
Chapter 11

The Arithmetical Hierarchy

Think of ¬K as posing the problem of induction for computational devices, for
it is impossible to tell for sure whether a given computation will never halt.
Thus, K is effectively refutable and ¬K is effectively verifiable. We know from
the philosophy of science that universal hypotheses are refutable and existential
hypotheses are verifiable. This correspondence also holds, if we think of the
expressions of the sets in Kleene normal form. Kleene normal form prenex
normal form with U as the only predicate. Thus, we have

K(x) ⇐⇒ ∃z U(x, (z)1, (z)2, 〈x〉)

¬K(x) ⇐⇒ ∀z ¬U(x, (z)1, (z)2, 〈x〉)

Thus, you may think of K(x) as an “existential hypothesis” and of ¬K(x) as
a “universal hypothesis” given that instances of U are “observable” (e.g., the
“scientist” is treating program x as a black box and watching what it does in
various numbers of steps of computation on input x.

It is also familiar in the philosophy of science that most hypotheses are
neither verifiable nor refutable. Thus, Kant’s antinomies of pure reason include
such statements as that space is infinite, matter is infinitely divisible, and the
series of efficient causes is infinite. These hypotheses all have the form

(∀x)(∃y) Φ(x, y).

For example, infinite divisibility amounts to “for every product of fission, there
is a time by which attempts to cut it succeed” and the infinity of space amounts
to “for each distance you travel, you can travel farther.”

Computers face their own non-verifiable and non-refutable questions:

Tot(x) ⇐⇒ φx is total
⇐⇒ (∀w)(∃z) U(x, (z)1, (z)2, 〈w〉);

Inf (x) ⇐⇒ Wx is infinite
⇐⇒ (∀w)(∃z)(∃y > w) (U(x, (z)1, (z)2, 〈y〉)).

91



92 CHAPTER 11. THE ARITHMETICAL HIERARCHY

Things get worse as the quantifier structure of the hypothesis becomes more
complex, where complexity is measured as number of blocks of quantifiers: i.e.,
∃∀∀∀∃∃ counts as three blocks. You can count quantifier alternations as follows.

11.1 The Arithmetical Hierarchy

Let P be a relation over N.

Σ0(P ) ⇐⇒ P is recursive;
Σn+1(P ) ⇐⇒ (∃R ∈ Σn)(∀~x) (P (~x) ⇔ (∃y) ¬R(~x, y));

Πn(P ) ⇐⇒ Σn(¬P );
∆n(P ) ⇐⇒ Σn(P ) ∧Πn(P );

Arith(P ) ⇐⇒ (∃n) Σn(P ).

Proposition 11.1 (basic structure and closure laws)

1. ∆n = recursive;

2. ∆n,Σn,Πn are closed downward under ≤;

3. ∆n is closed under ∧,∨,¬;

4. Σn is closed under ∧,∨,∃;

5. Π[A]n is closed under ∧,∨,∀.

Exercise 11.1 Prove it. Hint: use logical rules and some induction on n.

11.2 The Arithmetical Hierarchy Theorem

We don’t know yet whether the whole hierarchy collapses into some finite level.
Recall that

W0,W1,W2 . . .

is an enumeration of the r.e. sets. and that the halting problem is just

¬K(x) ⇐⇒ ¬Wx(x).

Wouldn’t it be nice if for each n, Σn is enumerated by an analogous collection

Wn
0 ,W

n
1 ,W

n
2 . . .

so that when n = 1, Wi = W 1
i ? Then we could define the nth generalization of

the halting problem just as before:

¬Kn(x) ⇐⇒ ¬Wn
x (x),



11.2. THE ARITHMETICAL HIERARCHY THEOREM 93

and then it would be clear that ¬Kn /∈ Σn. Accordingly, define

W 1
i (〈~y〉) ⇐⇒ Wi(〈~y〉);

Wn+1
i (~y) ⇐⇒ (∃y) ¬Wn

i (〈~x, y〉).

The first item is to show that each relation R(~x) in Σn is some Wn
i (〈~x〉).

