
46



Chapter 6

Recursive and
Semi-Recursive Relations

(Rogers chapter 5, Cutland Chapters 6, 7.)

Recall that the characteristic function χR for a k-ary relation R
is a function f : Nk → [0, 1] such that for all −→x ,

R(x) ⇒ f(−→x ) = 1 ∧ ¬R(−→x ) ⇒ f(−→x ) = 0

A verifying function for a relation R
is a partial function φ : Nk → {0, 1} such that

R(−→x ) ⇐⇒ φ(−→x ) ' 1

A refuting function for a relation R
is a partial function φ : Nk → {0, 1} such that

¬R(−→x ) ⇐⇒ φ(−→x ) ' 0

A computably decidable or recursive relation
is a relation whose characteristic function is total recursive.

A computably verifiable or semi-recursive relation
is a relation with a partial recursive verifying function.

A computably refutable or co-semi-recursive relation
is a relation with a partial recursive refuting function.

The “computably decidable, verifiable, refutable” notation is not standard,
but is more apt than the standard “recursive, semi-recursive” terminology.

47



48 CHAPTER 6. RECURSIVE AND SEMI-RECURSIVE RELATIONS

Examples

• computably decidable: Gödel numbers of valid formulas in a
propositional language.

• computably verifiable: Gödel numbers of valid formulas in the
language of arithmetic.

• computably refutable: first-order consistency in the language
of arithmetic.

• none of the above: the complete theory of arithmetic.

6.1 Arity and Clutter Reduction

From now on, you may drop the arity parameter when working with unary
functions.

φn = φ1
n

You can handle k-ary functions and relations in the same numbering by using
a k-ary coding function.

φk
n(~x) ' φm(〈~x〉);
R(~x) ' S(〈~x〉).

Exercise 6.1 Show that there is an effective conversion from index n to index
m and conversely. That is, there exist total recursive f, g such that for all k-ary
~x,

φk
n(~x) ' φf(n)(〈~x〉);

φk
g(n)(~x) ' φn(〈~x〉).

Hint: use the universal construction to set up the application of an index to a
coded sequence of arguments like this:

ψ(i, ~x) ' ((µz) U(i, (z)0, (z)1, 〈~x〉))1
Apply the s-m-n theorem and see what you get. For the other side, do something
similar. Whenever you need a “uniform” transformation of indices, seek the
“right” application of the universal construction and then apply s-m-n to the
index position.

6.2 Alternate Characterizations of Verifiability

The following results and concepts are used and referred to constantly. Please
take special effort to master them right away. The following, odd notation is
ubiquitous. Just grin and memorize it.

Wn = dom(φn);
En = rng(φn).



6.2. ALTERNATE CHARACTERIZATIONS OF VERIFIABILITY 49

Proposition 6.1 Relation R is computably verifiable ⇐⇒ there exists an n,
such that for all x,

R(~x) ⇐⇒ Wn(〈~x〉)

Exercise 6.2 Prove it. Hint: Use a µ operator to produce infinite loops in the
right places and conversely, use sg to cut outputs higher than 1 down to 1.

In set theory, a countable set S can be presented as a list {xi : i ∈ N}. Since
each i ∈ N is associated with at most one element of S, there exists a total,
onto mapping f : S → N such that xi = f(i). Indeed,

a set S is set-theoretically enumerable iff either S is empty or there
exists a total mapping f : N → S such that f is onto. Then you may
think of the set as being enumerated as {f(i) : i ∈ N}.

From the point of view of computability, the idea of an arbitrary, set-theoretic
f is uninteresting. It would be more interesting if f were computable, so that
by computing f(i), one can effectively obtain xi. This “motorized” version of
enumerability is called “recursive enumerability”.

S is recursively enumerable (r.e.) ⇐⇒ S = ∅ or (∃ tot. rec. f) S = rng(f).

The following result says that this amounts to the same thing as computable
verifiability.

Proposition 6.2 (The fundamental theorem of r.e. sets)

S is r.e. ⇐⇒ (∃n) S = Wn

Proof. Suppose that S is r.e. If S = ∅, then S = dom(∅). But ∅ = the function
defined by (µz)(x 6= x), and hence is partial recursive.

Now suppose that S = rng(f) where f is total recursive. One must show
that for some i, S = Wi. Define:

ψ(x) = (µz)(f(z) = x).

Function ψ is partial recursive since f is recursive. Hence there exists i such
that ψ = φi.

Note that:

x ∈ S ⇐⇒ (∃y)f(y) = x

⇐⇒ (µz)(f(z) = x) ↓
⇐⇒ x ∈ dom(φi)
⇐⇒ x ∈Wi.



50 CHAPTER 6. RECURSIVE AND SEMI-RECURSIVE RELATIONS

Hence, S = Wi.
Conversely, suppose that S = Wi = dom(φi). If S = ∅, then we are done.

