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232 : David E. B

that the preliminary training need only be approximately righ.
round of training can be used after assembly to learn the int
among the modules. '

ectionist Modeling:
Computation /
al Connections

2.3 The generalization problem

One final aspect of learning that has been looked at is the nagy
generalization. Tt is clear that the most important aspect of netwo
not that they learn a set of mappings but that they learn the fu
implicit in the exemplarts under study in such a way that they «.
properly to cases not yet observed. Although there are many exa
of successful generalization {c.g., the learning of spelling-to-phoneg
mappings in Sejnowski and Rosenberg’s NETtalk, 1987), then
number of cases in which the networks do not generalize correct]
Denker et al. 1987). One simple way to understand this is to note
for most problems thete are enough degrees of freedom in the rie
that there are a large number of genuinely different solutions ¢
problems—each of which constitutes a different way of generali
unseen patterns. Clearly not all of these can be correct. i

Weigend and T have proposed an hypothesis that shows.
promise in promoting better generalization (Weigend and Rum
1991). The basic idea is this: the problem of gencralization is ¢
tially the induction problem. Given a set of observations, what:
appropriate principle that applics to all cases? Note that the networ
any point in time can be viewed as a specification of an ind:
hypothesis. Our proposal is that we follow a version of Occam’s:
and select the simplest, most robust network that is consistent wit
observations made. The assumption of robustness is simply an em
iment of a kind of continuity assumption that small variations'i
input pattern should have litte effect on the output or on the p
mance of the system. The simplicity assumption is simply to chos
of all networks that correctly account for the input data-—the net
the fewest hidden units, the fewest connections, the most symmet
among, the weights, and so on. We have formalized this procedure ;
modified the backpropagation learning procedure so that it p
simple, robust networks, and, all things being equal, will selec
networks. In many cases it turns out that these are just the nets
that do the best job generalizing.

Paul Smolensky
1989

1e past few years the approach to cognitive science and artificial
gence known as connectionist modeling has dramatically increased
ence. Connectionist systems are large networks of extremely
omputational units, massively interconnected and running in
‘Each unit or processor has a numerical activation value which
mmunicates to other processors along connections of varying
gth; the activation value of each processor constantly changes in
se to the activity of the processors to which it is connected. The
of some of the units form the input to the system, and the val-
other units form the output; the connections between the units
ine how input is transformed to output. In connectionist sys-
knowledge is encoded not in symbolic structures but rather in
attern of numerical strengghs of the connections between units.
he goal of connectionist research is to model both lower-level per-
il processes and such higher-level processes as object recognition,
em solving, planning, and language understanding. The rapidly
ing collection of connectionist systems includes models of the fol-
g cognitive phenomena: o

speech perception,

ual recognition of figures in the “origami world”,

evelopment of specialized feature detectors,

discovering binary encodings,
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* tic-tac-toe, ' . - ] Is of analysis: neural and mental structures
* inference about rooms, and

in with the questions: How do accounts of intelligence relate to
and mental structures? What are the roles of the neural and the
- levels of analysis? We first consider the answers from the tra-
symbohc approach to Al, and then from a connectionist alter-

* qualitative problem solving in simple electric circuits.

One crucial question is whether the computational power o
nectionist systems is sufficient for the construction of truly intel
systems. Explorations addressing this question form the bulk of
contributions to the connectionist literature; many can be found in
proceedings of the International foint Conference on Al the ant
meetings of the American Association for Al, and the Cognitive
ence Soc1ety over the past several years. The connectionist syst
referred to in the previous paragraph can be found in the collection
Hinton and Anderson (1981); Feldman (1985); Rumelhart, Mc
land, and the PDP Research Group (1986); McClelland, Rumelk
and the PDP Research Group (1986); and the bibliography by Fel
man, Ballard, Brown, and Dell (1985). In the present paper I will n
address the issue of computational power, except to point out that
nectionist research has been strongly encouraged by successful form
models of the details of human cognitive performance, and strong
motivated by the conviction that the pursuit of the principles of ne
computation will eventually lead to architectures of great compu
tional power.

