposition that asserts that the chance
or objective probability at time ¢ of A’s holding is p, and E any proposition
compatible with A that is admissible at ¢, then Pr{4/4, & E) = p. Admis-
sibility is, as Lewis notes, a tricky notion. But for present purposes it
suffices to focus on one category of evidence that should be admissible in
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the intended sense, namely, any proposition E about matters of particular
historical fact up to time ¢ (e.g., information about the outcomes of past
flips of the coin).

A glance at Bayes’s calculations reported in chapter 1 is enough to
establish that the Reverend Thomas himself used a version of (PP). Some
of the mathematical niceties of Bayes’s application of {PP) will be taken up
in chapter 4, but these will be ignored in the present chapter to simplify the
discussion.

Some early critics of probabilistic epistemology worried that the stan-
dard probability apparatus doesn’t suffice to capture the full force of
uncertain judgments. Consider two cases of partial knowledge. In the first
I know literally nothing about a coin, save that it is two-sided and has a
head and a tail. In the second I learn that 10,000 flips have produced 5,023
heads. If A is the proposition that the next flip will be heads, then in each
of the two cases my degree of belief conditional on the total available
evidence will presumably be (roughly} .5. But in the second case the
“weight” of the evidence seems much greater, and consequently, my degree
of belief is much firmer. The worry is that two numbers are needed to
characterize my belief state, one describing my degree of belief, the other
describing the weight of the evidence. But by using (PP), we can show that
information about weight is already encoded in the standard probabilities.
If we assume for sake of convenience that p can take on only discrete values
p;, We can write

Pr{A/E) = M Pr(4/A,, & E) x Pr(4,/E)

= M b X HVHTA._E\NV

where the first equality uses the principle of total probability and the
second follows by (PP). The probability of A on E is thus the first moment
of the distribution Pr(4,, /E). One would expect this distribution to look
like figure 2.2a in the first hypothesized case and like figure 2.2b in the
second. Thus, as E. T. Jaynes (1959) suggests, at least part of what is
meant by ‘weight of evidence’ can be explicated in terms of the concentra-
tion of the Pr(4,/E) distribution. This sense of weight is connected to the
notion of firmness or resiliency, since presumably the greater the weight,
the more new information about the outcomes of additional coin flips that
is needed to significantly alter Pr(4, /E) and thus Pr(4/E).
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The distribution of personal probability of the objective probability

Principle (PP) is also (jokingly) referred to as Miller’s principle because
David Miller (1266) claimed to mwoé/ﬂr.ﬁ\ﬂ.ﬂ principle is inconsistent.
There is no need to review Miller’s attack here, since Jeffrey (1970) and
Howson and Urbach (1989) have successfully parried the attack. But it is
worth reviewing van Fraassen’s assessment of (PP), since if he is correct,
(PP) has a less lofty status than it might seem to have at first glance.

Van Fraassen writes,

The intuition that Miller’s Principle is a requirement of rationality firmly links its
credentials to a certain view of ourselves—mnamely, that we are finite, temporally
conditioned rational beings. We have no crystal balls, and no way to gather
information about the future which goes beyond the facts which have become
settled to date. If we thought instead that Miller’s Principle must apply to all
possible and conceivable rational beings, we would have to conclude that omni-
scienice implies determinism. (1989, p. 196)

The argument proceeds by supposing that there is a rational agent who is
omniscient, For that agent, Pr(4) = 1 or 0, according as 4 is true or false
for any proposition 4. So Pr(4,,) = 1 for some unique 0 < p* < 1. But
then by (PP), we get Pr(4/A,,)=p* =Pr(4d & 4,,)/P1(4,,) = Pr(4).
Hence p* is 1 or 0, according as A is true or false, which is determinism.
There is pressure, however, to argue the other way around. The objective
chance of a specified outcome (e.g., the reflection of a photon by a half-
silvered mitror) is 0 < p* < 1. This I know because quantum mechanics
(QM) tells me so. Therefore, if I am rational, I shouldn’t assign 1 or 0 as
my degree of belief in the outcome. So objective chance is incompatible
with rational omniscience about the future, and the scope of (PP) does after
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all include all rational agents. A potential difficulty with this line is that it
might seem to conflict with a reliability conception of knowledge. Thus,
suppose that a person is able to correctly predict the future time after time.
Wouldn't we eventually be willing to say that this person knows what the
future holds? Correct prediction in itself is not a sure indicator of the
relevant sort of reliability, for it is consistent with lucky guessing. What is
needed for knowledge is the existence of a belief-forming mechanism that
reliably yields certainty, a probability of 1 or 0, on the events in question.
But such a mechanism is arguably inconsistent with the seemingly irreduc-
ible nontrivial probabilities involved in quantum events. Indeed, several of
the no-go results for hidden-variable interpretations of QM are not so
much proofs that no deterministic mechanism underlies QM as they are
demonstrations of the inconsistency of treating quantum-mechanical mag-
nitudes as if they had simultaneously determinate values.