So suppose S 6= ∅. So there is at least one k such that k ∈ S. Now we need to
produce a total recursive enumerationf of S. We can’t assume that φi(x) will
halt, so some dovetailing is required. Also, we can’t assume that Wi is infinite,
so perhaps at some point we run out of new things to enumerate. We must
therefore continue to output some previously enumerated number until a new
element of Wi is detected. That sounds like a job for recursion.

f(0) = k;

f(n+ 1) =
{

(n)2 if (∀z ≤ n) (((n)2)0 6= f(z) ∧ U(w, (n)0, (n)1, (n)2);
f(n) otherwise.

This is a course of values recursion over primitive recursive constructions and
hence is not only total recursive, but primitive recursive, which is always nice
to know. a

Corollary 6.3 Every r.e. set is enumerated by a primitive recursive function.

This follows from the fact that total recursive enumeration constructed in the
preceding proof is in fact primitive recursive. a

Corollary 6.4 The sequence

W0,W1, . . . ,Wn, . . .

is an enumeration of the computably verifiable sets.

The corollary provides a way of using our effective numbering of Part to
number the verifiable sets without having to do it again from scratch. Accord-
ing to the following result, there is an equivalent, effectively intercompilable
enumeration of the r.e. sets based on ranges instead of domains.

Proposition 6.5 Effective conversions between domains and ranges.

∃ total recursive f ∀n Wn = Ef(n)

∃ total recursive g ∀n Wg(n) = En

Exercise 6.3 Prove it. Hint: use the s-m-n theorem over a universal dovetail-
ing construction analogous to the one given in the preceding exercise. This is
yet another application of the universal and s-m-n theorems. Optional bonus
question: how about a total recursive translation between ranges of primitive
recursive functions and domains of partial recursive functions? Now you are
dealing with different enumerations, so there is no universal theorem in the
primitive recursive enumeration. One way is to generate a primitive recursive
index for the course-of-values recursion over the simultaneous recursion defining
U .



6.2. ALTERNATE CHARACTERIZATIONS OF VERIFIABILITY 51

Corollary 6.6 The sequence

E0, E1, . . . , En, . . .

is also an enumeration of the computably verifiable sets.

Recall that the primitive recursive relations are closed under bounded ex-
istential quantification. The computably verifiable relations are closed under
full existential quantification over N. And every partial recursive relation re-
sults from an unbounded existential quantification over a (primitive) recursive
relation. So unbounded existential quantification has a role similar to that of
unbounded minimalization: it suffices to extend primitive recursive relations
to recursively enumerable relations just as minimalization extends primitive re-
cursive functions to partial recursive functions. This suggests a handy table of
analogies that may prove useful as you continue. Incidentally, why is there no
version of ∃ and µ for the middle line?

set : function ::
∃ : µ ::

verifiable : partial ::
decidable : total ::
prim. rec. : prim. rec ::

∃ ≤ x : µ ≤ x.

Proposition 6.7 The Projection Theorem S is computably verifiable ⇐⇒

(∃ primitive recursive R)(∀x) (S(x) ⇐⇒ (∃y) R(x, y)).

Proof. Let S be computably verifiable. So ∃n(S = Wn), by proposition 6.1.
Thus, for all x,

S(x) ⇐⇒ Wn(x)
⇐⇒ φn(x) ↓
⇐⇒ ∃z U(n, (z)0, (z)1, 〈x〉)

Recall that U is primitive recursive.
Conversely, suppose that

S(x) ⇐⇒ (∃z) R(z, x),

where R is r.e. So for some n, R(〈z, x〉) ⇐⇒ Wn(〈z, x〉). Define

ψ(x) ' (µw) U(n, (w)0, (w)1, 〈(w)2, x〉)

This is partial recursive, so for some m,

φm = ψ.



52 CHAPTER 6. RECURSIVE AND SEMI-RECURSIVE RELATIONS

Now for the fun:

Wm(x) ⇐⇒ φm(x) ↓
⇐⇒ ψ(x) ↓
⇐⇒ (µw) U(n, (w)0, (w)1, 〈(w)2, x〉) ↓
⇐⇒ ∃w U(n, (w)0, (w)1, 〈(w)2, x〉)
⇐⇒ ∃z φn(〈z, x〉) ↓
⇐⇒ ∃z Wn(〈z, x〉)
⇐⇒ ∃z R(z, x)
⇐⇒ S(x)

So S = Wi is computably verifiable, by proposition 6.1. a

Corollary 6.8 (Summary) The following are equivalent:

S is computably verifiable

S is r.e.

(∃n) S = En

(∃n) S = Wn

∃ primitive recursive R such that ∀x(S(x) ↔ (∃y) R(x, y)).