In addition to the question of whether the connectionist approach
to Al can work, there is the question: What exactly would it mean
the approach did work? There are fundamental questions about
connectionist approach that are not yet clearly understood despi
their importance. What is the relation between connectionist syster
and the brain? How does the connectionist approach to mode
higher-level cognitive processes relate to the symbolic approach th
has traditionally defined Al and cognitive science? Can connection

ie symbolic paradigm

art with the mental structures of “folk psychology”: goals, beliefs,
pts, and so forth (figure 9.1). In the symbolic approach, these
alist concepts are formalized in terms of a “language of thought”,
(1975) calls it; this language is supposed to provide a literal
lization of folk psychology. The rules for operating on this fan-
are essentially Boole’s (1854/1961) “laws of thought”. These
olic structures are supported by a physical symbol system (a physi-
mputing device for manipulating symbols}, which in turn is sup-
ed by lower implementation levels in a computing device. The
s that, eventually, if we were to get low enough down in the
physical symbol system, we would see something like neurons.
ther words, on this account we just have to figure out how to relate
ral structures to the low implementation levels of a physical symbol
sfeim, and then we understand the relation between neural structures
‘mental structures. If it were the case that increasingly lower levels

Mental structures
Goals, beliefs,

Neural structures
Areas, pathways,
columns, neurons,
membranes nuc!el
synapses, transmiitters.

concepts, schemata,
knowledge, |nference,
perceptions, actions.

Formalize
models.contribute to our understanding of the nature of the symb (Language oF thought,)
processing characterizing the mind and its relation to the neural p laws of thought

cessing characterizing the brain? These are the questlons I address in Support
this paper. In the process of addressing these questions it will beco ( Physical symbol )
clear that the answers are important not only in their own right, b systems
also as contributions to the determination of whether the connectio Support
ist approach has sufficient power. . Lower level )
implementations
Support (¢7)

ure 9.1: Neural and mental structures in the symbolic paradigm
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of computers looked more and more like neural systems this wa
a promising approach; unfortunately, insights into the desi “
implementation of physical symbol systems have so far shed
no light on how the brain works.

To understand the connectionist alternative more clearly, it
ful to articulate a number of the properties of the symbolic appr,
Allen Newell formulated this paradigm best in his physical symb
tem hypothesis: :

perspective of neuroscience, the problem with the symbolic
is quite simply, as I have already indicated, that it has pro-
ous little insight into the computational organization of the

he- perspective of modeling human performance, symbolic

uch as Newell and Simon’s General Problem Solver (1972),
od job on a coarse level; but the fine structure of cognition
< to be more naturally described by nonsymbolic models. In word
ition, for example, it is natural to think about activation levels

The necessary and sufficient condition for a physical system: .
Y phy % ceptual units.

exhibit general intelligent action is that it be a physical symbo
system. (1980, p. 17 the trouble with the Boolean dream is that symbolic rules and
) gic used to manipulate them tend to produce rigid and brittle

“General intelligent action” means rational behavior (p. 171);
5

nality” means that, when an agent has a certain goal and the kn
edge that a certain action will lead to that goal, then the agent se
that action (Newell 1982); and physical symbol systems are physi
realized universal compurers. :
What all this means in the practice of symbolic Al is that g
beliefs, knowledge, and so on are all formalized as symbolic struc
(for instance, Lisp lists) that are built of symbols (such as Lisp ato
that are each semantically interpretable in terms of the ordinary
cepts we use to conceptualize the domain. Thus in a medical ex
system, we expect to find structures like (IF FEVER THE
(HYPOTHESIZE INFECTION)). These symbolic structures
operated on by symbol-manipulation procedures composed of pr
tive operations like concatenating lists and extracting elements fi
lists. According to the symbolic paradigm, it is in terms of such op
tions that we are to understand cognitive processes.
It is important to note that in the symbolic paradigm, levels of
pition are analogized to levels of computer systems. The symbolic e
that implements knowledge structures is alleged to be exact and co
plete. That means that lower levels are wnnecessary for the accur
description of cognition in terms of the semantically interpreta
clements. This relegates the neural question to simply: How does
nervous system happen to physically implement a physical symbol s

ubsymbolic paradigm

ernative to the symbolic paradigm that I want to present is
all the subsymbolic paradigm (figure 9.2). In this paradigm,
an intermediate level of structure between the neural and sym-
vels. This new subsymbolic level is supposed to be closer to each

jon, the kind of processing occurring in the nervous system.
f the details of neural structure and function are absent from

tiral structures Mental structures
gag; pathways, Goals, beliefs,
mins, neurons, concepts, schemata,
nbranes, nuclei, knowledge, inference,
napses, transmitters. perceptions, actions.

