80-310/610 Logic and Computation Exercise Set 3 Kevin T. Kelly

Exercise 1 Van Dalen 1.4.5.

$$\begin{split} \Gamma \vdash \phi &\Rightarrow \quad \Gamma \cup \Delta \vdash \phi; \\ \Gamma \vdash \phi \land \Delta \land \phi \vdash \psi &\Rightarrow \quad \Gamma \cup \Delta \vdash \psi. \end{split}$$

Answer: Suppose $\Gamma \vdash \phi$. Then there exists $\mathcal{D} \in \text{der such that } \text{hyps}(\mathcal{D}) \subseteq \Gamma$ and $\text{conc}(\mathcal{D}) = \phi$. So $\text{hyps}(\mathcal{D}) \subseteq \Gamma \cup \Delta$. So in virtue of $\mathcal{D}, \Gamma \cup \Delta \vdash \phi$.

Suppose $\Gamma \vdash \phi$ and $\Delta, \phi \vdash \psi$. Then there exist $\mathcal{D}, \mathcal{D}' \in \text{der such that}$

$$\begin{aligned} \operatorname{hyps}(\mathcal{D}) &\subseteq & \Gamma; \\ \operatorname{hyps}(\mathcal{D}') &\subseteq & \Delta \cup \{\phi\}; \\ \operatorname{conc}(\mathcal{D}) &= & \phi; \\ \operatorname{conc}(\mathcal{D}') &= & \psi. \end{aligned}$$

Then clamp \mathcal{D}' onto ϕ in \mathcal{D}' to obtain \mathcal{D}'' . Then $hyps(\mathcal{D}'') = \Gamma \cup \Delta$. So $\Gamma \cup \Delta \vdash \psi$.

Exercise 2 Van Dalen 1.4.6. Give a recursive definition of the set of hypotheses of a derivation.

Answer I'm writing out the derivations horizontally rather than vertically, which doesn't make any difference formally. That makes it easier to typeset constructions involving proofs. Thus,

$$\mathcal{D}(\phi \wedge \psi) | \phi$$

is the $\wedge E$ rule.

$$\begin{aligned} h(\phi) &= \{\phi\};\\ h(\mathcal{D}\phi, \mathcal{D}'\psi|(\phi \wedge \psi)) &= h(\mathcal{D}) \cup h(\mathcal{D}');\\ h(\mathcal{D}(\phi \wedge \psi)|\phi) &= h(\mathcal{D});\\ h([\phi]\mathcal{D}\psi|(\phi \to \psi)) &= h(\mathcal{D}) \setminus \{\phi\};\\ h(\mathcal{D}\phi \to \psi, \mathcal{D}\phi|\psi) &= h(\mathcal{D}) \cup h(\mathcal{D}');\\ h(\mathcal{D}\bot|\phi) &= h(\mathcal{D});\\ h([\neg\phi]\mathcal{D}\bot|\phi) &= h(\mathcal{D}) \setminus \{\phi\}. \end{aligned}$$

Exercise 3 Van Dalen 1.4.7. Give a recursive definition of substitution of a formula in a derivation. Show that a substituted derivation is a derivation. Show that if $\Gamma \vdash \phi$ then $\Gamma[\delta/p] \vdash \phi[\delta/p]$.

Answer Recall that we already have substitution of a prop for an atom: $\phi[\delta/p]$. For derivations use angle brackets instead $\mathcal{D}\langle\delta/p\rangle$.

$$\begin{split} \phi \langle \delta/p \rangle &= \phi[\delta/p]; \\ (\mathcal{D}\phi, \mathcal{D}'\psi|(\phi \wedge \psi)) \langle \delta/p \rangle &= \mathcal{D} \langle \delta/p \rangle \phi[\delta/p], \mathcal{D}' \langle \delta/p \rangle \psi[\delta/p]|\phi[\delta/p]; \\ &\vdots \\ ([\neg \phi]\mathcal{D}\bot|\phi) \langle \delta/p \rangle &= ([\neg \phi[\delta/p]]\mathcal{D} \langle \delta/p \rangle \bot |\phi[\delta/p])[\delta/p]. \end{split}$$

Next, show that if \mathcal{D} is a derivation then $\mathcal{D}[\delta/p]$ is as well. By induction on derivations of course. In the base case if ϕ is a derivation, so is $\phi\langle\delta/p\rangle = \phi[\delta/p]$, since $\phi[\delta/p]$ is a proposition. For an example of the induction, consider the RAA case. Suppose that $[\neg\phi]\mathcal{D}\bot[\phi]$ is a derivation. Then

$$([\neg\phi]\mathcal{D}\bot|\phi)\langle\delta/p\rangle = ([\neg\phi[\delta/p]]\mathcal{D}\langle\delta/p\rangle\bot|\phi[\delta/p])[\delta/p].$$

By the IH, $\mathcal{D}\langle \delta/p \rangle$ is a derivation. Since the same substitutions are performed on the formulas that must match, it follows that $([\neg \phi[\delta/p]]\mathcal{D}\langle \delta/p \rangle \perp |\phi[\delta/p])[\delta/p]$ is a derivation.

Finally, suppose that $\Gamma \vdash \phi$. Then there exists derivation \mathcal{D} such that $h(\mathcal{D}) \subseteq \Gamma$ and the conclusion of \mathcal{D} is ϕ . But then $\mathcal{D}\langle \delta/p \rangle$ is a derivation whose hypotheses are in $\Gamma[\delta/p]$ and whose conclusion is $\phi[\delta/p]$. So $\Gamma[\delta/p] \vdash \phi[\delta/p]$.