
Chapter 1

Introduction

Learnibility and computability are rarely considered in the same class. Com-
putation concerns algorithmic solutions to problems whose answers are mathe-
matically determinate after the input is given and, hence, belongs to the realm
of deductive reasoning, where the premises infallibly guarantee the truth of the
ensuing conclusion.

Learnibility concerns something more risky and less definite. An intelligent
system has to “get the gist of” or “catch on to” a rule or concept after seeing
a few instances of it, without waiting to see all of the infinitely many possible
instances. Hence, it must “leap” to possibly false conclusions. If computability
idealizes step-by-step algorithmic reasoning to a mathematically determinate
conclusion, learnibility idealizes what can be accomplished by guesswork based
on a finite chunk of potentially infinite experience.

Traditionally, philosophy has distinguished rather sharply between deduc-
tive reasoning, in which the conclusion is in some sense already contained in
the premises, from inductive reasoning, in which the conclusion extends the
premises. Deductive reasoning is usually associated with mathematics, proofs
and algorithms. Inductive reasoning is usually associated with empirical science,
statistics, and probability. Deduction is infallible and final. Induction is fallible
and revisable. In almost every respect the two types of reasoning seem to be
quite different, suggesting that the logic of induction must be quite different
from ordinary deductive logic.

Traditionally, philosophers and many others have viewed logic and com-
putability as the appropriate tools for understanding the foundations of math-
ematics and have viewed statistics and probability as the appropriate approach
to inductive reasoning. It seems very intuitive to say, after all, that algorithms
are impossible unless the right answer is uniquely determined and that, if it is
not, then the best one can do is to achieve a kind of probabilistic confidence
that some answer is right.

In this class, we will buck the tide of popular opinion by studying learnibil-
ity and computability together, in a unified mathematical theory of inductive
and computational unsolvability. The basis for our approach will be compu-
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tational learning theory, an interdisciplinary approach to inductive reasoning
that embodies ideas from the theory of computability itself, along with allied
ideas from analysis, topology, descriptive set theory and mathematical logic.
The ideas aren’t hard to understand, but they are abstract and usually aren’t
thought about in terms of empirical or inductive reasoning, so you will be asked
to stretch your powers of abstraction a bit. You will also be asked to re-examine
some very natural-sounding philosophical dogmas.

The basic idea behind computational learning theory is that empirical prob-
lems are like formal problems except that the inputs never stop coming in.
Empirical methods are like algorithms except that they continue to receive in-
puts and to produce successive outputs forever. In both cases, the aim is to
eventually end up with the right answer. In both cases, it may be impossible to
find a procedure guaranteed to halt with the right answer. In both cases, there
may nonetheless be a procedure that eventually arrives at a correct response
after some number of mistakes and retractions of earlier answers. And in both
cases, one can ask for the best sense in which a given problem is solvable. Look-
ing at it this way, formal and empirical reasoning start to appear more similar
than different.

Suppose we have in mind a series of ever weaker senses of success. The best
such sense in which a problem is solvable characterizes its intrinsic difficulty or
complexity. A system of degrees of complexity is called a complexity hierarchy.
We will be concerned with complexity hierarchies throughout the course, and
with how complexity determines the best approach to a problem. While thinking
in terms of complexity is now routine in the case of computability, it is equally
apt in the domain of learning and inductive method, and the principal novelty
of the class will consist in explaining how.

The aim of the course is to provide a solid introduction to the classical results
in the theory of computability and to provide them with a deeper significance in
terms of consequences for induction and learnibility. Mathematics and science
are always most interesting when fruitful analogies carry deep results from one
domain into a new and unexpected application. Our aim is to construct a
systematic analogy between empirical and formal reasoning that illuminates at
a deeper, mathematical level, the nature and prospects of both.