Approximately
predicts and
expfains

Maodeled formally Approximately
and abstractly by supports

Actual
cognitive

Subsymbolic
connectionist

tem? The answer to this question does not matter as far as symbol-le system Approximately Appré)ximatef ~\ behavior
; ’ : supports predicts an
Al systems are concerned. explains

In this paradigm—which Hofstadter (1985) has called “the Bo
ean dream”—there are 2 number of inadequacies. These can be s

. . . Accurately predicts and explains
from a number of perspectives, which can only be caricatured her yP P

19.2: Neural and mental structures in the subsymbolic paradigm.
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mbols (atoms) are used to denote the semantically inter-
rtities {concepts); these same symbols are the objects gov-
mbol manipulations in the rules that define the system.
tities which are semantically interpretable are also the entitics
by the formal laws that define the system. In the subsymbohc
this is no longer true. The semantically mterpretable entities
vus of activation over large number of units in the system,
the entities manipulated by formal rules are the individual
s of cells in the network. The rules take the form of activa-
assing rules, which are essentially different in character from
-manipulation rules.

what I'm talking about here is the particular kind of connec-
stem in which what I just said is true: concepts are repre-
by patterns of activity, rather than by the activations of
ual elements in the network. (In the latter case, we would have
¢ of just the same kind that we have the in symbohc para-
So the subsymbolic paradigm involves connectionist systems
so-called distributed representations, as opposed to local represen-
. (The PDP books by Rumelhart, et al., and McClelland, et al.,
er distributed connectionist systems; Jocal connectionist systems
nsidered in Feldman and Ballard 1982, and Feldman, Ballard,
n; and Dell 1985.)

us, in the subsymbolic paradigm the formal system description
lower level than the level of semantic interpretation; the level of
ation is higher than the level of manipulation. There is a funda-
tal two-layer structure to the subsymbolic paradigm, in contrast to
symbalic approach. The higher semantic level is not necessarily
ely formalizable, and the lower level is not “merely implementa-
of a complete higher-level formalism. Both levels are essential:
ower level is essential for defining what the system is (in terms of
ation passing), and the higher level is essential for understanding
t the system means (in terms of the problem domain).

neural level. The precise relationship between the neural and syt
bolic levels is still a fairly wide-open research question; but j
quite clear that connectionist systems are much closer to net
tems than are symbolic systems.

The relation between the subsymbolic and symbolic descriptig
cognition is illustrated in figure 9.2. If we adopt a higher les
description of what's going on in these subsymbolic systems ¢
involves, to a significant degree, approximation) then we get de
tions that are approximately like symbolic accounts—the sort th
ditional Al constructs. While the subsymbolic paradigm is cont
give approximate accounts of things like goals and beliefs, it is no
pared to compromise on actual performance. Behind the accoun
tolk psychology and symbolic Al, there lie real data on human ing
gent performance; and the claim is that subsymbolic systems can |
vide accurate accounts of that data. :

Note that the subsymbolic paradigm gives an essentially diffe
role to the neural part of the story: Neural structures provide the basj
(in some suitably abstract sense) of the formalism that gives the p
description of intelligence, whereas mental structures enter oni}r
approximate descriptions.

In the remainder of the essay, I will elaborate on the nature of
subsymbolic level, and on the higher-level descriptions of subsymb
systems that approximate symbolic accounts. T want to indicate |
formalizing cognition by abstracting from neural structures—fath
than with symbolic formalizations of mental scructures—provides
and exciting views of knowledge, memory, concepts, and learning.

Figure 9.2 illustrates an important part of the subsymbolic p
digm: thart levels of cognition should not be thought of by analo
levels of computer systems, all stacked underneath the “mental” pa
the diagram. Just as Newtonian concepts provide approximately val
descriptions of physical phenomena that are more accurately describ
with quantum concepts, so the symbolic concepts of folk psycholo
provide approximately valid descriptions of cognitive phenomena t
are more accurately described with subsymbolic concepts. Men
structures are fike higher-level descriptions of a physical system, rat
than higher-level descriptions of a computer system.

