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Wlttgenstcm s terse remarkl captures the feature of Alan Tunng‘s analysis of
; calculability that ‘thakes it epistemologically relevant. Focusing on the episte- |
H mology of mathemat:ds. T will contrast this feature with two striking aspects of |

mathemiatical expérience unphczt i repeated remarks of Kurt Gdel, The first, |
the’ conceptional aspect, is connected to the notxon of tmechanical  comput-
: ability’ through his assertion that “with this concept one has for the first time
succéeded ‘in giving ‘an’absotute definition of an interesting cplstemologlool
i _ notion™ the second, the quasi-construcuve one, is related to axiomiatic set
|

theory through his claim' that its axioms “can be supplemented: without
: arbitrarinéss by new axiomis which are only the natural continuation of the
! series of those set up so far.” Godel speculated on how the second aspect might
f give ‘tise to 4 “humanty effective prooedurc that cannot be mechanically
calculated and ‘thus provide a reason for his belief that the class: of ‘mental
prooedures is not exhausted by mechanical ones, Leaving this Iatter speculation
: aside,” Godel's remarks point to data that underlic the two aspects. and
i "challenge, in the words-of Charles Parsons (in prcss, 19), any theory of
' meaning and evidence in mathematics.”? e
y - Not that I will present a theory accounting for these data, rather, 1 wxll
mainly clarify the first datum by reflecting on the question that is at the root
\ of Turing’s analysis and central for mathematical logic, as well as for cognitive
psychology and artificial intelligence. In its sober mathematical form the question
s:mp!y asks, “What is. an - effectively calculable function?”, The ‘equivalent
answers given in the mid-1930s are widely taken to be of furidamental significance
also’ l‘or tho less sober question, “Are we (reducible to) machines?” After all, -
Turing's answer to the mathematical question used the oonoopt of an idealized -
computing machine. Tiring presented his characterization in 1936 to give a
negative solution to Hilbert’s Entscheidungsproblem, and his characterization is
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y accepted as correct or, at least, as more convincing than others. But

be treated adequately.®

©

ergence from work in the foundations of mathematics. The first part of my
“essay provides this background by presénting epistemological concerns that
‘motivated the use of effectively decidable notions in mathematics as well as in
~ logic and by summarizing (meta-) mathematil issues that required an analysis
of effective calculability. The second part starts out with a discussion of general
recursive functions'as introduced by {Herbrand and) Gadek; but it focuses on
Church’s main argument for the proposal to identify recursiveness with the
informal notion of effective calculability. Thus, Church’s Thesis is at the center
of the second part. I will point out unsatisfactory aspects of Church’s argument,
but also the centrality of the concept caleulability in a logic for this early
discussion, That prepares the. ground for Turing's Analysis of mechanical
processes carried -out. by a human computor. The third part refines and
generalizes that analysis, isolates Turing's Thesis as asserting that a human
computor satisfies certain finiteness conditions, and argues for the pertinency
and correctness of this thesis 4

The generatized form of the analysis allows me to connect Turing’s con-

siderations in a.most informative way with Church’s argument and Godel's ,
proposal. These systematic connections reinforce. the gonceptual core of the .
early investigations ‘and weaken, if not undermine,- the “argument from

confluenceof different notions” in favor of Church's Thesis, Turing’s analysis.

was in perfect accord with Chusch's views, 4s can e gathered from the 1937

review Church wrote. of Turing’s paper. In his, review. Church asserted it is

“immediately clear™ that the notion of Turing computability “can be identified
with .:i-the notion .of effectiveness as it appears in certain mathematical

problemis: (various forms of the Entscheidunigsproblem ., ..and in general any
problem which concerns. the discovery of an algorithm).” Gédel was also

convineed by Turing’s analysis of the correctness of Church's Thesis and used
the adeéquacy of Turing’s notion to establish tigorous consequences for the mind .

and machine: problem, The fourth part of this essay presents these Gidelian
consequences and two closely related, but more general , aspects of mathematical

experience alfuded to ii:_Gé_d'_el’_s remarks that were quoted previously. But _'note":__ :
that these features are separable from Gdodel's Platonism; they are more subtly

attuned, I will argue, to the practice of mathematics.

. L. Background

R L R (A
R *

The precise, ﬁm&ﬁbﬁlﬁétﬁm{m the informal notion of effective calculability
and the mathematical notion of computability is brought to light, as section 3

will show. in" detail, by Turing’s analysis of effectively' calculable functions.
According to Turing (1939), “A function is said to be ‘effectively calculable’ if
its values can be found by some purely mechanic_:al process,”* and mechanical

e

are the reasons for such a judgment? It Seems to me'that this issue has *

‘When- approaching " the ‘original question;~it is“imiportanit to note” its "

work in the fo da ic o

" algebraic reals were i

prooes_se_-with'a-s
axiomatic: condition
computation,. F

caleulability emerged within two traditions in logic.
roper. symbolic representations. of probi eir -

ght.® These traditio

digms of problem s
disputants-in aiy fiel

relevant history bogins in th s";"h’g“dalt‘ng‘g’
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tional'discussion,
positions evolved fr
in algebraic numbe
should be the ]
in mathematics du

Kronecker admi

nly natural numbers as objects of anal tright;
ed, in now familiar ways, integers and rationals, Even
introduced, because they could be isolated as
roots of algebraic equations. The general notion of irrational num
was rejected in consequence. of two restrictive. methodological conditi
which mathematical considerations have to c_onfp;m:‘ 1) ?;ncep
able in finitely many steps, and (2) existence proofs must be carrie Dut in suc
way that they presen i%g,bjec%of the required kind. Consequently, § r Kronecker,
infinite mathematical objects could not exist. All of this added up to 8 strictly
arithmetic procedure, and Kronecker thought that by following it analysis could
be re-obtained. More than 100 years later, we know that such a redevelopment
is not as chimerical as people in the 1920s, for example Hilbert, believed,”
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claimed that in his logical system mt‘erence is conducted llke a ealculatlon,
and he continued:

1 do not mean tlns in & narrow sense, as if it were subgoct toan algonthm the X

same as . .+ ordinary addition and multiplication, but only.in the sense’ that -
there is an algonthm at all, i, a totality of rules which governs the transition ©;:-
from one sentence or from two sentences to-a new one in such a way‘that,::" '
nothing happens exoept in conformity with these rules.® """ n

Almost ﬁfty ycars later in 1933 Gédel pomtod back to Frcge and Pcan V hcn _

of the formulas, not to,thetr meaning, so that they can be applxed by'someone
who knew nothmg about ‘mathematics, or by a machme (Godel 1933, 1. 10

' rcﬂ
logical inferences: For this ‘to"be really useful the tepresentatronl has"to be
adequate, and. Frege*asserted. “Proper use can' b made- of this on!y if the
content is not just indicated, but if it is built up from its’ oomponents by means
of the very same logical sigiis, that serve for the computation.” (This ¢ ntinues
the quote in'noté 9,) Frege believed that his Bognﬂ'ssohnﬁ provided the means
to reptcscnt oontent adequatcly Tl

