
Chapter 3

Indexing and
Diagonalization over Prim

The theory of uncomputability depends crucially on matters that might at first
seem fussy or arcane, like efficient encoding of finite sequences, which has al-
ready been seen to reduce different forms of recursion to primitive recursion.
In this chapter we consider another of these crucial but apparently fussy ideas:
assigning code numbers to primitive recursive functions. Code numbers for
functions are important because they allow us to think of primitive recursive
operations on primitive recursive functions. Of course, no primitive recursive
function operates on functions, but primitive recursive functions can operate on
code numbers of functions. Since the code number determines the function, that
achieves the same effect. As it happens, some of the deepest ideas in the theory
of computability concern effective operations on code numbers of functions.

The general strategy for indexing functions (the input-output behaviors of
programs) will be to effectively decode numbers into unique programs and to
say that a function has a given index if decoding the index yields a program of
the function. This will mean that, typically, each function has many indices,
since many different programs can compute it. In primitive recursion this is
readily seen to be the case, since any number of projections can be composed
on the outside of a sensible program and the result is the same.

C(p1
1, f) = C(p1

1, C(p1
1, f))

= C(p1
1, C(p1

1, C(p1
1, f)))

= . . .

So there is no question of having a unique, effective code number for each
function. The important properties of our numbering of the primitive recursive
functions are:

• There is an intuitively effective procedure to decode numbers into unique
programs.

19

20 CHAPTER 3. INDEXING AND DIAGONALIZATION OVER PRIM

• Every primitive recursive program has a number (i.e., the coding is sur-
jective or “onto”).

• Every number decodes into some program (i.e., the coding is total).

We have to index functions of every arity. There are two possible strategies:

1. One big enumeration of functions of all arities: one could number all the
functions of all arities at once, so that the index determines the arity.
But then one would have to go back and construct sub-enumerations of
the unary functions, binary functions, etc. anyway. Also, the inductive
clauses in the definition become inelegant because, for example, you can’t
apply primitive recursion to functions of the wrong arities.

2. Separate enumerations for different arities: one can have the same index
pick out different functions for different specified arities. This approach
is more natural when we get to Turing machines, since any number of
arguments can be given to such a machine and the function computed
depends on how many arguments are given.

We will pursue the second strategy, for the reasons given.

fk
x (y1, . . . , yk) = the value of the xth k-ary program on inputs (y1, . . . , yk).

Then the unary primitive recursive functions will be enumerated as:

f1
0 , f1

1 , f1
2 ,

3.1 An indexing of primitive recursive functions

There are lots of strategies for encoding derivation formulas for primitive re-
cursive functions. The following approach is to use the length of the sequence
encoded by the index to determine the top-level recursive operator applied to
generate the function and to use the components of the coded sequence to
determine which functions the operation is applied to. Some of the numbers
occurring in the sequence may be “dummies” that do nothing but make the
sequence longer.

In reading the following definition, don’t forget that positions in coded se-
quences are counted starting from 0 and that the length of a code number is
number of items occurring in the sequence (including the one indexed as 0), e.g.:

(< i, j, k >)2 = k;
lh(< i, j, k >) = 3.

Now define the function denoted by fk
x by cases as follows:

3.1. AN INDEXING OF PRIMITIVE RECURSIVE FUNCTIONS 21

lh(x) = 0 ⇒ fk
x =





o′ if k = 0;

C(o, p1
k) otherwise;

lh(x) = 1 ⇒ fk
x =





o′ if k = 0;

C(s, p1
k) otherwise;

lh(x) = 2 ⇒ fk
x =





o′ if k = (x)0;

p
min((x)0+1,k)
k otherwise;

lh(x) = 3 ⇒ fk
x = C(f lh((x)1)

(x)0
, fk

((x)1)0
, . . . , fk

((x)1)lh((x)1)−̇1
);

lh(x) ≥ 4 ⇒ fk
x =





o′ if k = 0;

R(fk−̇1
(x)0

, fk+1
(x)1

) otherwise.

Observations:

1. After clause 4, we arbitrarily repeat clause 1, since every primitive re-
cursive function is numbered already by clause 4. Remember, that it’s
hopeless to give a unique effective code number to each primitive recur-
sive function anyway, so redundancy is all right.

2. In all clauses but 3, we simply insert o′ as a placeholder when k = 0,
because there is no zero-ary version of successor, projection, or primitive
recursion. You may as well think of 0 as the true value of a zero-ary
successor, projection or primitive recursion.