Proposition 11.2 (∀n)(∀R ∈ Σn)(∃i)(∀~x) (R(~x) ⇔Wn
i (〈~x〉)).

Proof: by induction on n.
Base case: immediate from fundamental theorem for r.e. sets.
Induction: let Σn+1(R). Then by the definition of Σn+1,

(∃Q ∈ Σn)(∀~x) (R(~x) ⇔ (∃y) ¬Q(~x, y)).

By the induction hypothesis,

(∃i)(∀~x, y) (Q(~x, y) ⇔Wn
i (〈~x, y〉)).

Substituting in the first formula and applying the definition of Wn+1
i yield

(∃i)(∀~x) (R(~x) ⇐⇒ (∃y) ¬Wn
i (〈~x, y〉))

⇐⇒ Wn+1
i (〈~x〉). a

Define the universal relation for Σn as follows:

Un(i, x) ⇔Wn
i (x).

Then you can show:

Proposition 11.3 Σn(Un).

Exercise 11.2 Prove the preceding proposition by induction on n.

Now define
Kn(x) ⇐⇒ Wn

x (x).

So by the usual, Cantorian diagonal argument, we have that ¬Kn differs from
each Wn

i and hence is not Σn. On the other hand,

Kn(x) ⇐⇒ Un(x, x),

so since Σn(Un), you have Σn(Kn). Hence,

Proposition 11.4 (arithmetical hierarchy theorem)

Σn(Kn) and ¬Σn(¬Kn).

Exercise 11.3 Why does the hierarchy theorem imply that ¬Σn(Kn+1)?



94 CHAPTER 11. THE ARITHMETICAL HIERARCHY

11.3 Cubbyhole Mathematics

The arithmetical hierarchy provides us with lots of shelves for problems. Recur-
sion theorists are sort of like librarians: they want to locate everything on the
right shelf, for all problems on a given shelf share a certain “family resemblance”
that determines the best approach to all of them.

Here are some examples. Some of them are familiar from chapter 6.

Tot(x) ⇐⇒ Ww = N

Und(x) ⇐⇒ Ww = ∅
Inf (x) ⇐⇒ Ww is infinite
Fin(x) ⇐⇒ Ww is finite
Cof(x) ⇐⇒ Ww is co-finite
Onto(x) ⇐⇒ Ex = N

Subset(x) ⇐⇒ W(x)0 ⊆W(x)1

Psubset(x) ⇐⇒ W(x)0 ⊂W(x)1

Ident(x) ⇐⇒ W(x)0 = W(x)1

Rec(x) ⇐⇒ Ww is recursive.

11.4 Upper Bounds

Upper bounds are easily found by the Tarski-Kuratowski algorithm:

1. Define the relation in terms of the Kleene predicate.

2. Put the definition into prenex normal form.

(a) First eliminate arrows using conjunctions, disjunctions and nega-
tions.

(b) Then drive in all negations using DeMorgan’s rules.

(c) Then rename quantified variables so that they are all distinct in order
to prevent clashes when the quantifiers are exported.

(d) Then export quantifiers to the front of the formula in the most advan-
tageous way (i.e., interleave them to minimize alternations without
permuting the order of any quantifiers that were already nested.

3. The first quantifier determines whether the complexity class is Σ or Π.

4. The number of blocks of quantifiers of the same type determines the sub-
script.



11.5. LOWER BOUNDS 95

11.4.1 Examples

Tot(x) ⇐⇒ Wx = N

⇐⇒ (∀z) Wx(z)

⇐⇒ (∀z)(∃w) U(x, (w)0, (w)1, 〈z〉)

⇐⇒ ∀∃R, with R recursive.

So Π2(Tot).

Fin(x) ⇐⇒ Wx is finite

⇐⇒ (∃y)(∀z ≤ y) ¬Wx(z)

⇐⇒ (∃y)(∀z ≤ y) φx(z) ↑

⇐⇒ (∃y)(∀z ≤ y)(∀w) ¬U(x, (w)0, (w)1, 〈z〉)

⇐⇒ ∃∀R, with R recursive.

So Σ2(Fin).

These were automatic! Let’s do one that requires a little bit of shuffling.