12 Finitist Mathemaﬁcs _

It is al] too well known that Frege s precise formal (re-)pmentatron did not
prevent Russell from deducing a contradiction from the basic laws, A oontradlo-
tion could also be obtamed from the principles for Dedekind's notion of system.
How this problem in Dedekind’s foundational work already stirred Hilbert’s con-
cerned interest in the last few years of the nineteenth century is detailed in Sieg
(1990a), But it was only in his paper of 1904 that Hilbert proposed a radically
new, although still vague, approach to the consistency problem for mathematical
theories. He suggested using the finiteness of mathematical proofs in- order to
establish directly, not through models, that contradictions could not-bc‘ derived
within particular matheriiatical theories. During the early 1920s he turng
issue into an elomentary. arithmetical problem and ‘strategically . joined ‘the
developments’ ansmg out of Frege’s formal logical work with ‘Kronecker's
requirements for “genuine” mathematics (in order to save Dedekind's oonoep—
tion of the subject).}*

_The possibility of mechamcally drawmg mfereno&s and of algonthmrcally
solvmg some problems was not considered by Frege to be.among the logleally
significant achievements of his Begriffsschrift. But Hilbert grasped the potenual
of this formal aspect, radicalized it, and exploited it for programmatxc plirposes,
namely, to justify finitistically the use of classical theories T for establishing
finitist statements without taking into account the problematic content of T.12
That amounted to giving a fiaitist proof of the reﬂection principle

Pl'r(xe ‘¢ )~ ¢
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Pry i8 the finitist proof predicate for T, ¢ a finitist statement, and ‘¢’ its
tion:in the language of T. This is directly related to the consistency

mention that the connection to the nineteenth-contury issues in the foundations

also by. the independently minded Herbrand
special caso of the general comsequence to be drawn
msistenicy proof for the system of Principia Mathematica:
cal theorem has been proved by -using incommensurable
nalytic funictions, then it can also be proved by using only purely
functions defined by recursion), Examples of
rime numbers, and class field theory. (p. 43)'3

tha théoretic investigations would resolve the earlier

tist mathematics, Hilbert took finitist mathematics to be an
of

hematics' accepted : by: Kronecker and Brouwer.!4 -Thus, for. his meta-
mathematical investigations, Hilbert joined the -constructivist tradition in
matheratics, cruéial requirements of which had been formulated by Kronecker,
The latter’s views had influenced the French discussion surrounding the validity
of the axiom of choice and of set theoretic methods in’ general at the very
beginning of the twentieth century, and they were alive and well in Germany
even during the 1920s.!* The epistemological motivation for the restrictions
was quite explicit in those discussions. As far as the still-evolving program of

Hilbert and its direction were concerned, it was clearly formulated by Bernays °

in a talk at the 1921 meeting of the Deutsche Mathematiker Vereinigung in Jena:

The assumption of such a system with particular connection properties [ie.,

_-the assumption of the existence of a set of objects that satisfies certain axioms,

" WS.] contains something as it were transcendent for mathematics, and thus
the question arises, which principled position one should take with respect to
it. ... It would be ‘quite hasty to deny from the very beginning any farther-
reaching kind of intuitive evidence; nevertheless, we certainly want to take into
acoount the teridency of the exact sciences to eliminate the more subtle organs
of knowledge and use only the most primitive means of [acquiring] knowledge.
From thiis perspective we ars going to try [to determine] whether or not it s
possiblé’ to justify those transcendent assumptions in such a way that only
primitive intuitive knowledge is being applied. (1922, 11)'6. :

Bernays goes on to discuss how Hilbert's approach addresses this problem and
how it combines what is “positively fruitful” in the attempts of the intuitionists
and logicists to provide a foundation for mathematics. A méthodological point,
similar to the main point in the previous quotation, was:made by Bernays
(1923), where he emphasized: ' S :
" The possibility of a philosophical position that recognizes [natoral] numbers
as existent, non-sensory objects is not excluded by Hilbert's theory~—but then,
logically speaking, the same kind of idea! existence would have to be granted

oblem, because ' the” reflection priniciple is ‘equivalent. to- the consistency
statement for T under well-known conditions. It is perhaps worthwhile to

problems in a.most satisfactory way because of the restricted -

thmetic, and it was assumed to coincide with the part of
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experience informed broad philosophical views on the’ nature of ‘human
knowledge; we just need to remind ourselves of Plato, Leibniz, Kant, or—closer
to out own days—Frege and Husserl. On the other hand, epistemologically
motivated concerns evolved, as I have shown, into normative requirements for
the :presentation of axiomatic mathematical theories; The resulting: formal
development of parts of mathematics seemed to give substance to the Hobbesian
claim that mathematical reasoning is nothing but mechanical computation. This
view came to the: fore through the formalist and polemical side of Hilbert’s
Program: The whole “thought-content” of mathematics; 5o it was claimed, can -
be expressed in a comprehensive formal theory; mathematical activity.can be
reduced to the manipulation of symbolic expressions, and mathematics itsell
can be viewed as a forniula game, Hilbert defended this playful viow of classical
mathematics against the intuitionists by remarking that - - .~ -

The formula game that Brouwer so déprecates has, besides its math Y
value, an importint géneral philosophical significance, For this formula game
is carried out according to certain definite rules, in which the technique of our
thinking is oxpressed. These rules form a closed system that can be discovered
* aind definitively stated, The fundamental idea of my proof theory is none other
than to describe the activity of our understanding, to make a protocol of the
riles according to. which our thinking actually proceeds, Thinking, it ‘so ::
‘héppens; parallels speaking and writing: we form statements-and placs.them
_one behind another, Jf any totality of observations and phenomena deserves
-to bo made the object.of serious and thorough investigation, it is this ¢ ne—i 240
Hilbért's Iast remark is unidoubtedly correct, However, if we take.the possibility
of developing mathematics formally as a significant datum for. reflection, we.
must keep in mind that the formality requircment expressed a philosophically -
motivated restriction on human cognitive capacities for particular purposes.?*
By addressing von Neumann’s conceptual problem, we also will lay the basis
for a characterization of these restricted cognitive capacities that are presupposed
in formal presentations. h

oy

.. 2, Church’s Thesis
The- background I just described—with its interweaving of mathematical,
logical, and philosophical questions—should be kept in mind when we tym
- our aftention to the:central conceptual issue. I want to emphasize that in
depicting the decision problem as the immediate context in which an analysis
of effective calculability was nceded I do not intend to neglect two other
significant and closely related issucs; namely, the general formulation (and thus
applicability) of the incompletencss theorems and. the general characteriza-
tion of effective solvability for mathematical problems.? Indeed, it was the
detailed examination of the incompleteness theorems and the notion: of Ent-
scheidungsdefinithet, so pivotal for their proofs, that led the way to the (informal)
undetstanding of cfiective calculability as rule-governed evaluation of number-
theoretic functions in something like a formal calculus. This understanding
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s Gddel's proposal, is crucial for Church’s early considerations and for
jass of Post's finitary processes.2” It is this notion that is recognized by Godel
as absoltite and Was generalized, later on, by Hilbert and Bernays to their notion
“of regelrechte Atiswertbarkeit (i.c., evaluation according to rules) in deductive