In other cases, such as classical statistical mechanics, we want to main-
tain both determinateness and determinism on the microscopic level and
vet speak of objective chances of events defined on the macroscopic level.
For example, if 2 gas is initially confined to one half of a container by a
partition and the partition is removed, then the chance is overwhelmingly
great that in a time short by macroscopic standards the gas molecules,
insofar as macroscopic measurements wilt be able to ascertain, will become
evenly distributed over the entire container. In assigning personal proba-
bilities, it would be irrational to ignore such teachings of statistical me-
chanics. But this judgment, as opposed to the parallel judgment in the QM
case, rests, as van Fraassen says, on our view of ourselves as temporally
bounded agents who have no crystal balls for reading the future. And it
also rests on our view of ourselves as being bounded in other ways as well,
in particular, as being unable to discern the current exact microstate of the
gas. This second limitation means, in effect, that the admissible evidence
for (PP) is more circumscribed than originally announced, which is an
indication that the probabilities provided by classical statistical mechanics
are not wholly objective. This is not an unwelcome conclusion, since it is
generally acknowledged that these probabilities are partly physical and
partly epistemic.

Principle (PP) also has the apparent virtue that when combined with the
Iaw of large numbers, it explains how we can come to learn the values of
objective chance parameters. Consider a coin-flipping case with indepen-
dent and identically distributed (IID) trials and an objective chance p for
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heads. Starting from p, we can construct (as explained in appendix 2) a
measure P+ on subsets of the collection of all possible outcomes of an
infinite repetition of this chance experiment, and we can prove that the
measure of the set of all infinite sequences of flips in which the relative
frequency of heads converges to p is 1 (the strong law of large numbers). It
follows that if one starts by assigning a nonzero prior to the hypothesis
that the objective chance of heads is p, obeys (PP), and updates probabili-
ties by conditionalizing on the outcomes of repeated coin flips, then in
almost every infinite repetition of the experiment (i.e., except for a set of
Pz-measure 0) one’s personal, probability will converge to 1 on the said
hypothesis in the limit as the :?@Ewm goes to infinity (see chapter 4).

The mathematics here is impeccable, but the metaphysics remains
murky. If we think of p as something like a single-case propensity, then the
original application of (PP} has a plausible ring to it. Moreover, given the
assumption of IID trials, the objective probability in » trials of getting m
heads is

@ (L oy

Tt follows that as # — co the objective probability goes to 0 that the relative
frequency of heads differs from p by any specified & > 0 (a form of the weak
law of large numbers). So by applying (PP) at each stage of this reasoning,
we can conclude that our personal probability goes to certainty that the
frequency of heads comes within any desired & > 0 of the true objective
probability. But to get a personal-probability analogue of the strong form
of the large numbers, we need to operate with the measure %+ on the
collection of infinite repetitions, and it is not immediately apparent why
P4 should function as an objective probability in the relevant sense of (PP),
that is, so as to underwrite the conclusion that our personal probability
ought to be one that in this infinite repetition of the experiment the limit
of the relative frequency of heads will equal the objective probability of
heads. The original (PP) can be defended on the grounds that it is constitu-
tive of what is meant by objective probability. But we can only get away
with such a move once.