[he subsymbolic level

3, where higher-level descriptions of connectionist systems will be

1.3 Semantic interpretation _
dered, we will see some of the characteristics of the symbolic level

Perhaps the most fundamental contrast between the paradigms p
tains to semantic interpretation of the formal models. In the symbol



240 (st Modeling: Neural Computation / Mental Connections 241

2.1 Subsymbolic computation

At the fundamental Jevel in subsymbolic systems we have a ColI
of dynamical variables. There are two kinds of variables: an act
value for each of the units and a connection strength for cach
links. Typically, both kinds of variables are continuous. The rul
define these systems are activation-passing rules and conne
strength-modification rules. Typically these are expressed as differe
equations (although they are simulated with finite difference
tions). The differential equations are typically not stochastic,
chastic versions will enter briefly later. :

The computational role of these two kinds of equations arc
lows. The activation-passing rules are in fact inference rules—not
cal inference rules, but statistical inference rules. And the conne
strength—modxﬁcanon rules are memory-storage and learning p;
dures. These points will be expanded shortly.

Because the fundamental system is a dynamical system with co;
uously evolving variables, the subsymbolic paradigm constitutesa
ical departure from the symbolic paradigm; the claim, in effect;
cognition should be thought of taking place in dynamical systems an
in digital computers. This is a patural outcome of the neuraliy—mspl
(rather than mentally-inspired) conception of computation.

The relation between the subsymbolic formalism and psychologi
processing is in part determined by the time constants that enter
the differential equations governing activation and connecti
strength modification. The time required for significant change in
vation levels is on the order of 100 milliseconds; the time it takes
connection strength to change appreciably is much longer (say, o
order of a minute). Thus, for times less than about 100 milliseco
what we're talking about is a single equilibration or “settling” o
network; all the knowledge embedded in the connections is used
parallel. On this time scale, we have parallel computation. Whe
go beyond this, to cognitive processes that go on for several seco
(such as problem solving and extended reasoning), then we're talki
about multiple settlings of the network, and serial computation, Th
is the part of cognition for which serial symbolic descriptions, such
Newell and Simon’s General Problem Solver, provide a fairly go
description of the coarse structure. The claim of the subsyrnbohc pa
digm is that the symbolic description of such processing is an appro
mate description of the global behavior of a lot of paia
computation. Finally, if we go to still longer time scales (on the on

roaches, viewed at the fundamental level. In the subsymbolic
e have fundamental laws that arc differential equations,
-manipulation procedures. The systems we are talking
' dynamical systems, not von Neumann machines. The math-
category in which these formalisms live is the continuous cat-
ot the discrete category; so we have a different kind of
tics coming into play The differences are dramatically illus-
i the way memory is modeled in the two formalisms. In a von
machine, memory storage is a primitive operation (you give
and a content, and it gets stored), memory retrieval is like-
tive. In subsymbolic systems, by contrast, these processes are
volved—they’re not primitive operations at all. When a mem-
ctrieved, it is “addressed” by its comtents: a fragment of a previ-
nstantiated activation pattern is put into one part of the
k (by another part of the network), and the connections fill out
ainder of that previously-present pattern. This is a much more
d process than a simple “memory fetch”. Memories are stored
symbolic systems by adjusting connection strengths such that
trieval process will actually work—and this is no simple matter.

subsymbolic inference and the statistical connection

fundamental level of the subsymbolic formalism, we have
| from thinking about cognition in terms of discrete processes to
ing in terms of continuous processes. This means that different

'he strength of the connection between two units is 2 measure of
he statistical relation between their activity.

-origins of this principle are easily seen. The relationship between
itistics and connections was represented in neuroscience by Hebb’s
949) principle: a synapse between two neurons is strengthened when
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both are active simultancously. In psychology, this relation app
the notion of “strength of association” between concepts, an im
precursor of connectionist ideas (although, since this involved ‘st
cal associations between comcepts, it was not itself a sub '
notion).