Ident(x) ⇐⇒ W(x)0 = W(x)1

⇐⇒ (∀z) (W(x)0(z) ↔W(x)1(z))

⇐⇒ (∀z)
(
(W(x)0(z) ∧W(x)1(z)) ∨ (¬W(x)0(z) ∧ ¬W(x)1(z))

)
⇐⇒ (∀z)

[
(∃w) U((x)0, (w)0, (w)1, 〈z〉)

∧(∃w) U((x)1, (w)0, (w)1, 〈z〉))

∨ ((∀w) ¬U((x)0, (w)0, (w)1, 〈z〉)

∧(∀w) ¬U((x)1, (w)0, (w)1, 〈z〉))
]

⇐⇒ ∀
(
(∃ ∧ ∃) ∨ (∀ ∧ ∀)

)
(notice, the lead ∃ makes it most

efficient to put all the ∃ quantifiers first).

⇐⇒ ∀∀∀∃∃.

So Π2(Ident).

Exercise 11.4 Do three more examples.

11.5 Lower Bounds

Lower bounds on arithmetical complexity come by several techniques: diagonal-
ization, reduction, or completeness arguments. We have already seen two ways



96 CHAPTER 11. THE ARITHMETICAL HIERARCHY

to do diagonalization in the last chapter, providing us with “seed” for reduction
arguments. Let’s begin with a direct completeness argument.

Proposition 11.5 Fin is Σ2-complete.

Proof: suppose Σ2(P ). So for some recursive R, we have,

(∀~x) (P (~x) ⇐⇒ (∃y)(∀z) R(~x, y, z)).

Define

ψ(n,w) ' (µu)(∀y ≤ w)(∃z) ¬R((n)0, . . . , (n)lh(n)−1, y, z).

This is partial recursive by the projection theorem. Apply the s-m-n theorem
to obtain total recursive f such that:

φf(n)(w) ' ψ(n,w).

Hence,

¬P (~x) ⇒ (∀y)(∃z) ¬R(~x, y, z)
⇒ φf(〈~x〉) = o

⇒ Wf(〈~x〉) = N

⇒ Tot(〈~x〉)
⇒ Inf (〈~x〉);

P (x) ⇒ Wf(x) is finite
⇒ ¬Tot(〈~x〉)
⇒ Fin(x). a

Notice that the reduction shows more than intended. It projects ¬P into
Tot and P into Fin. Following Soare, you may summarize this situation by the
notation:

(P,¬P )≤m(Fin, Tot).

When P stands for an arbitrary Σ2 set, you may abbreviate the situation by
writing

(Σ2,Π2)≤m(Fin, Tot).

Since Fin is in the complement of Tot, this reduction also establishes:

Corollary 11.6 Tot is Π2-complete.

Proposition 11.7 Subset is Π2-complete.

Exercise 11.5 Prove the upper bound by Tarski-Kuratowski computation. Prove
the lower bound by reduction of Tot or Inf .
Hint: make the “subset” index be for N and make the “superset” index depend
on the given number.



11.5. LOWER BOUNDS 97

Exercise 11.6 Determine the complexity of Onto in the hierarchy.
No hints this time.

At the next level of complexity it is understandably more complicated to
establish lower bounds.

Proposition 11.8 (Σ3,Π3)≤M (Cof,¬Rec).

Corollary 11.9 Cof , Rec are Σ3-complete.

Proof: suppose that Σ3(P ). So for some Σ3 relation R, we have for each ~x,

P (~x) ⇐⇒ (∃y) R(~x, y).

It has already been shown that there exists a total recursive f such that

R(~x, y) ⇐⇒ Wf(〈~x,y〉) is infinite.

Hence

P (~x) ⇐⇒ (∃y) R(〈~x, y〉)
⇐⇒ (∃y) Wf(〈~x,y〉) is infinite.

We need to construct total recursive g such that

P (~x) ⇒ Wg(~x) is cofinite;
¬P (~x) ⇒ Wg(~x) ≡m K.