Rather than start with single-case probabilities and then build the mea-
sure @ on sets of infinite sequences, J. L. Doob (1941) proposed that we
take as basic the measure %, identify the event (say) of a coin’s landing
heads on the 35th flip with the set of all infinite sequences that yield heads
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in the 35th place, and then take the 22 measure of this collection to be the
probability of heads on the 35th flip (and thus by the IID assumption, the
probability of heads on any trial). But what is now lacking is the conviction
that this probability value functions enough like a single-case propensity
so as to underwrite (PP) as applied to a particular, concrete flip.

It remains to be seen whether the difficulty here is trying to tell us
something about the strong law of large numbers or about (PP) or both.

8 Descriptive versus Normative Interpretations of Bayesianism

Is Bayesianism to be regarded as descriptive of actual reasoning, or does
it rather fix the pathways that “correct” or “rational” inductive reasoning
must follow? Bayes’s arguments for the probability axioms and the modern
descendants of these arguments, the Dutch-book construction, certainiy
presuppose a normative aim, as do the discussions of rules of condition-
alization and Lewis’s (PP). This is just as well, since it is currently a matter
of lively controversy as to whether actual agents can be represented as
obeying the Bayesian constraints on belief and the allied decision rule of
maximizing expected utility (see Kahneman, Slovic, and Tversky 1982).

Eschewing the descriptive in favor of the normative does not erase ail
difficulties. For ‘ought’ is commonly taken to imply ‘can’, but actual induc-
tive agents can’t, since they lack the logical and ooEvﬁmmou& powers
required to meet the Bayesian norms. The response that Bayesian norms
should be regarded as goals toward which we should strive even if we
always fall short is idle puffery unless it is specified how we can take steps
to bring us closer to the goals. To make the complaint concrete, note that
in a rich language, agents who are computationally bounded may fail to
satisfy probability axiom (A2). This failure is not a mere inadvertence that
can easily be corrected, since by their very nature these agents fall short-of
the logical omniscience that requires recognition of all logical truths in the
domain of Pr. Thus a realistic Bayesianism must somehow make room for
logical learning. And it is in this regard that one must agree with Good
{1977) that probability qua degree of belief can change not only as the
result of observation and experiment but also as a result of calculation and
pure thought, This matter will surface again in chapter 5 in the discussion
of the problem of old evidence.

Actual agents also fall short of logical omniscience by being unable to
parse all the possibilitics, and this inability can skew degrees of belief.
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The probability calculus requires that the degrees of belief assigned to

Einstein’s general theory of relativity (GTR) and its negation sum to one.

But when Finstein first proposed GTR, physicists had only the dimmest

idea of what was containied in the portion of possibility space denoted by

—1GTR, and thus their Wmm@mmgg_”m of the probability of GTR were ill

informed in the worst %w. ‘Explore the space of possibilites’ is an empty

injunction unless aceefmpanied by practical guidelines. Although I haveno

general prescription to offer in this regard, I will offer in chapter 7 some
examples of how the exploration has been conducted in some actual and

challenging cases. It should be noted, however, that such an exploration

cannot be undertaken in an orthodox Bayesian fashion, for the recogni-

tion of heretofore obscured possibilities is typically accompanied by belief
changes, and it is hardly possible to account for all of these changes by

conditionalization, whether of the strict or Jeffrey form. This matter will

be taken up in chapters 7 and 8.

Finaily, the considerations of chapter 9 raise a new and different chal-
lenge to the normative status of Bayesianism by showing that the structur-
al constraints it imposes on degrees of belief entail a substantive knowledge
of a kind that most scientists would not regard as appropriate to bring to
a domain of inquiry.

9 Prior Probabilities

The topic of priors will come up again and again in the chapters below.
While it would not be productive to anticipate in advance all of the
nuances of the discussion, it may nevertheless be useful to outline the shape
of one of the central issues. For the Bayesian apparatus to be relevant to
scientific inference, it seems that what it needs to deliver are not mere
subjective opinions but reasonable, rational, objective degrees of belief.
Thence comes the challenge: How are prior probabilities to be assigned so
as to make this delivery possible? (Note that the presupposition of this
challenge is that the other factors involved in Bayes’s theorem, the likeli-
hoods, are unproblematic in a way that priors are not. While this may be
true in some special cases, it is most certainly not true in general. But since
this point only serves to complicate the matter at hand, I waive it for the
time being.)