From a physical point of view, the statistical connection is basi
a tautology, since if two units are strongly connected, then when o
active the other is likely to be too. But from a computational poi
view; the statistical connection has rather profound implications fo
and for symbolic computation. Activation passing is now (o
thought of as statistical inference. Each connection represents a
constraint; and the knowledge contained in the system is the set
such constraints. If two units have an inhibitory connection, théh
network has the knowledge that when one is active the other ough
be; but that is a soft constraint that can easily be overridden by
termanding excitatory connections to that same unit (if those ex
tory connections come from units that are sufficiently active)
important point is that soft constraings, any one of which can beo
ridden by the others, have no implications singly; they only have im
cations collectively. Thats why the natural process for using this
of knowledge is relaxation, in which the network uses all the con fined by the statistical knowledge stored in the system’s connec-
tions at once, and tries to settle into a state that balances all the
straints against each other. This is to be contrasted with
constraints, such as rules of the form “If A, then B”, which can be
individually, one at a time, to make inferences serially. The d-ai
that using soft constraints avoids the brittleness that hard constiai
tend to produce in Al. (It is interesting to note that advocates of lo
in Al have, for some time now, been trying to evade the brittleness
hard constraints by developing logics, such as non-monotonic logics
in which all of the rules are essentially used zogether to make inferenc
and not separately, see, for example, Artificial Intelligence, 1980.) -

To summarize: In the symbolic paradlgm, constraints are typicall
hard, inference is logical, and processing can therefore be serial. (O
can try to parallelize it, but the most natural approach is serial infe
ence.) In the subsymbolic paradigm, constraints are soft, inferenc
statistical, and therefore it is most natural to use parallel irnplemen
tions of inference.

sher-level descriptions

¢haracterized the subsymbolic paradigm at the fundamental,
lic level, I would now like to turn to higher-level descrip-
ese connectionist systems. As was stated above, according to
ymbohc paradlgm, serial symbolic descriptions of cognitive
ng are apprommate descriptions of the higher-level propertes
ctionist computations. [ will only be able to sketch this part of
~—pointing to published work for further details. The main
is that interesting relations do exist between the higher-level
ties of connectionist systems and mental structures, as they have
ormalized symbolically. The view of mental structures that
is strikingly different {from that of the symbolic paradigm.

The best-fit principle
rucial principle of the subsymbolic level, the statistical connec-
an be reformulated at a higher level as what I call the best-fir

is vague form, this principle may be generally true of connection-
ystems. But it is exactly true in a precise sense, at least in an ideal-
limit, for a certain class of systems that I have studied in what I
drmony theory (Smolensky 1983, 1984a, 1984b, 19862, 1986b,
c; Riley and Smolensky 1984).

) render the best-fit principle precise, it is necessary to provide
se definitions of “inferences”, “best fit”, and “statistical knowledge
d in the system’s connections”. This is done in harmony theory,
¢ the central object is the “harmony function” H, which measures,
any possible set of inferences, the goodness-of-fit to the input with
ect to the soft constraints stored in the connection strengths. The
of inferences with the largest value of H (that is, with the highest
1ony) is the best set of inferences, with respect to a well-defined
istical problem.

Harmony theory basically offers three things. It gives a mathemati-
lly precise characterization of a very general statistical inference
blem that covers a great number of connectionist computations. It
Is how that problem can be solved using a connectionist network
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ic function in the exponent, but which uses auxiliary variables

with a certain set of connections. And it provides a procedy by : TR AL R
ieve the simplification:

which the network can learn the correct connections with experie
will comment briefly on each of these three elements, to give th
of the form that the best-fit principle takes, and to prepare the w
the remaining remarks on higher-level properties of connectio
computation.

Harmony theory analyzes systems that confront the following
tistical inference task: If we give the system some features of an‘en
ronmental state, it should infer values for unknown feature
example I will consider in the next section concerns reasoning abo
simple electric circuit. Given a change in the value of some circuit
ture (say, an increase in the value of some resistor), then what hap
to the other, “unknown” features—the currents and voltages, say? T
general task is what I call the completion task. '

In response to a completion problem, the system is suppose
give the maximum-likelihood set of inferred values, with respece t
probability distribution maintained internal to the system as a m
of the environment. In other words, the system maintains a probabil
distribution that represents the likelihoods of various events” occur
in the environment; and it should give as its output the maxim
likelihood set of values for the unknowns.

What model of the environment—what probability distribution
is the system supposed to use? Here harmony theory adopts a princip!
commonly used in statistical inference: The system should use il
probability distribution with minimal informational content that
consistent with the statistical constraints that the system obser
holding in the environment.