I sketch the construction, showing how to enumerate S = Wg(~x) as a function
of ~x:

Let ~x be given. We start out with an infinite sequence of “pointers” on
the natural numbers labelled with the natural numbers.

Let pointer~x(y, s) be the number pointed to by the pointer labelled with
y at stage s.

At stage s = 0: the yth pointer is initialized to point to number y: i.e.,
pointer~x(y, 0) = y.

At stage s+1: check for each y ≤ s whether either of the following occur:

A. φy(y) halts in exactly s steps (this can happen only once) or

B. (∃w ≤ s) φf(〈~x,y〉)(w) halts in exactly s steps (this happens infinitely
often for some y just in case P (~x)).

For each such y, add pointer~x(y, s) to S.

Now move all pointers to the right, without permuting them, so that
positions already added to S are not pointed to, but without leaving any
other gaps.



98 CHAPTER 11. THE ARITHMETICAL HIERARCHY

Case: Suppose P (~x). Then some y satisfies (B) at infinitely many stages.
Let y′ be the least y such that y satisfies (B) at infinitely many stages. So let
s′ be the first stage after which no y < y′ satisfies (A or B). Let

k = pointer~x(y′, s′).

Then for each k′ ≥ k, pointer y′ eventually points at k′ and condition (B) is
subsequently satisfied, at which point k′ is added to S. So S = Wg(〈~x〉) is cofinite
and hence g(〈~x〉) ∈ Cof , as required.

Case: Suppose ¬P (~x). Then for each y, y satisfies (A or B) at only finitely
many stages. It remains only to show that S = Wg(〈~x〉) is not recursive. For
suppose S were decidable. Then you could decide K as follows. For given n,
decide whether n is in S. If not, return 0. If so, then simulate the preceding
enumeration of S to determine the stage s at which n was added to S. According
to the statement of (A), s provides an upper bound on the time required for
φn(n) to halt, so run φn(n) for s steps and see whether it halts by then. If so,
return 1. Otherwise, return 0. a

Exercise 11.7 (Bonus question) from Soare, ex. 3.8. Define

Ext(x) ⇐⇒ φx is extendable to a total recursive function

Show that Ext is Σ3-complete.
Hint: use the preceding technique. Instead of building an r.e. set, Wg(x), build a
partial recursive function φg(x). When φf(〈x,y〉)(w) halts in exactly s steps, de-
fine φg(x)(pointerx(y, s)) to be some value (e.g., 0). Also, if φy(pointerx(y, s))
is observed to halt in s steps, define φg(x)(pointerx(y, s)) to have a value differ-
ent from φy(pointerx(y, s)). The resulting function is guaranteed to be partial
recursive. If some Wf(〈x,y〉) is infinite, the function will itself be total recur-
sive. If no Wf(〈x,y〉) is infinite, the function differs somewhere from each total
recursive function.

11.6 Arithmetical Truth

Let A = the set of all Gödel numbers of true sentences of arithmetic.
Gödel’s incompleteness construction shows only that A is not r.e. One would

like to know more than that. For example, if Π1(A), then it would at least be
possible to have a “falsifiable” mathematics analogous to the testing of empirical
laws in physics, for an empirical mathematician would have the assurance that
each falsehood would eventually be “shot down” by future proofs.

In fact, A is infinitely worse than that, for A is not at any level in the
arithmetical hierarchy.

Proposition 11.10 (∀n) ¬Σn(A).

Proof: let Σn(P ). Then for some recursive relation R, we have

P (x) ⇐⇒ (∃y1)(∀y2) . . . (∃yn) R(x, y1, . . . , yn)



11.6. ARITHMETICAL TRUTH 99

Using arithmetical representability, choose formula Φ representing R. Then:

P (x) ⇐⇒ the sentence “(∃y1) . . .∃yn Φ(x, y1, . . . , yn)” is true in arithmetic
⇐⇒ A(〈∃y1 . . .∃yn Φ(x, y1, . . . , yn)〉)

By Church’s thesis, there is a total recursive f such that for all x,

f(x) = 〈∃y1 . . .∃yn Φ(x, y1, . . . , yn)〉

Thus P≤mA. Now choose P = Kn. a