Three responses to the challenge are to be found in the Bayesian corpus.
The first is that the assignment of priors is not a critical matter, because as
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the evidence accumulates, the differences in priors “wash out.” Chapter 6
will examine in detail various theorems that are supposed to demonstrate
this washout effect. In advance it is fair to say that the formal results apply
only to the long run and leave unanswered the challenge as it applies to
the short and medium runs.

The second response is to provide rules to fix the supposedly reasonable
initial degrees of beliel. In chapter 1 we met Thomas Bayes's attempt to
justify the rule of a uniform prior distribution. We saw that, although
ingenious, Bayes’s attempt is problematic. Other rules for fixing priors
suffer from similar difficulties. And generally, none of the rules cooked up
so far are capable of coping with the wealth of information that typically
bears on the assignment of priors.

The third response is that while it may be hopeless to state and justify
precise rules for assigning numerically exact priors, still there are plausibil-
ity considerations that can be used to guide the assignments. By way of
concrete illustration, consider the recent controversy about AIDS trans-
mission raised by Lorraine Day, a San Francisco surgeon, Day worried
that surgeons might contract AIDS by inhaling the air-borne blood of
infected patients. To protect against this risk, she urged her colleagues to
wear space-suit-like outfits when using high speed drills and saws that
create a fine mist of blood droplets. Critics responded that it is implausible
that Day’s hypothetical transmission mechanism poses any serious risk,
since the AIDS virus should remain suspended in the blood dropiets and
since these droplets are typically too large to pass through the openings of
standard surgical masks. In Bayesian jargon, the critics are urging that
these plausibility considerations justify assigning a low prior to Day’s
hypothesis.

This third response does point to an important aspect of actual scientific
reasoning, but at the same time it opens the Bayesians to a new challenge,
which Fredrick Suppe has put in the form of a dilemma:

If standard inductive logic [i.e., Bayesianism] is intended to provide an analysis of
that plausibility reasoning, then we have a vicious regress where each iteration of
the Bayesian method requires a logically prior application; hence it is impossible
to ever get the Bayesian method going. Hence standard inductive logic is an
inadequate model of scientific reasoning about evidence and the evaluation of
hypotheses. If, on the other hand, standard inductive logic does not provide an
analysis of that plausibility reasoning, standard inductive logic is a critically incom-
plete, hence an inadequate model of scientific reasoning about evidence and the
evaluation of hypotheses. (1989, p. 359)
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Although some w@%ﬁz@m& to seize one or the other of the horns
of this dilemma, it seems to e that the only escape is between the horns.*?
That is, Bayesians must hold that the appeal to plausibility arguments does
not commit them to the existence of a logically prior sort of reasoning:
plausibility assessment. Plausibility arguments serve to marshall the rele-
vant considerations in a perspicuous form, yet the assessment of these
considerations comes with the assignment of priors. But, of course, this
escape succeeds only by reactivating the original challenge. The upshot
seems to be that some form of the washout solution had better work not
just for the long run but also for the short and medium runs as well.

The matter of plausibility arguments also serves to bring to the surface
one of the lingering doubts that many philosophers have about Bayes-
ianism. The worry is that the Bayesian apparatus is just a kind of tally
device used to represent a more fundamental sort of reasoning whose
essence does not lie in the assignment of little numbers to propositions in
accord with the probability axioms. The only effective way to assuage this
worry is to exarine the many attempts to capture scientific reasoning in
non-Bayesian terms and to detail how each of these attempts fails. Some
of this work will be done in chapter 3.

10  Conclusion

In the next two chapters I will assume that Bayesians are armed with the
probability calculus, including countable additivity if it should prove help-
ful, and also with whatever form of conditionalization seems appropriate
to the context. How this arsenal is deploved to attack problems in confir-
mation theory will be the subject of discussion.