Kleenc's " Normal - Form - Theotem. Here we have a_ conceptual. core that is

associated,however, with a major stumbling block. After all, this core does not
provide a convincing analysis: steps taken in & calculus must be of a restricted -

chatacter and they are assumed, for cxample by Church, without argument to
be recursive. A related ‘assumption is made by Hilbert and Bernays; the proof
predicate of their deductive formalisms has to be primitive recursive. Finaily,.
Post offers ds a"Working' hypothesis only that the primitive acts (steps) of his
“formulation 1" are sufficient for a reduction of ever wider formulations. As to
Gddel’s dissatisfaction with his proposal, see the discussion in sections 2.1 and
24. In.section 3, I will show that Turing’s analysis removes exactly this
stumbling block, - - Ceeae

2.1. Gédel’s General Recursion

Examples ‘of effectively ‘calculable functions were given by primitive recursive
functions; they had been used in mathematical practice for-a long time. The
standard arithmetic operations like addition, multiplication, and exponentiation,
but also the sequence of prime numbers and the Fibonacei ‘numbers, are all
primitive’ recursive,: The schema of primitive recursion leads from primitive

recursive functions'g and h to & new primitive recursive function f satisfying

the equations - . . . .
K {--,'Vr:- " f(x:, cany Xy 0) = g(x‘-, ceey x”)

L S ) = hx . BSCy s % 3))

The defining equations for f can be used as rules for determining the value of
J for any particular set of arguments. Clearly, in order to recognize that this is
a well-defined procedure one appeals to the buildup of the structure N,
Dedekind gave a set-theoretic foundation of these functions,?® whereas Skolem
used them directly with their naive number-theoretic meaning in his develop-
ment of clementary arithmetic through the recursive mode of thought. Hilbert
and Bernays, finally, sharpened Skolem’s mathematical frame to their Primitive
Recursive Arithmetic (PRA). And it is most plausible that finitist mathematics,
as.intended by them, coincides with PRA—up to an elementary and unproble-
matic coding of finite mathematical objects as numbess.2®, . - .
* Primitive‘recutsive functions and predicates were used in Gddel’s classical
paper (1931) to describe a simplified system of Principia Mathematica; obviously,
syntactic structures had to be.coded as numbers, Fromi 4 finitist standpoint it

was perfecttly sensible fo restrict the means for describing syntactic structures .
to primitive recursive functions; from a broader perspective, however, there was

*

1o reason to exclude other effective procedures in presenting “formal® theories.

main argument (analyzed on pp. 85-87), and leads to a specially important

formalisms.Technically, this understanding found its.distinctive expression in -

- = . oy
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rules for computing was important for the mathematical deveIOpment of -
recursion theory and also for the conceptual analysis. After all, it brought out
clearly what, according to Gadel, Herbrand had failed to see, namely, “that
the computation (for all computable functxons) prooeeds by exactly the samc
rules” (van Heijenoort 19853, 115). ‘

2 2. Herbrand’s Provably Recursive Funcnons

Before moving on to the further development, I want to makeé some addltxona}'
remarks’ conceming: Herbrand’s proposals, emphasizing,-in *patticular, -the
restrictive provability vonditions he imposed. These remarks complement the

discussion of thie last subsection, but do constitute-a digression:” the main-
considerations are taken up- again in section 2.3. Avcareful- descnptlon and-
thoughtful mterpretation of the proposals ¢an' be found in.van Hcljcnoort’ :
essay (l985a) on Herbrand‘s work: Tt should be noted, however, tha,tthxs paper '
Van Heijenoort thus'had to rely on Gédel's reports concerning theﬂetaﬂs of

Herbrand's suggestion to him and its very framing, namely, that Herbrand was

concerned with a general characterization of effective oalculablhty In any event,

van Heucnoort distinguiskied three - different occasions if: 1931 vy_hich

Heibrand proposed vi7to introduce a classof: oomputable functions
would be moté general than that of primitive: recursive ﬁmcuons.--'(lQSSa,
114).3%:The first proposal is found in Herbrand's note (1931b; 273); where he
described the restricted means allowed in metamathematical arguments and
required, in particular, that “all the functions introduced must ctually
calculable for dll values'of their arguments by means of operations’ described
wholly beforehand.” The second proposal is the one reported in G8del'slectures
(without reference to computability), and the third suggestion was ‘made in
Herbrand’s papér (1931d, 290, 291). It is formulated as foﬂows, agam m the
context ofa system for anthmetic :

We can also mtroduce any number of functions fj(x,, x,, . xn;) together w:th
. hypotheses such that _,
. (a) the hypotheses contain no apparent vanables, . '
) considered {ntuitionistically, they make the actual oomputatxon ol' the

) :j;(x,, X2y eio xp,,) possfole for every given set of nuitbers; and it is possible to

R

~ prove mtmtlom cally that we obtain a well-determined mult. .

To the ﬁrst oocnrrcnce of “intuitionistically” in this quotatlon Herbrand
attached the following footnote: “This expression means: when they are translated
into ordinary language, considered as a property of integers and not as mere
symbols.” With van :Heijenoort I assume that Herbrand’ used “intuitiomst:c

also here as synonymous with “finitist.” (A more detailed dqscripﬁon of
intuitionistic arguments is given in Herbrand 1931d, note 5, 288--289.3%) This
third proposal is identical with the one made by Herbrand in luslcttcr to Godel
that I quoted previously,” cxoopt for clause (i) from the earlier daﬁmtion, that
clause is implicitly assumed, as is clear from the examples Herbrand discusses.
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ma pointed out in section 1, we can see the evolution
ially one formulationt . . s B .
Between these proposals there is certainly no conflict of the sort Gédel

that Herbrand enyisionggl “unformalized d perhaps | ;
tation methods” and indeed refused “to confige himself to formal rules of

tation can be carried out in P ang that any intuitionistic argument .can be
formalized in P. He concludes, after sketching Gbdel's proof, that P’s con..
sistency is not provable by arguments formalizable In P and thus is not provable-
intuitionistically, What is most interesting is his remark that Gédel's argument

does not apply to the system of arithmetic that inclides the above schema for

introducing functions: the functions that are introducible cannot be, described.
intuitionistically, because we could -easily diagonalize and obtain-additional
functions, In: two ‘side. remarks I want to mention that (1) Herbrand’s last
observation can be. turned around 5o as to imply that the class of provably.
total functions of a formal theory cannot be cnumerated by an element of that
class, and (2) the aim of precisely characterizing the class of provably total
functions for formal theories has been taken up in proof-theoretic research,
starting with Georg Kreisel (1952); see also Gandy (1988, 74~75) and my
“Herbrand analyses” (1991), = - - e