Having specified the inference problem in this way, we can n
draw some conclusions. The first result says that the minimal inform
tion distribution can actually be computed as follows. The probabi
of a set of inferred values x is proportional to the exponential of a p
ticular function:

prob (x,y) o &Y

adratic function H measures the internal consistency of a set of
d values, with respect to these constraint parameters Ag; I called
‘hecause it turns out to play the mathematical role of the Hamilto-
an of a statistical-mechanical system. That’s where the name “har-
v’ comes from: H measures the internal consistency of states of
system.

| this first result the competence theorem because it explicitly
seterizes how the system ideally ought to behave. The next result,
vealizability theorem, describes how to instantiate this competence
performance system—an actual computing device—the behavior
‘hich obeys the competence theorem in suitably ideal circum-
ces, but which in real circumstances exhibits performance that
ates from the ideal competence. By creating one computing ele-
. for each of the given and to-be-inferred variables in the set x,
ne for each of the auxiliary variables in the set y, and using the
ameters A, to determine connection strengths, a connectionist net-
can be built which can compute the maximum-likelihood com-
ons by a stochastic relaxation method. The units in this harmony
etwork are stochastic processors—the differential equations defining
: system are stochastic. There is a system parameter called the com-
rational temperature that governs the degree of randomness in the
" behavior: it starts out high, at the beginning of the computation
a there is a lot of randomness in the network, but then is lowered
ting computation until eventually the system “freezes” into an
swer. In the idealized limit, where the system has unlimited relax-
on time, the network converges with probability 1 to the correct
swer, as characterized by the competence theorem. (The stochastic
eldxation process is simulated annealing, as in the Boltzmann machine;
Hinton and Sejnowski 1983. For the historical and logical relations
tween harmony theory and the Boltzmann machine, sce Rumelhart,
al. 1986, p. 148, and Smolensky 1986a.)

‘The third result is a learnability theorem. It says that, through a sta-
istical sampling of the environment, the values of the parameters Ay
that is, the connection strengths) required by the competence theo-
em can be computed by relaxation. That is, the parameters start off
vith some initial values (“genetically” selected or randomly assigned)

prob (x) o< eE“l‘*f“ )
This function has one parameter A, for each statistical constrain
observed in the environment. (The function f,, has value 1 when con
straint o is satisfied, and 0 otherwise). It turns out that the maximumy
likelihood completions that the system is supposed to give as answet
to questions can be computed from a simpler distribution that ha
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e degrades gracefully as well, Thus, the competence/perfor-
istinction can be addressed in a sensible way.

tinuing the theme of physical analogies instead of computer
‘we might think of this as like a “quantum” system that
o be “Newtonian” under certain conditions. A system that
the: micro-level, soft constraints, satisfied in parallel, appears ac
ro-level, under the right conditions, to have hard constraints,
d serially. But it doesn’t really; and if you go outside the “New-
domain, you see that it has really been a “quantum” system all

which are then gradually tuned through experience to become th
rect ones for the given environment.

3.2 Productions, sequential processing, and logical
inference

A simple harmony model of expert intuition in qualitative physi
described in Riley and Smolensky (1984) and Smolensky (19:
1986¢). The model answers questions like: “What happens to the
ages in this circuit if T increase this resistor?” Higher-level descnp
of this subsymbolic problem-solving system illustrate several j inter
ing points.

It is possible to identify macro-decisions during the system’s squ_
of a problem; these are each the result of many individual micro-
sions by the units of the system, and each amounts to a largess
commitment to a portion of the solution. These macro-decisions
approximately like the firing of production rules. Tn fact, these:
ductions” “fire” at different times, in essentially the same order as’
symbolic forward-chaining inference system. One can measure
total amount of order in the system, and see that there is a qualitati
change in the system when the first micro-decisions are made
system changes from a disordered phase to an ordered one. :