Appendix 1: Cenditional Probability

Cenditional probability

Suppose that & < o7 and let #° stand for the noncontradictory elements
of #. Then a conditional probability Pr(-/-} is a function from &/ x #°
to R satisfying the following:

CP1 Pr(-/B}is an unconditional probability on =/ for any B € #°.
CP2 Pr(B/B) = 1 for any B € #°.
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CP3 Pr(4 & B/C) = Pr(B/C) x P(A/B & C) for any Ac o, Bed",
Cz%° and B& C e %°

Pr(-/) is said to be full just in case # = . It will be assumed here that
we are dealing with full conditional probabilities, since any conditional
probability can be extended to a full one. If =N for N e #°, Pr(-) =
Pr(-/N) is the unconditional probability associated with Pr(-/-). (Px(-) is
independent of the choice of N.) It is easy to sce that if B € #° is such that
Pr(B) # 0, Pr(4/B) = Pr(4A & B)/Pr(B) for any 4 = &

Countable additivity, disintegrability, and conglomerability

A partition of the possibilities consists of a set {H,, H;,...} of staterents
H, ¢ o that are pairwise exclusive and mutually exhaustive, i.e., {H;, H;} =
P& Pfori#jand {1H,, 1H,,...} = P & 71P. Let Pr(-/-) be a con-
ditional probability and Pr(-) its associated unconditional probability.
Here Pr(-) is said to be countably additive just in case the continuity
condition (C) (p. 36) holds. This condition implies that for any

partition {H,, H,, ...}, im, ., Pr(\/ic, Hi} = ¥ 2, Pr(H) = L

A countably additive Pr(-) associated with the conditional probability
Pr(-/-) has the property of disintegrability: for any A € &/ and any parti-
tion {H,,H,,...}, Pr{d) = ¥ &, Pr(4/H;) x Pr(H,). Disintegrability for a
partition in turn entails conglomerability: if k; < Pr(4/H,;) < k; for every
i, then k, < Pr(4) < k,. The circle closes: conglomerability with respect to
every countable partition implies countable additivity (Schervish, Seiden-
feld, and Kadane 1984).

The failure of countable additivity and consequently of conglomerabil-
ity can lead to very awkward situations, such as the failure of a natural
principle of dominance, which demands that if an action 0, is condition-
ally preferred to 0, for each member of a partition {H,, H,,...}, then O, is
unconditionally preferred to O, (see Kadane, Schervish, and Seidenfeld
1986). However, nonconglomerability should not be allowed to become a
bugaboo, since even when countable additivity holds, conglomerability
can fail for uncountable partitions (see Kadane, Schervish, and Seidenfeld
1986). .

The failure of disintegrability is also very awkward for Bayesian infer-
ence problems, since it means that the denominator of Bayes’s theorem
(2.1) cannot be written in the form given in (2.2); so, for example, the
probability of the experimental outcome E cannot be assessed in terms of

/
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how well the alternative hypotheses H; explain the outcome (as given by
the likelihoods Pr{(E/H; & K)) and how antecedently probable the hypoth-
eses are (as given by the priors Pr(H,/K)). This theoretical worry is of no
practical importance if in all realistic cases inference involves only a finite
number of H,.

Finalily, it should be noted that Thomas Bayes’s own calculations (chap-
ter 1) implicitly assumed a form of countable additivity (see chapter 4).

Appendix 2: Laws of Large Numbers

Recall that a finite field %, over the set Q) is a collection of subsets of Q that
contains £ and is closed under complementation and finite unions (and
thus under finite intersections). A ¢ field &, is closed under countable
unions {and thus under countable intersections). Each %, generates a
o field #,, namely, the smallest ¢ field containing %,. Let #: be a fi-
nitely additive probability measure on #,. (For any A € #,, #4(4) = 0;
#Q) = 1. Andforany 4,, 4;,...,4, € &/ such that ;N A; = Cffori #j,
Ae(UJioy A)) = Y iy #4(A,).) The function 4 is said to be continuous from
above at & justincascif 4;eo/,i=1,2, ..., are such that 4,,, = A4, and

24 A; = (&, then X\;CWH A;) — 0 as n — oo. {This implies a conditional
form of countable additivity: if | J2, B, € o/ and the B, are pairwise dis-
joint, then #a(| J&, B) = Y2, 42(B;)) Carathéodory’s extension lemma
shows that for such a 4 there is a unique extension to a countably additive
probability measure & on the ¢ field generated by %,.