What is the extension of Herbrand’s class of functions? According to
Herbrand's discussion Boted in the last three paragraphs, it properly includes
he primitive reﬂusivﬁ"fﬁhcﬁan"and_ Is included in the class of provably
ecursive functions of P, Indeed, at the end of 1931d, Herbrand asserts that in
he previous claims concerning the formalizability of intuitionistic computations
nd arguments -ordinary: analysis (I assume that meang full second-order
rithmetic) can take the Place of P. Indeed, he conjectures that full first-order

scribed in 19314 (even without the infinitary rule D) allows one to carry out

oy

' complete set of invariants
; ¥ {See ‘abstract 4-1."5‘_204):3(15?
! ;.thg@-isszcompleteise': Tecti

Proved that'this' prob;
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2.4. Absoluteness
P ooneept used in Church’s argument is an extremely natural and fruitful

ne and is, f course, directly related to Entscheidungsdefinitheit for relatlons'

and classes introduced by Godel in his 1931 paper and to representability of

functions a3 ‘used in' his 1934 Princeton lectures,*®- Clearly, the equational
calculus‘and the A-calculus are two particular “loglcs" allowing the formal,
are motivated by
speclal circumstances. Godel himself used the general notion “f is computable
in a formal systemS" ina brief note of 1936 entitled “On the Length of Proofs.” -
He considered a- hrerarchy of systems S; (of order i, 1 < 1), and observed in a
“Remark” added to. the note in proof that this notion of computabllrty is
mdependent of { in the following sense: If & function is.computable in any of
the systenis S, possibly of transfinite order, then it is already oomputable inS, .
“Thug™ Godel (1986, 397) concluded, “the notion ‘computable’ s in a certain -

mechanieal oomputanon ‘of calculable functions in wa;

Sense absolute’ while almost all metamathematical notions otherwise known

{for examﬂe, provable, deﬁnable, and so on) quite essentially depend upon the-
system adopted.”** For someone who stressed the type-telativity of provability.

as strongly as Gidel did, this must have been a very surprising insight indeed.

In his contribution to'the Princeton Bicentennial Conference (1946), Godel re-.
emphaslzed this. nbsoluteness and took it as the main reason for the special
rmpprtance of general recursiveness or Turing computability: Here, Gédel..
thought, we have the first interesting epistemological notion whose definition

is not dependent on the cliosen formalism. The significance of his discovery

was described by Godel to Kreisel in a letter of May 1, 1968; “That my [incom- .
pletenecs] results were valid for all possible formal systems began to be plausible .

for mie (that is since 1935°2) only because of the Remark printed on p. 83 of

“Theé Undecidable’ . . . But I was completely convinced only by Turing's paper”

(Odifreddi 1990, 65).%% And there was good reason not to be.completely con-

vinced. After all, the absoluteness was achieved, ironically, only relative to the .

description of the “formal” systems S,; the stumbling block shows up exactly here,

 Remark. T Gbdel had been completely convinced of the adequacy of this
notion, ke could have established most easily the unsolvability of the decision
problem for first-order logic: Given that mechanical procedures are exactly

those thateanbe computed-in the system S, (or any other system to which -
Gdodel's incompleteness theorem applies) the unsolvability follows from Theo-
rem IX of Godel (1931). The theorem states that there are formally undecidable -

problems-of predicate logic; it rests on the observation (made by Theorem X)
“that every. sentence-of the form (¥x)F(x), with F primitive recursive, can be
shown.in 8, to be equivalent to the question of satrsﬁabﬂrty for a formula of
predlesto logic; . Historically, Theorem IX made a positive solution of the
decision: problem very unlikely.‘But, for the appendix
fundamental problem of mathematical logic, Herbrar

té in"April 1931,

when:he. already knew Godel's results quite well (1931a,:259); “Note finally -
that,: although at present it seems unhkely that the decision problem can be

solved,.lt ‘has not yet beeu proved that itis 1mposs1ble to do so" " -

paper on the

PP TY L
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Church’s Thesis. This remark holds also for Post's model of obﬁapﬁtaﬁ_@n, wliich

is so strikingly similar to Turing’s. T L ED FAmL - P

~ In 1936, the very year in which Turing’s paper appeared, Post published a

j brief note in The Journal of Symbolic Logic with the title “Finite Combinatory
i Processes—Formulation 1.” Here we have 2 worker who operates in a symbol
space consisting of . O T

a two-way infinite sequence of spaces or boxes, ie, ordinally similar to the
series of integers. .., The problem solver or worker is to move and work in-
this symbol space, being capable of being in, and operating in but one box at
a time. And apart from the presence of the worker, a box is to admit of but
two possible conditions, i.e., being empty or unmarked, and having a: single
... mark in it, say a vertical stroke,” T Rt

o s TR T el & The worker ¢an’ pérform’ a number of primitive’ acts, namely,

 vertical

S Rt SSEi : (2 i iy ' stroke [V], efase a vertical stroke [E], move to the box fmm jdte yto the
R Tl T d T P e ey 28 right [M,] or to the 1éft [A4;] (of the box he'is in),"and determine wheth that
box is marked or not:[D]. In carrying out a paiticular combinatory process,

pr ?’lbfr"‘&ifsér'et . . the worker begins in ﬁ"-ép_eéial box (the starting point) and then foll directions

Finb Jéj'ci)wﬂuhlbéi' of from a ﬁnite,'qumbgred's“o;qubn?oe of instructiqﬁ_g; f_TI;ke'jtllg_rdirodtxoq,; i b‘??.‘f{??“v

Riite éihhibet. 1 and #, is in'ofie of the followinig forms: (1) éarry out'act ¥, E,'M;, My and-

CEorditg ;‘;-“ !ﬁ,.-“r“"'_ﬁ; .. - thoanswer was positive or negative, follow direction; o 7. (Post &
' stop instructiofi, but'that can be replaced by stopping, convenitic _
the-iumber of the next direction is greater than n.) Are there intringi
for'choosing formulation 1, except for its simplicity and Post’s expectation |
it will turn out to be-équivalent to recurswtnws?Aniéns\irertotlus question
is 156t clear (o Post’s papet), and the claim that psychological idelity i the
aim scems quite opaque;’At the very end of his paper Post wrof )

T SRR T SV PO R P B O TR Ve '
-'Tho writer expects the present formulation. to turn out:to be equivalent.to..
. recursiveness in the sense of the G&del-Church development. Its purpose, .
however, is not only to present a system of a certain logical potency. but also,
in its restricted field,‘of peychological fidelity, In the latter senso, wider and
" wider formulations are contemplated, On the other hand, dur aim will be to
~ show that all such re logically reducible t& formulation 1, ‘We offee this

conclusion dt the present moment as a working hypothesls, And to our mind -

such is° Churth's ideitification of effective calculability with’ recursivencss.
i -+, (Davis 1965, 201)%8 -~ - ’ RN R

For Post, investigating wider and wider formulations and reducing them to
formulation 1 would change this “ ypothesis not so much to a definition or to
an axiom but to a natiral law%® e e

