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Exercise 1 (3.2.1.iii, vi) For (iii), observe that: A ∈ Mod(Γ∪∆) iff for each φ ∈ Γ,
A |= φ and for each ψ ∈ ∆, A |= ψ iff A ∈ Mod(Γ) and A ∈ Mod(∆) iff A ∈
Mod(Γ) ∩Mod(∆).

N.B. Van Dalen’s notation Mod(Γ)∩Mod(∆) is naughty because Mod(Γ) is not a set.
But as long as we understand by A ∈ Mod(Γ)∩Mod(∆) nothing more than A ∈ Mod(Γ)
and A ∈ Mod(∆), there is no harm.

For (vi), suppose that A ∈ Mod(Γ) ∪Mod(∆). Then A ∈ Mod(Γ) or A ∈ Mod(∆).
So either (i) for each φ ∈ Γ, A |= φ, or (ii) for each ψ ∈ ∆, A |= ψ. Observe that
Γ ∩∆ ⊆ Γ and Γ ∩∆ ⊆ ∆. So whether (i) is true or (ii) is true, for each φ ∈ Γcap∆,
A |= φ, so A ∈ Mod(Γ ∩∆).

The converse fails. Here is a really easy counterexample. Let p, q be distinct propo-
sitional variables. Let Γ = {p} and let ∆ = {q}. Then Γ∩∆ = ∅, so every structure is
a model of Γ ∩∆. Let A make p false.

Exercise 2 (3.2.6) Following Van Dalen’s advice, suppose that Γ axiomatizes the class
of well-orderings (with respect to language <). Add constants {ci : i ∈ ω} to the
language and let

Γ∗ = Γ ∪ {ci+1 < ci : i < ω}.
Now apply compactness (theorem 3.2.1) as Van Dalen applied it in the proof of the
upward Löwenheim-Skolem theorem (Theorem 3.2.4). That is, let ∆ ⊂ Γ be finite.
Then there exists some maximum k such that ci occurs in ∆. Let

Γk = Γ ∪ {ci+1 < ci : i ≤ k}.

Then Γn has a model, namely

Nk = (N, <, c0, . . . , ck) = (N, <, 0, . . . , k − 1).

Since ∆ ⊆ Γn, Nk |= ∆. So by compactness (Theorem 3.2.1), there exists B such that
B |= Γ∗. But B has an infinite descending chain because Γ∗ says so. Contradiction. So
the class of all well-orderings is not characterized by any first-order theory.

Exercise 3 (3.2.8) Let Γ consist of the axioms:

1. ∀xP (x, x);

2. ∀x, y, zP (x, y) ∧ P (y, z) → P (x, z);

3. ∀x∃yP (x, y).
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Suppose for reductio that A has finite domain and A |= Γ. Let R be the denotation
of P in A. Say that sequence β = (a0, a1, . . . , an) is a chain of length n in R if and
only if for each i such that 0 ≤ i < n, R(ai, ai+1). Claim: For each chain in R
of length n > 0, R(a0, an). The base case is trivial since n > 0. Consider chain
β = (a0, a1, . . . , an, an+1). By the IH, R(a0, an). Since β is a chain, R(an, an+1).
Since A makes axiom 2 true, R(a0, an+1). Say that a chain of length n is a cycle if,
furthermore, R(an, a0) (if n = 0, then understand that an = a0). Suppose that R has
cycle β of length n. Then by the claim, R(a0, an) and R(an, a0), so since A satisfies
axiom 2, R(a0, a0) and, hence, fails to satisfy axiom 1. Contradiction. So R has no
cycle. Suppose that A satisfies axiom 3. Start at arbitrary a0 ∈ |A| and keep extending
the chain from a0 according to axiom 3. Since |A| is finite, eventually the same domain
element occurs twice. That is a cycle in R. Contradiction.

Exercise 4 (3.2.12) As suggested, prove the contrapositive. Let T0 ⊆ T1 ⊆ . . . ⊆ Tn ⊆
. . . and let T ∗ =

⋃
i Ti. Note that the inclusions are proper, so the nested theories always

get larger. Suppose for reductio that T ∗ is finitely axiomatizable. Then by Lemma 3.2.9,
T is axiomatized by a finite subset ∆ ⊂ T ∗ since, trivially, T ∗ axiomatizes itself. There
exists n such that ∆ ⊆ Tn. Then cn(∆) = Tn. But since ∆ axiomatizes T ∗, it is also
the case that cn(∆) = T ∗. Hence, Tn = T ∗. Hence, for each i ≥ n, Ti = Tn.

Exercise 5 (bonus, 3.2.18) This is a bit of real mathematics that is almost an im-
mediate consequence of the completeness theorem, which makes it clear that the theorem
has some real mathematical content. The argument again proceeds like the argument
of the upward Löwenheim-Skolem theorem, using compactness (which is an immediate
consequence of the completeness theorem).

Name each node of the graph G by a constant. Add non-identity statements for all
the constants. Specify the edges in the graph with binary predicate R and make sure
to add in R(b, a) whenever you put in R(a, b) and never put in R(a, a). Add the 3-
coloring postulates specified in the exercise and call the resulting theory ΓG. Now let G
be a graph. Suppose that each finite sub-graph of G is 3-colorable. A sub-graph G′ ⊆ G
is the restriction G|S of G to some subset S of nodes (constants), so it corresponds to
the theory ΓG|S in which each statement R(a, b) involving a constant missing from S
is deleted from ΓG. So each theory ΓG|S is satisfiable if S is finite. Let ∆ be a finite
subset of ΓG. There exists finite S such that ∆ ⊆ ΓG|S, so ∆ has a model. So by
compactness (Theorem 3.2.1), ΓG has a model. So G is 3-colorable.
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