In the application to IID trials of coin flips, take () to be the collection
of all one-sided infinite sequences of possible outcomes. (So a typical w € Q
would be HTHHTHTTT....) Define a finite field of subsets of Q by
starting with the “cylinder sets,” where a cylinder set is the set of all w’s
that agree on the outcomes in a finite number of places. (A typical cylinder
set would be the collection of alf w’s that have heads in the 20th place and
tails in the 801st place.) #; is then the finite field consisting of the empty
set and finite disjoint unions of the cylinder sets. A 42 measure is defined
on %, by assigning probabilities to the cylinder sets in the natural way. For
example, the measure of the set of all &’s having heads in the 32nd and 41st
places and tails in the 33rd, 58th, and 105th places is p?(1 — p)®, where
p is the objective probability of heads. Since this #: is continuous from
above at (7, it follows from Carathéodory’s lemma that there is a unigue
countably additive extension % of 4+ to the o field #; generated by .
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If we now let j {w) stand for the number of heads in the first » trials of
, the weak and strong form of the law of large numbers can be stated as
follows:

WLLN The 2: measure of the set of @’s for which |(j.(w)/n) — pl > ¢
approaches 0 as n — oo for any ¢ > 0.

SLIN The 9 measure of the set of all «’s such that lim, .., (ju(@)/n) # p
is 0.

To put (SLLN) in its positive form, the Pr probability is one that the
limiting relative frequency of heads converges to p.

As indicated in section 7, a form of the weak law of large numbers
can be formulated and proved without the help of countable additivity.
Roughly, for any & > 0, the probability (in the objective sense or in the
degrec-of-belief sense tempered by Lewis’s principal principle) that the
actually observed relative frequency of heads differs from p by more than
¢ goes to 0 as the number of {lips goes to infinity. This form of the law of
Jarge numbers is to be found in the work of Bernoulli. The strong form of
the law of large numbers, which requires countable additivity, was not
proved until this century (see Billingsley 1979 for a proof).

w Success Stories

The successes of the Bayesian approach to confirmation fall into two
categories. First, there are the successes of Bayesianism in illuminating the
virtues and pitfalis of various approaches to confirmation theory by pro-
viding a Bayesian rationale for what are regarded as sound methodologi-
cal procedures and by revealing the infirmities of what are acknowledged
as smmocba‘ﬁnooomzaom. The present chapter reviews some of these explan-
atory successes. Second, there are the successes in meeting a number of
objections that have been hurled against Bayesianism. The following chap-
ter discusses several of these successful defenses. Takén together, the com-
bined success stories help to explain why many Bayesians display the
confident complacency of true believers. Chapters 5 to 9 will challenge this
complacency. But before turning to the challenges, let us give Bayesianism
its due.

1 Qualitative Confirmation: The Hypotheticodeductive Method

‘When Cari Hempe! published his seminal “Studies in the Logic of Confir-
mation” (1945), he saw his essay as a contribution to the logical empiricists’
program of creating an inductive logic that would parallel and comple-
ment deductive logic. The program, he thought, was best carried out in
three stages: the first stage would provide an explication of the qualitative
concept of confirmation (as in ‘E confirms H’); the second stage would
tackle the comparative concept (as in ‘E confirms H more than E’ confirms
H"); and the final stage would concern the quantitative concept (as in ‘E
confirms H to degree #’). In hindsight it seems clear {at least to Bayesians)
that it is best to proceed the other way around: start with the quantitative
concept and use it to analyze the comparative and qualitative notions. The
difficulties inherent in Hempel’s own account of qualitative confirmation
will be studied in section 2. This section will be devoted to the more
venerable hypotheticodeductive (HD) method.

The basic idea of HD methodology is deceptively simple. From the
hypothesis H at issue and accepted background knowledge K, one deduces
a consequence E that can be checked by observation or experiment. If
Nature affirms that E is indeed the case, then H is said to be HD-
confirmed, while if Nature affirms 71E, H is said to be HD-disconfirmed.
The critics of HD have so battered this account of theory testing that it
would be unseemly to administer any further whipping to what is very



