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Kevin T. Kelly

Read Van Dalen 1.1-1.2 and the Appendix up to the discussion of “satisfaction”
(check the table of contents). The syntax of propositional logic is, admittedly, pretty
straightforward, but the underlying ideas aren’t so trivial and will show up repeatedly
elsewhere in computer science and philosophy. This is a chance to get them right. The
exercises invite you to draw some general morals that will apply to applications you
confront repeatedly in the future.

Let U be a set of objects. Let B ⊆ U . Let f1, . . . , fn be functions defined on U
that take finitely many arguments. Say that C is inductive (with base B ⊆ U and
generation operations f1, . . . , fn) if and only if:

1. B ⊆ C;

2. if x1, . . . , xki ∈ C then fi(x1, . . . , xki) ∈ C.

Let C∗ denote the intersection of all inductive sets (relative to B, f1, . . . , fn). Then
C∗ is sometimes called the inductive closure of B under f1, . . . , fn or is said to
be inductively defined by B, f1, . . . , fn. It is immediate that C∗ is a subset of
each inductive set, since C∗ is just the intersection of all such sets. An immediate
consequence of this trivial observation is the non-trivial principle of induction on
an inductively defined set C∗. Let Φ be a property of objects in U .

If

(a) for each b ∈ B, Φ(b);

(b) for each x1, . . . , xki ∈ C∗, if φ(x1) and . . . and φ(xn) then φ(fi(x1, . . . , xki))

Then for all x ∈ C∗, Φ(x).

Notice that the hypothesis just says that {x ∈ U : Φ(x)} is inductive. Hence, C∗ ⊆
{x ∈ U : Φ(x)}, so each x ∈ C∗ satisfies Φ. That’s all there is to the principle of
induction! Induction on the natural numbers is just a special case:

Exercise 1 Show that the natural numbers are inductively definable with base B = {0}
and derive the usual principle of induction on the natural numbers.

Exercise 2 Prove that the induction principle on N is equivalent to the strong induc-
tion principle on N . Hint: when you instantiate the induction principle to prove strong
induction, choose the property Φ in the induction principle as follows:

Ψ(n) if and only if for each m ≤ n, not-Φ(m).
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Exercise 3 Prove that:
if n ≥ 5 then 2n > n2.

Hint: sometimes it is necessary to prove a lemma by induction before proving the main
result.

Why are you allowed to start the proof with base case = 5 when the principle of
induction starts with base case 0?

In Van Dalen’s definition of PROP∗, the basic set B is the set of atomic propositions
{pi : i ∈ N} and the generation operations are, of course:

f∧(x, y) = (x ∧ y);
f∨(x, y) = (x ∨ y);

f¬(x) = (¬x);
...

Incidentally, what is U in the case of PROP∗? Is U inductive?
The characterization of inductively defined sets “from above” by taking the inter-

section of all inductive sets makes the principle of induction transparent and makes
it easy to show that an object x ∈ C∗. It’s harder to show that something in U is
not in C∗ (look carefully at Van Dalen’s example). Also, it seems a bit bizarre to
define the natural numbers with an infinite intersection of infinite sets including gods,
potatoes, and who-knows-what, just to throw all the rubbish away again? One natural
alternative is to just iterate the generation operators by defining:

C0 = B;
Cn+1 = Cn ∪ {fi(x1, . . . xki

) : i ≤ n and x1, . . . , xki
∈ Cn};

C∗ =
⋃

i

Ci.

Exercise 4 (the way up is the way down (Heraclitus)) Prove that C∗ = C∗. Hint:
use induction on C∗ on one side and induction on N on the other.

Say that a formation sequence for x (relative to B, f1, . . . , fn) is a finite sequence τ
of elements of U such that for each x occurring in τ , x = f(y1, . . . , yk), where f is a
generation operation and y1, . . . , yk occur earlier than x in τ .

Exercise 5 Prove that x ∈ C∗ if and only if x has a formation sequence. Hint: use
the preceding result and prove that x ∈ C∗ if and only if x has a formation sequence.

Recursion is an obvious and attractive way of defining functions on C∗. One defines
the value of the function on elements of B and then defines the function on x as a
function of the values assigned to x1, . . . , xn when f(x1, . . . , xn) = x. For example, on
the natural numbers:

f(0) = 1;
f(n + 1) = 2 · 2n.
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But there is a catch. Functions must have unique values for objects (independently of
the way the objects are described) but if it is possible for the generation operators to
produce the same object by distinct paths, recursion may yield two distinct values of
a function on the same argument. Say that C∗ is freely generated if and only if

1. each of the generation operators is injective (1-1);

2. the respective ranges of the generation operators are pair-wise disjoint;

3. no generation operator produces a value in B.

Exercise 6 The palindromes on alphabet A are the strings on A that are invariant
under reversal: e.g., “wait and wait” and “ha ha”.

Let A = {0, 1} and present formation rules that freely generate the set P of palin-
dromes on A (don’t forget the empty string ()).

(*) Come up with generation rules for the palindromes under which the palindromes
are not freely generated and witness that fact with an example. What if there were
parentheses, as in PROP?

(*) Show how definition by recursion can yield inconsistent results when the palin-
dromes are not freely generated.

Be sure to look at van Dalen’s proof of the existence and uniqueness of a recursively
defined function in the Appendix.

Exercise 7 Define rank and sub-palindrome for palindromes as van Dalen does for
PROP. Use van Dalen’s examples for PROP as a guide. Let () have rank 0. Instead
of drawing trees, identify a tree with the set of is paths.
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