.. It is methodologically remarkable that Turing proceeded iniexactly the

opposite way when' trying to support the claim that all computable numbers
are machine computable or, in our way of speaking, that al effectively calculable
functions are Turing computable: He did not try to extend & narrow:notion
reducibly and obtain in this way additional quasi-empirical support; rather, he
- analyzed the intended broad concept and reduced it to a narrow ono—once and
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F (1 would like to emphasize this, as it is claimed over and over that Post

ed in his 1936 paper “much the same analysis as Turing”%%) By
ing Turing’s analysis and reduction we can find the key to answering
uestion I raised about the difference between Church’s and Turing's
mposals. Very bricfly put, it is-this: Turing deepened Church’s step-by-step

now present Turmg’s considerations in systematac detall, thh s;mphﬁcat:ons
and added structure, - . ;

&

32 Mechanical Computor

'I‘unng’s class:cal paper (1936)- opens with a brief descnptxon of what is
ostensibly its subject, namely, “computable numbers™ or “the real numbers

whose expressions as & decimal are calculable by finite means” (Davis 1965,
116). Turing is quick to point out that the fundéimental problem of explicating
“calculabie by finite means” is the same when considering computable functions .
of an integral variable, computable predicates, and so forth. So it is sufficient .
to address the question:: What does it mean for a real number to be calculable .
by ﬁnite means? ‘Turing admits that “this requires rather. more explicit

deﬁmt:on. "No real attempt will be made to justify the definitions given until

we reach §9. For the present ] shall only say that the Justification lies in the fact
that the human memory is necessarily limited” (Davis 1965, 117).5* In section 9:
he argues't ‘that the operations of his machines “include all those which are used.
in the oomputatton of a number.” (Clearly, the operations need not be available :

as bas:c ones; it suffices that they can be mimicked by suitably complex sub-

routmes.) He doces not try to establish the claim directly; rather, he attempts -

to answer “the real question at issue,” that is, “What are the posslble processes

which can be carried out [irmplicitly: by a human computor®?] in oomputmg a.

number?”, Given the systematic context that reaches back to Leibniz’s “Cal-
culemus!”;; this is exactly the pertinent question to ask, because the general
problematic requires an analysis of the possibilities of a mechanical computor.
Gandy” (1988, 83—84) emphamzes, .absolutely correctly, as we "will ‘see, that

“Turing’s analys:s makes no reference whatsoever to calculating machines,

Turing michines appear as a result, as a codification, of his analysxs of calcu-
lations by humans.

Turing imagines i;ﬂéchamcal computor wntmg symbols on paper that is
divided into squares “like a child’s arithmetic book.” Since the two-dimensional
‘character of this computing space is taken not to be.an “essential of computa-

tion,”3: Turing ‘takes ‘3 one-dimensional tape divided into squares as the basic'
computing space.5* What determines the steps of the computor? And what kind -

of elementary operations can he carry out? Before t 0 fhese questions,
let me formulate one important restriction. It is motivated by definite limits of
our sensory: apparatus to distinguish—at one glance—between symbolic con-

figurations-of sufficient: complemty; it states that only finitely many d:stmct.'
symbols can be wntten on a quare Thls restnction wxll be part of condmon '

‘argument by focusing on’the mechanical. .operations underlymg the steps and
by formulating finiteness conditions that guarantee their recursiveness. Let me’
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as fat as emphasis on finiteness restrictions is coneemed But Tunng analyzzd,
as we saw, a mechanical computor, and that prowdes the basxs for Judgmg the
correctuess of the finiteness conditions, - =,

- Church's apparent misunderstandmg is rather common, ef. note 4 ‘on
Mendelson (1990), So it is worthwhile to point out that machine eompum“bihty
was analyzed only much later, by Gandy (1980). Turing’s three-step procedure
of analysis, axiomatic formulation of general principies, and proof of a *redue-
tion theorem” is followed. there, but for “discrete deterministic miechanical
devices.” Gandy showed that everything computable by a device satisfying the -
principles—a “Gandy machine”—can already. be ‘computed: by’ a: Turing
machine; cf. Sieg (1989). To see clearly the difference’ between Turing’s ‘and
Gandy's analysis, note that Gandy machines incorporate parallelism.’ They
compute directly, for example, Conway’s Game of Life, and thus violate the
basic assumption that mechanical computors operate only on symbolic eonﬁgum
tions of bounded size. Furthermore, the different boundedness conditions for -
Gandy machines (in part:cular, the principle of local causation) are. motivated
not by lmntatlons ot‘ the hurnan sensoty apparatus, but by physiea! eonsidemtions.

3.3. Turing's I?:esis

Tunng’s analysm and hls theorem can be generahzed by mal(mg an obse atlon
concerning the determmaey condition: (D) is-not needed to guarantee the
Turing computability. of F in the theorem. More precisely, (D) was used in
conjinction with (1.1) and. (1.2) to argue that computors can carry. out only
finitely many operations; this claim follows already. from conditions (1.1)=(2.2)
without appealing to (D). Thus, the behavior of computors can still bo ﬁxed by
a finite list of eommands, but it may exhibit nondeterminism. Such oomputors
can be mimicked by nondeterministic Turing machines and thus, exploiting the
reducibility of nondetermimstlc to determmlstlc machmes, by detemlimstlc
Turing machines, :; a i
- This observat:on ls by no means dlfﬁcu]t, but lt is. mtellectually eamng
that it allows one to eonnect in a straightforward way Turing’s considerations
with those of Church discussed in section 2.3. Consider an.effectively calculable
function F. and a nondeterm:mstlc computor who calculates—in Church’
senso—the value of F in a logic L. Using the generalmed theorem and the fact
that Turing eomputable functions are recursive, F is' then- recursive. This
argument for. F’s recursiveness does no longer appeal to Church’s- Thesis, not
even to the mofe restricted Central Thesis; rather, such an appeal is’ replaced
by the assumption that the calculation in the logic is done by.a oomputor
satisfying conditions (1.1)-(2.2). Indeed, any system satisfying, | these axio-
matic conditions would do. Turing’s analysis thus leads to & result. that is in
line with Gédel’s general methodological expectations expressed tp Church in
1934 (and reported by Church to Kleene in 1935): “His [i.e. GSdel's] only idea
at the time was that it might be poss:ble, in terms of effective calculability as
an undefined notion, to state a set of axioms which would embody the generally
accepted properties of this notion, and to do something on that basis.”7*
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) ¢ assumption in the argument for the recursiveness of F is to be
narged, then & substantive thesis is needed. And it is this thesis that I want
o call Turing's Thesis. It says that a mechanical computor satisfies the finiteness

conditions (1.1) and (1.2), and that the elementary opemt:ons the computor
‘can carry‘out are restricted as conditions (2. l) and (2.2) require: In short, if the
clarific of effective ‘calculability as meamng computability by a mechanical
comiputor is accepted, then Turing’s Thesis is the final fq'eée, t0 'guarantee the
eqmva!ence of that'notion and recursiveness, And if Tuiring’s Thesis is correct,

precise and—via Turing’s Theorem—mathematically handy characterization of
absolut mechanische Vorschriften. Godel, then, was also right when concluding
that. Tunng oomputnbihty captures the “essence™ of formal systems, namely,
“that teasoning is completely replaced by mechanical operations on formulas. 72