3. The most complicated clause is the composition case (lh(x) = 3). Given
index x, decode x into 〈i, j, k〉 and treat i = (x)0 as the index of the outer
function and j = (x)1 as an index of a list of numbers (possibly empty)

((x)1)0, ((x)1)1, . . . , ((x)1)lh((x)1)−̇1,

each of which is interpreted as the index of a function embedded in the
composition. The arity of the outer function is lh((x)1) and the arity of
the inner functions is taken to be k, so that the resulting composition has
the required arity. Composition can deal with zero-ary functions on the
inside or the outside. For example:

C(o′) = o′;
C(s, o′) = c′1.

4. Each primitive recursive function of a given arity has a number (by in-
duction on the depth of operator applications in primitive recursive defi-
nitions).

22 CHAPTER 3. INDEXING AND DIAGONALIZATION OVER PRIM

5. Each number codes some function (by induction on N).

6. Each map hk such that hk(x, y1, . . . , yk) = fk
x (y1, . . . , yk) is intuitively

effective.

7. Component derivation trees always have lower indices than derivation trees
of which they are components. Thus, induction on N corresponds to
induction on function embedding depth.

Exercise 3.1 Find the indices of a few primitive recursive functions. Present
your code numbers in terms of the Gödel coding braces 〈x1, . . . , xn〉 rather than
as numerals, since the numerals will get too big due to all of the exponentiation
in the coding scheme.

Exercise 3.2 Write down one case of the base case and one case of the induc-
tion case of the proof of observation 4.

Exercise 3.3 Write down one case of the base case and one case of the induc-
tion case of the proof of observation 5.

Exercise 3.4 Prove observation 7.

3.2 Diagonalization

Also see Rogers, pp. 10-12.
Programming (= defining) can only show that a function is primitive recur-

sive. Failure to find a program is like failure to find a logical proof. It leaves the
following choice: either there is no proof or you aren’t smart enough to find it.
To prove that there is no program at all, one requires a mathematical specifica-
tion of the possible programs and of the functions the programs define and then
you have to show that a given function is different from each of those. Typically
this is done by defining a function that differs from each programmable func-
tion in one place, depending on its position in an enumeration. If one thinks
of each function’s values as being listed as rows in an infinite table, then one
technique is to construct the function to differ from each entry on the diagonal
T [0, 0], T [1, 1], . . . of the table. So negative arguments are often called “diagonal
arguments” even if the place where a given function differs isn’t exactly on the
diagonal. Here’s an easily constructed, intuitively effective, total function that
is not primitive recursive:

diag(x) = f1
x(x) + 1.

Intuitively, decode x into a unary program, simulate the program on x itself
and apply successor. But evidently, diag(x) differs from the xth unary primitive
recursive function at position x, so diag is not primitive recursive.

This is literally a diagonal argument, since if you think of a table T whose
entry T [x, y] = f1

x(y) + 1 then

diag(x) = T [x, x] + 1;

3.2. DIAGONALIZATION 23

so diag modifies each cell of the table along the diagonal.

Thesis: intuitive effectiveness outruns the primitive recursive functions.

Exercise 3.5 Describe an effectively computable function f such that f(x) =
T [x, x], for each x ∈ N, and yet f can be shown not to be primitive recursive by
“diagonalization” off of the diagonal.

Exercise 3.6 Is the table T [x, y], itself, a primitive recursive function of two
variables? Why or why not? Hint: you can’t just assume that primitive recursive
functions are closed under variable substitution! You have to first prove that if
g(x, y) is primitive recursive, then so is h(x) = g(x, x). In chapter 2, you showed
this only for substitution of a constant, which is different.

Note that this conclusion is not (yet) a theorem because “effective” is (still)
not mathematically definite. Could some kind of ultra-fancy recursion exhaust
all of the intuitively effective functions?

No. For the logic of the diagonal argument will still work. Just add a clause
for the new, fancy recursion into our enumeration to obtain enumeration

gk
x(y).

Now define
diag(x) = g1

x(x) + 1.

This will still be an intuitively effective total function that transcends the newly
defined collection! So our thesis is even stronger:

Strengthened thesis: intuitive effectiveness outruns any effectively enumer-
able family of total functions.

The trouble is that recursion operators are guaranteed to produce total func-
tions. Total functions leave “targets” everywhere along the diagonal for the
diagonal argument to “hit”. Defining total functions out of partial functions
allows for the possibility that some cells along the diagonal are “missing”. Then
diag will also be undefined there (since it tries to add 1 to an undefined value)
and may be identical to the function characterizing that row in the table. That
is why the theory of computable, total functions inevitably leads one to study
the theory of computable, partial functions, to which we now proceed.