A corollary of the way this network embodies the problem-dor:
constraints, and the general theorems of harmony theory, is that
system, when given a well-posed problem and unlimited relaxa
time, will always give the correct answer. Thus, under that idealizatio
the competence of the system is described by hard constraints: O
law, Kirchoff’s laws, and so on. It is as if the system had those las
written down inside it. However, as in all subsymbolic systems, t
performance of the system is achieved by satisfying a large set of s
constraints. What this means is that if we go outside of the ideal co
tions under which hard constraints seem to be obeyed, the illusion th
the system has hard constraints inside it is quickly dispelled. The's;
tem can violate Ohm’s law if it has to; but if it doesn’t have to viola
the law, it won't. Thus, outside the idealized domain of well-posed pro
lems and unlimited processing time, the system gives sensible performan
It isn’t brittle in the way that symbolic inference systems are. If the sy
tem is given an ill-posed problem, it satisfies as many constraints:
possible. If it is given inconsistent information, it doesn’t fall flat, an
deduce just anything, If it is given insufficient information, it does!
just sit there and deduce nothing. Given limited processing time, the

he dynamics of activation patterns

bsymbolic paradigm, semantic interpretation occurs at the
zvel of patterns of activity, not at the lower level of individual
hus an important question about the higher level is; How do
emantically-interpretable entities combine?

the symbolic paradigm, the semantically-interpretable entities
mbols, which combine by some form of concatenation. In the
nbolic paradigm, thie semantically-interpretable entities are acti-
patterns, and these combine by superposition: activation pat-
uperimpose upon each other, the way that wave-like structures
do in physical systems. This difference is another manifestation
oving the formalization from the discrete to the continuous
deed the linear) category.

sing the mathematics of the superposition operation, it is possible
scribe connectionist systems at the higher, semantic level. If the
tionist system is purely Hinear (so that the activity of each unit is
ely a weighted sum of the activities of the units giving it input),
n easily be proved that the higher-level description obeys formal
of just the same sort as the lower level: the subsymbolic and sym-
levels are isomorphic. Linear connectionist systems are, however,
imited computational power; and most interesting connectionist
ms are nonlinear. However, nearly all are guasi-linear—that is,
1 unit combines its 1nputs llnear]y, even though the effect of this
; b_matmn on the units activity is nonlinear. Further, the problem-
cific knowledge in such systems is in the combination weights (that
the linear part of the dynamical equations); and, in learning sys-
it is generally only these linear weights that adapt. For these rea-
even though the higher level is not isomorphic to the lower level
onlinear systems, there are senses in which the higher level approx-
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imately obeys formal laws similar to the lower level. (For the detail
Smolensky 1986b.) .
The conclusion here is a rather different one from that of t
ceding subsection, where we saw how there are senses in which hj
level characterizations of certain subsymbolic systems approxi
productions, serial processing, and logical inference. What we see
is that there are also senses in which the laws approximately describ
cognition at the semantic level are activation-passing laws—like th
at the subsymbolic level, but operating between “units” with indivig
semantics. These semantic-level descriptions of mental proce
(which include Jocal connectionist models) have been of consider,
value in cognitive psychology (see, for example, McClelland
Rumeclhart 1981; Rumelhart and McClelland 1982; Dell 1985)
can now see how these “spreading-activation” accounts of mental |
cessing relate to subsymbolic accounts.

inference process in this system is simply one of greedily maxi-
armony. To describe the inferences of this system on a higher
an examine the global states of the system in terms of their
alues. How internally consistent are the various states in the
[t is a 40-dimensional state space, but various 2-dimensional
s can be selected and the harmony values there can be graphi-
s‘played- The harmony landscape has various peaks; looking at
atures of the state corresponding to one of the peaks, we find that
responds to a prototypical bathroom; others correspond to a
typical office, and so on, for all the kinds of rooms subjects were
escribe. There are no units in this system for bathrooms or
there are just lower-level descriptors. The prototypical bath-
a pattern of activation, and the system’s recognition of its
typicality is reflected in the harmony peak for that pattern. Tt is a
tenit, “harmonious” combination of features: better than neigh-
oints like one representing a bathroom without a bathtub,
has distinctly lower harmony. :
uring inference, this system climbs directly uphill on the har-
- landscape. When the system state is in the vicinity of the har-
eak representing the prototypical bathroom, the inferences it

are governed by the shape of the harmony landscape there. This
: is like a “schema’” that governs inferences about bathrooms. (In
armony theory was created to give a connectionist formalization
“notion of schema; see Smolensky 1986a, 1986¢.) Looking
~at the harmony landscape we can see that the terrain around
bathroom” peak has many of the properties of a bathroom
a: variables and constants, default values, schemata embedded
¢ of schemata, and even cross-variable dependencies. The system
haves as though it had schemata for bathrooms, offices, and so on,
hough they are not “really there” at the fundamental level. These
mata arc strictly properties of a higher-level description. They are

nal, approximate descriptions—one might even say they are
¢ly metaphorical descriptions-—of an inference process too subte
dmit such high-level descriptions with great precision. Even
gh these schemata may not be the sort of object on which to base
mal model, nonetheless they are useful descriptions—which may,
the end, be all that can really be said about schemata anyway.