..The first section of this chapter had the explicit purpose of describing the
context for the investigations of Herbrand, Godel, Church, Kleene, and Turing.
Thete is 5o doubt, it seems to me, that an analysis of human computability on

finite -(symbolic) oonﬁguratmns was called for, and that the epistemological '

restrictions ‘were cast in “mechanical” terms; see the remarks of Frege and
Gddel quoted in section 1.1 as striking examples, Thus, Turing's clarification
of effective calculability as cqlculabiiity by a mechanical computor should
be accepted. Two related issues remain: first, the question whether the thesis is
correct and, second, Tunngs claim that its ultimate Just:ﬁcatlon lies in the

necessary limitation of human memory. As to the first issue, we have to ask

ourselves whethe: the restrictive conditions do in fact apply to mechanical
oomputom Accordmg to Gandy, Turing arrives at the restrictions “by consider-
ing the limitations of our sensory and mental apparatus.” However, only
lmntatlons of our sensory apparatus seem to be involved, unless *state of mind”
is given.a mental touch. That is technically unnecessary, as I pointed out in
section 3.1, and is not central to Turing: In section 9(III) of his paper he describes
a modified computor and avoids introducing “state of mind,” considering
instead “a more physical and definite counterpart of it.””® Without discussing
this mod:ﬂcatton, whose context is a little complex, the analysis appeals only

to scnsory llmltations of the type I discussed at the beginning of section 3.2, -
Such fimitations aré operative when we work as purely mechanical computors.™
Tunngsew memory timitations as ultimately justifying the restrictive con--

ditions. But none of the conditions is motivated by.such a limitation; so how

are we to. ‘understand his claim?-1 suggest the following: If our memory were -

not subject to hmtahons of the same character as our sensory apparatus, we
could scan (mth the limited sensory apparatus) a symbolic configuration that
is not immediately recognizable, read in sufﬁclently small parts so that their

representatxons could be assembled in a unique way to. a reprgspntatxon of the -

given symbohc conﬁguratlon, and, finally, carry out- (generahzed) operauons

on that representation in memory. Is one driven to accept Turing’s assertion -

as to. the lumtatxon of’ memory? I suppose so, if one thinks that information
conoermng symbohc structures is physically encoded and that there is a bound
on the. number of avallabie codes

then the oonceptual problem of von Neumann is resolved, because we have a -

mtefpréténon'
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There clearly cannot be a complete formal system for. objectlve mathematxcs,
but it is not excluded that for mathematics in the subjective sense there’ might
be a finite procedure weldmg all of its evident axioms, Clearly, we could never
be certain that all of these axioms are correct; but if there were such a procedure,
then—at least as far as mathematics is concerned—the human mind would be
equivalent to a Turing machine, Furthermore, there would be simple. anthmet:c
problems that could not be decided by any mathematical proof intelligible to the
human mind. If, according to G&del (1951, 7), we call such a problem absolutely
undecidable we have established with full mathematical rigor that either mathe-
matics is inexhaustible i the sense that its evident axioms cannot be generated
by a finite prooedure or there are absolutely undecidable arithmetic problems.

This fact appears to ‘Gddel to be of “great- philosophical mﬁerest." That is
not surprising, as he explicates the first alternative in the following way: “..’; that
is to say, the human mind (¢éven within the realm of pure mathématics) mﬂmtcly
surpasses the powers of any finite machine.” The further philosophical conse-
quences Godel tries to draw are concerned with his Platonism, familiar from
some of his published writings. In 1933 Gédel already claimed that thc axioms
of set theory, “if interpreted as meaningful statements, necessarily presupposs
a kind of Platonism.” But at that time he added the relative clause “which
cannot satisfy any critical mind and which does not even produce thie conviction
that they are consistent”.(p. 7). I would go too far afield if . tried to present
the reasons why 1.do not find Gddel's general considerations (in the Gibbs
Lecture) convincing. My criticism would not start with. his Platonism for set
theory, but at the point where he contrasts the objects of finitist and istuitionistic
mathematics in his Dialectica paper. There he tried to draw an extremely sharp
distinction within constructive mathematics that seems to mé to be mistaken
(and to paralle] his equally: mistaken radical opposition of classical and con-
structive mathematics). According to Gédel (1958;:240), the specifically finitist
character of mathematical objects requires them’to be “finite space-time
configurations whosé nature is irrelevant except for equality and difference”
furthermore, in proofs of propositions concerning them, one uses only lpslghts
that derive from the combinatorial space-time properties of sign combinations
representing them,”® These remarks stand in conflict with Bernays® position, to
which Gaodel appealed in his Dialectica paper. Bernays stressed the uniform
character of thé generation of natural numbers, . the ‘local ‘structure 'of the
schematic “iteration figure,” and the need to “reflect on- the gencral ‘features
(allgemeine Charakterziige) of intuitive objects” (1930). Indeed, our under-
standing of natural numbers as being generated in such a uniform way allows
us to grasp laws concerning them, It seems to me that this observation'is correct
also for more general inductively generated classes, and it points tothe ﬁrst of
two crmcal aspects of mathematical experience I want to describe now. .

4.2, Accessibility and Concepuon |

If one takes senously the reformulation of the first alternat:vc in G&de! s an
Theorem, then one certainly should try to see ways in which the human mind
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ds” the limits of mechanical computors, Gddel (1972b) suggested that
'bé (humanly) effective but nonmechanical prowdures. But even the
ific of his proposals, Godel admitted, “would require a substantial
ur, understanding of the basic concepts of mathematics.” That
mposal oanecmed the extension of systems of axiomatic set theory by axioms

of extending what I call accessible domains is not special to thé case of set theory
(and Platomsm), rather, there are completely. analogous issues for. the theory
of primitive recursive functionals (and finitism) and for the theory of construc-
tive ordinals in the second number class (and intuitionism). This is the first of
the two aspects of mathematical experience on which I want to focus; both are
related to features of “mental procedures” Gédel discussed, but the:r interest
is quite independent of G8del’s speculations,

Accessible domains, constituted by inductively generated elements. are most
familiar from mathematics and logic. In proof theory, for example, inductively
defined higher constructive number classes have been used in consistency proofs

for impredicative subsystems of analysis. These and other classes provide special

cases in which generating procedures allow us to grasp the inttinsic buildup of
mathematical objects, Such an understanding is a fundamental source of our
knowledge of mathematical principles for the domains constituted by them; for
itis the case, I suppose, that the definition and proof principles for such domains
follow. dnrectly from. the comprehended buildup, A broad framework for the

*“inductive or- :u!e-govemed generation” of mathemat:cal objects is described -

by Aczel (1977); it is-indeed so general that it encompasses not only finitary

id. classes;higher number classes, and models of a variety of constructive

théories; but also segments of the cumulative hierarchy. It provides a uniform

framework in which the difficulties (in our understanding) of generating pro- -

cedures can-be compared and explicated. If we understand the set-theoretic
generation procedure for a segment of the cumulative hierarchy, then it isindeed
the case that the axioms of ZF~ (i.e., ZF without the postulate for the existence
of the first infinite ordinal), together with a suitable axiom of infinity, “force
themselves upon us as being true” in Godel's famous phrase; they s:mply
fomulate the pnncnpies underlymg the “construction” of the ob_)ects in this
segment.””