6.3 The Halting Problem

What can you do with the Wn notation? By Corollary 6.8, you have a nice,
effective enumeration of the computationally verifiable sets. Thus, you can form
a two-dimensional table of zeros and ones as follows:

T [n,m] = χWn(m)

Thus, each row of the table is the characteristic function of a computably verifi-
able set and the characteristic function of each computably verifiable set occurs
at least once in the table (infinitely often, actually).

Now define the set K whose characteristic function is the diagonal of the
table:

χk(n) = T [n, n]
= χWn

(n)

Then the characteristic function of ¬K = N −K is the counter-diagonal of the
table:

χ¬K(n) = sg(T [n, n])
= sg(χWn

(n))



6.4. ALTERNATE CHARACTERIZATIONS 53

Then ¬K is not a computably verifiable set, since its characteristic function is
concocted to differ from each row of the table along the diagonal. Thus:

Proposition 6.9 ¬K is not r.e.

The proof of proposition 6.9 is almost the same as Cantor’s argument that the
power set of N is not enumerable. The difference is that in Cantor’s argument,
you know that the diagonal’s characteristic function yields a subset of N so the
enumeration assumption is rejected. In this case, you know from the fundamen-
tal theorem of r.e. sets that the effective enumeration W0,W1,W2, . . . exists, so
the diagonal characteristic function yields a non-r.e. set.

Unwinding the definition of K yields:

K(n) ⇐⇒ χWn
(n) = 1

⇐⇒ Wn(n)
⇐⇒ n ∈ dom(φn)
⇐⇒ φn(n) ↓

Thus, K is the set of all indices that return an output or “halt” when given
themselves as input. For this reason, K is called the halting problem.

Exercise 6.4 You have just seen that ¬K is not computably verifiable. Show
that K is computably verifiable. Hint: use an existential quantifier over an r.e.
relation.

The halting problem talks about a computation never halting. That sounds
like a “universal law” governing what a computation will do for eternity. Hume’s
problem of induction arises when one tries to empirically verify a universal law
governing the future. The halting problem is not computably verifiable either.
In either case, laws governing the unbounded future aren’t verifiable. That is
the fundamental analogy we wish to explore this term.

6.4 Alternate Characterizations
of the Recursive Sets

Decision intuitively requires that one be able to verify whether yes and verify
whether no.

Proposition 6.10 S is recursive ⇐⇒ S, S are both r.e.

Exercise 6.5 Prove it. Hint: One way is immediate using results proved above.
The other requires a nice dovetailing construction, because you don’t want to
commit a suki by focusing on S forever before checking S. But you can count
on one or the other halting because each number is either in S or S.

Corollary 6.11 K, ¬K are not recursive.



54 CHAPTER 6. RECURSIVE AND SEMI-RECURSIVE RELATIONS

The next result is very interesting because it links the straightforwardly
epistemological concept of decidability with the function theoretic concept of
monotonicity. The idea is that you can use a monotone enumeration to decide
the set: once you see a bigger thing than what you are looking for, you know
you won’t ever find what you are looking for. Conversely, if you can decide a set,
then you can make sure that nothing smaller than x will have to be added to
the enumeration before you add x. Compare this with the fundamental theorem
for r.e. sets. In that case, you can’t. So here is another nifty analogy:

verifiable : decidable ::
partial : total ::

nondecreasing : monotone increasing.

Proposition 6.12 S is recursive ⇐⇒

S is finite ∨ (∃ monotone, total recursive f) (S = rng(f)).

Proof: Suppose S is recursive. If S is finite, we are done. So suppose that
S is infinite. Define

f(0) = (µx) (S(x))
f(n+ 1) = (µx) (S(x) ∧ (∀z≤n) (f(n) 6= x))

Conversely, suppose that S is finite. Then a case definition (using one case per
element) yields a program for the characteristic function of S, so S is primitive
recursive, and hence recursive.

Finally, suppose that S is the range of monotone, total recursive f . . .. a

Exercise 6.6 Complete the proof. Hint: refer to the intuitive motivation above.

6.5 Closure Laws

These are very important. So you get to prove them!

Proposition 6.13

1. The r.e. sets are closed under unbounded existential quantification
under unbounded existential quantification.

2. The r.e. sets are not closed under complementation (think of your one
example so far of a non-r.e. set.

3. The recursive sets form a Boolean algebra (Rec,∩,∪,N, ∅), where ∩,∪ are
finitary.



6.5. CLOSURE LAWS 55

4. The recursive and r.e. relations are both closed
under Cartesian product ×.

Exercise 6.7 Prove it. Hint: For a Boolean algebra it suffices to show closure
under ∧, ¬. Conjunction over r.e. relations requires dovetailing. Doesn’t the ∃
case sound familiar?

Exercise 6.8 (optional) Show that the recursive sets are not closed under ∃ or
∀ and the r.e. sets are not closed under ∀. Try showing these facts using only
results on the table. Hint: express the halting problem and its complement using
quantifiers over the Kleene predicate.