3.4 Schemata

One of the most important symbolic concepts is that of the sch
(Rumelhart 1980). This concept goes back at feast to Kant (17.
1929) as a description of mental concepts and mental categories.. Schy
mata appear in many Al systems in the forms of frames, scripts
similar structures; they are prepackaged bundles of information. th
support inference in stereotyped situations.

I will very briefly summarize work on schemata in connection
systems reported in Rumelhart, Smolensky, McClelland and Hin
(1986; see also Feldman 1981, and Smolensky 1986a, 1986¢). 'L
work addressed the case of schemata for rooms. Subjects were asked
describe some imagined rooms using a set of 40 features like: has-
ing, has-window, contains-toilet, and so on. Statistics computed fr
these data were used to construct a network containing one nod
each feature, and containing connections computed from the stati
cal data by using a particular form of the statistical connection.

This resulting network can do inference of the kind that can
petformed by symbolic systems with schemata for various types
rooms. For example, the network can be told that some room conta
a ceiling and an oven, and then be given the question: What els
likely to be in the room? The system setiles down into a final state, an
the inferences contained in that final state are that the room contal
coffee cup but no fireplace, a coffec pot but no computer.
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4 Conclusion

The view of symbolic structures that emerges from viewing t
entities of high-level descriptions of dynamical systetns is quite
ent from the view coming from the symbolic paradigm. “Ry
not symbolic formulae, but the cooperative result of many smal
constraints. Macro-inference is not a process of firing a symbol
duction; rather it is a process of qualitative state change in a dy
system, such as a phase transition. Schemata are not large symb
data structures but rather the potentially quite intricate shapes'g
mony maxima. Similarly, categorics turn out to be attracro
dynamical systems: states that “suck in” to a common plac
nearby states, like peaks of harmony functions. Categorization
the execution of a symbolic algorithm but the continuous evolut
the dynamical system—the evolution that drives states into the ag
tors, to maximal harmony. Learning is not the construction and
ing of formulae, but the gradual adjustment of connection stren
with experience, with the effect of slowly shifting harmony lands
adapting old and creating new concepts, categories, schemata,

The heterogenous assortment of high-level mental structure
have been embraced in this paper suggests that the symbolic level |
formal unity. This is just what one expects of approximarte highe
descriptions, which, capturing different aspects of global proper
can have quite different characters. The unity underlying cognition
to be found not at the symbolic level, but rather at the subsymbo
level, where a few principles in a single formal framework lead to 2
variety of global behaviors.

If connectionist models are interpreted within what I have deﬁ
as the subsymbolic paradigm, we can start to see how mental strue
can emerge from neural structures. By seeing mental entities as hig
level structures implemented in connectionist systems, we get a:
more complex and subtle view of what these mental structures r
are. Perhaps subsymbolic systems can achieve a truly rich mental life

e Nature of Theories:
urocomputational Perspective

Paul M. Churchland
1989

classical view of theories

ago, we all knew what a theory was: it was a set of sentences
ositions, expressible in the first-order predicate calculus. And
d what seemed to be excellent reasons for that view. Surely any
1ad to be statable. And after it had been fully stated, as a set of
s; what residue remained? Furthermore, the sentential view
systematic sense of how theories could perform the primary
- of theories, namely, prediction, explanation, and intertheo-
uction. It was basically a matter of first-order deduction from
tences of the theory conjoined with relevant premises about the

hiat hand.

f learning, and of rationality. Required was a set of formal
dictate appropriate changes or updates in the overall set of
d sentences as a function of new beliefs supplied by observation.
ourse there was substantial disagreement about which rules were
priate. Inductivists, falsificationists, hypothetico-deductivists,

is truth. And it was widely expected that an adequate account
onal methodology would reveal why humans must tend, in the
riin, toward theories that are true.

ardly anyone will now deny that there are serious problems with
element of the preceding picture, difficulties we shall discuss
ow. Yet the majority of the profession is not yet willing to regard
m as fatal. T profess myself among the minority that does so regard