. The sketch of tlns quas:-constructwe aspect of mathemaucal expenenee is
extremely schematic and.yet, I think, helpful for further orientation, Recall that
for Dedekind consistency proofs were intended to ensure that axiomatically
characterized '.notions.(like that of a complete ordered field) were free from

“internal-contradictions.” Here we are dealing with abstract notions without
an mtended model”; constituted by inductively. generated elements.®® These
notions ate distilled from mathematical practice for the  purpose of comprehend-
ing complex.connections, of maklng analogies precise; and of obtaining a more
profound understanding. It is in this way that the axiomatic method teaches
us, as Bourbaki (1950) expressed it in Dedekind’s spirit,

to look for the deep-lying reasons for such a discovery [that two, or several,

quite distinct theories: lend-each other “unexpected support™], to find the

* of infinity, that is, extendmg segments of the comulative hxerarchy The problem

0ns aeilected thpough acsessible d
an be shown fo be consistent.v
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Appendix

This appendix uses some new documents to further elucidate significant
conceptual issucs and to support conjectural remarks pertaining to the impact
of (the proof of) Gddel's incompleteness theorems on Herbrand and Church.
Incidentally, both men got to know Gadel’s results throngh Johan von Neumann;
Herbrand in November 1930 in Berlin, Church about 4 year later in Princeton.
With respect to Herbrand 1 want to emphasize, as I did in section 2.2, that.he
was concerned with the notion of provably recursive function; as to. Church, 1.
want to stress that his belief in the correctness of his thesis hardly rested on
any pamcular “motivation” for l—deﬁuablhty, but ‘rathet on general facts
concerning the notion of “calculability in a logic” and on his Centra! Thesis.
In any event, there still is extremely interesting material to be uncovered and
evaluated; there also remains a great deal of important analytical work to be
done. Godel’s proof provided the séminal idea of representing number-theoretic
functions in a formal system; his results provided the stimulus for investigations
concerning their proper applicability and the precise extension of effectiveness.
How surprising his results were (for logicians) is sometimes no‘longer appreciated;
consider Herbrand's reaction, described in his letter of Deoember 3 1930 to
his fnend Claude Chcval!ey

‘Les math&manclens sont une bizarre chose; voici uné quinzaine de joirs qﬁe o
* chaque fois que je vois [von] Neumann nous causons d’un travail d'un certain
' Gdel, qui a fabriqué de bien curieuses fonctlons, et'tout cela détruit quelquee :
notions sohdement ancreés.

TI-ns sentence opens the letter, after having sketched Gﬁdel’s arguments and
reflected on the results Herbrand concludes it with: “ Excuse ce long début; mais
tout cela me poursuit et de l'écrire m'en exorcise un pen”

1, If, as I described if Sections 2.1 and 2.2, Gédel took off in'a generalmng
mood from Herbrand’s schema for the mtroducuon of "recurswe funeuans,

cffectively caleulable functlon, what did motivate Herbrand to formulate the

“schema? First recall ‘the: widely shared assumptions, namely: (1). the general

notion of recursive function was captured by Herbrand's -schema,’ and (2) the
schema emerged from Herbrand's general reflections on intuitionistic methods.
These assumptions are formulated, for example, by van Heuenoort (1971 283),
but also by Dawson (1991): ,

The functmns [characterized by the schema formulated in Herbrand (19316), o
W.S.] are, in fact, (general) recursive functions, and here is the first appesrance -
of the notion of recursive (as opposed to primitive recursive) function. It is
interesting to see how, a few months earlier, Herbrand had been !ed to this
notion by his conception of “intuitionism.”

For the earlier discussion van Heijenoort refers to Herbrand’s note (1931b),
and, with respect to Herbrand (1931d), he writes:
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consistency proof for a fragment of arithmetic still belongs to the
at preceded Godel's famous result (1931). He probably started to
4 paper before Gédel's paper reached him. But he had ample oppor-
y examine Gédel's result and he wrote a last section dealing with it.

mario is incorrect: The notes (1931b and c) and the paper (1931d)
written gfter Herbrand knew quite well about the incompleteness theo-
:This seems to be clear from internal evidence, but Herbrand's letter to
Chevalley-puts it beyond any doubt. In it Herbrand tells us (1) that it was
n Neumann from whom he learned of Gdel's theorems, and (2) that the
encounters with von Neumann took place in the second half of November 1930.
That new -information also puts into sharper focus the remark in Herbrand
(1931c, 279) that was submitted, according to the introduction by Goldfarb,
to Hadamar'd at the beginning of 1931

: Reocnt msults (not mine) show that we can hardly go any further: it has been
shown that the problem of cons:stency of a theory containing all of arithmetic
(for. example, classical analysis) is a problem whose solution is impossible,
{Herbrand is here alIudmg to Godel 1931.] In fact, I am at the present time
preparing an article in which I will explain the relationships between these

., Tesults and mine [this article is 1931d].?

Thus, it is Herbrand’s attempt to come to a thorough understanding of the
relationship between Gddel’s incompleteness theorems and his own work that
seems to have prompted the specific details in his letter to Gddel and his paper
(1931d). Indeed, I think that Herbrand’s proposal for the introduction of
functions is a natural generalization of the definition schemata for effectively
calculable fonctions known to him and that it emerges quite directly from his
way of proving consistency of (weak) systems of arithmetic already in his thesis.
In the note to Bernays that accompanied the copy of his letter to Gédel,
Herbrand contrasts his consistency proof with that of Ackermann:

In my arithmetic the axiom of complete induction is restricted, but one may use
a-variety of other functions than those that are defined by simple recursion: in
this direction, it scems to me, that my theorem goes a little farther than yours,®

This is h’ardly a deécnpnon of a class of functions that is deemed to be of funda-

mental mgmﬁcance! However, a detailed account of the evolution of Herbrand's -

schema; as well as the precise characterization of the provably total functions
of Herbrand's system of arithmetic (1931d), has to wait for another occasion.

2. Klecne (19872, 491) emphasized that the approach to effective calculability
‘through A-definability had “ qmte independent roots {motivations)” and would
have led Church to his main results “even if Gédel's paper (1931) had not
already appeared.” Perhaps Kleene is right, but I doubt it, The flurry of activity
surroundmg Church’s A Set of Postulates for the Foundation of Ifbglc (pubhshed
in 1932.and.1933) is hardly imaginable without knowledge of Gédel’s work, in
particular, not without the central notion of representability and, as Kleene
pointed out, the arithmetization of metamathematics. Since the fall of 1931 the
Princeton group of Church, Kleene, and Rosser knew of Gddel's theorems

"Neumann' Kleené (l987a. 491) reports that thmugh
e rest of us first learned of Gédel

23,1935, Chiirch clai tﬁi
allq}ys the representabili

presetft a‘given’ mtmtwely defined funcu on. of‘po"‘
-:"'vmtegers (lt is ‘requi that'the formula’shall'containno othcr sym
w4, variables,’ and pargntheses): The: tesulis of-Kieene are so° géneral s
- possibilities .of extending them :apparently: so ‘unlimited i that- ‘one:is}
~conjecture; that.a formula can be: found to, ropresent any particidar construc
of positive integers whatever. It is difficult to. prove.this
1.to state it acqura}ely, becausc of the: d;ﬂ‘;pulty
eant' by constmctwely t eﬁned." A vague ﬁﬁnptign
2 funcnon is u

can be ngen byl, 'ymg
~‘can‘be given'by whid
positive integer wha
an order, is con'
recursive. <

One. and_g alf years sent Bernays a, ,opy of a letter he had written
on June 8,.1937, to the Pohsh _\oglcxan Jozef Pep1s Pepis earher_had informed
Church about hxs project of constructmg a numencal function that i effectively
calculable, but not general recursive. In his response, Church confessed himself
to be Yextremely. skeptical—although this attitude: is .of course subject: to'the
reservation: that I.may ) :induced. to charige my opinion after: seei g your
work.”? Church:stated his impression-that Pepis might “not fully: apprecxate the
consequences which would follow from the construction of afi effectively ‘calou-
lable non-recursive functlon" and went on'to' formulate such co Ces—
giving a most- sogﬂﬂc ated defense’ of Church’s Thesis by 4 argy
makes implicit use’ of'a conoept close to Godel’s notion of absolutent

*. For instance; I thmk we may-assume that we are agreed that ;f @ numierical
function f is effectively:caleulable then for every:positive integer‘a there; must be :
a positive integer.b such that a valid proof can beigiven of the proposition §(a) = b -
(atleast if'we are not. agreed on this then our ideas of effective calculablhty are sa A
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- been proposed (&g, allowing transfinite types),
-Zermiclo titheory, or indeed any system of syrhbol
? wledge:has éver been proposéd: =i 2

Eéu@ SR LTI et i
Becau etamathematical facts and the assumad’;

effective calculability, Church contludes that'to discover
nonrecursive function * wouldHimply:discdveryof it ew p
logic;; not:only:never- béfore-forniniated’ bt never’ Betore aktiaily’
mathérnatical- proof+sinde. all éxtar R

system-of ' Printipia- or at léa
final fitie of efetis'fs what I

e 1t

srod MOrEOVeR, this now Birifiiple of 1ogie

ably- complicated, a kind that its metamathematica ex
; nd HICE

infeferice s [sio!] not gerieral Fecitsive (for this'reab6i if Saéh proposal
new pririciple of 1ogic were evér dctually made, I shivuld bé ahed 65 sotutis

the alleged effective applicability of the principle with cons
AL e ;{-%:J E‘Ll ‘-_.E= A
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L. From Wittgenstein (1980), section 1096, I first tead this remark in Shanker
(1987), where it is described as a “mystifying reference to Turing machines™ - - .-

2. The speculation is taken up briefly in the last section of this chapter and, in
detail, in my paper with Tamburrini, “Does Turing’s Thesis Matter?” - . -

3. But see Tamburrini (1988), and the critical survey of the literature given there,
The present paper is part of a book project Tamburrini and I'bave besn pursuing for
a number of years. A detailed review of the classical arguments is in-Kleéne (1954),
sections 62, 63, and 70; sectioni 6.4 of Shoenfield {1967) also contains a careful discussion
of Church’s Thesis; and, finally, the first chapter of Odifreddi (1989) provides a broad
perspective for the whole discussion, _ B L T B

4. Mendelson (1990} intends “to renounce the standard views concerning the nature
of Church’s thesis™ and concludes that the thesis is true on account of “Turing’s analysis

- of the essential elements involved in computation™ (p. 233), Very standardly, however,

he emphasizes (1) that the “independently proposed™ explications of Chugch, Post, and
Turing are “quite different” and (2) that Turing used his machines. directly as
mathematical models “to capture the essence of computability,” (The real target of)
Turing's analysis and the source of the restrictive, “normalizing assumptions” for Turing
machine computations are not mentioned at all; see section 32 . ey
3. Turing (1939); see the reprint in Davis (1965, 160). I want to warn the reader
against misinterpretations of Turing's Thesis by “mechanists™—as in Webb (1980, 9),
where it is claimed that it s a very strong thesis indeed, “for it says that any effective
procedure whatever, using whatever ‘higher cognitive processes® you like, is.after all
mechanizable"—but also agaiiist the misunderstaniding of the thesis and an emphasis-
on absolutely misleading issues by “anti-mechanists"—as in Searle (1990); in particular .
Pp. 24-28. On p. 26, for example, Searle claims that the standard definition of “digital
computer”, which he traces back to Turing, séems to imply: “For any cbject there is some ..
description of that object such that under that description the object is.a digital
computer,” . o ettt iy
" 6. Here and in section 4.2 1 draw on my paper (1990a) ':inaii'éfer‘tp it for. additional

and relevant details. For 4 comprehensive discussion of Leibniz's views, sco Sprit and
Tamburrini (1991); Krimer (1988) traces the historical development of caleuli in a very
informative way, Note that I focus Here on the—for my. purposes—most: relevant
background and do'not disciss, for example, Babbage's (theoretical) work; for that sec
Gandy (1988). .= .00 . B T
7. There is much mathematical work, partly related to proof theory, that started
with Weyl’s “Das Kontinuum” and early lectures of Hilbert's presented in the second
volume of Grundlagen der Mdthematik. During the last decade important and most
relevant work was done in “reverse mathematics™ see my review (1990b). ., O
8. Van Heijenoort (1967, 101), T
"9, P.237. But he was careful to emphasize (in other writings) that all of thinking
“can never be catried out by a machine or be replaced by a purely mechanical activity,”
Frege (1969, 39). He went oni to claim: “Wohl 18t sich der Syllogismus in"die Form
einer Rechnung bringen, dic freilich auch nicht ohne Denken .vollzogen . werden kann,
aber doch durch die wenigen festen und anschaulichen Formen, in denen sie gich bewegt,
eine grosse Sicherheit gowshrt® . et e e I b
10. He added parenthetically: “This has the consequence that there gan never be
any doubt [as] to what cases the rules of inferonce apply, and thus the highest possible
degree of exactness is obtained.” i T a R S
11. Another significant influence was the sharpening of the “hypothetico-deductive
method”™ within mathematics; a sharpening that brought about a separation of syntax
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tics for mathematical theorics. This separation was clear to Dedekind, for
Wiener’s talk at the meeting of the Deutsche Mathematiker Vereinigung in

w:f’ully and lmpmsed Hxlbert strongly. For this development compare Guillaume
(1985, 766-TTD).
: 12. Cleasly,an adequate representation of content was taken for granted. Cf. Kreisel
(1968) for the following discussion.

13. I assume that Herbrand had in mind Dirichlet's theorem meditioried previously.
See also Herbrand (1930, 187), where he hopes that his approach will allow the
elimination of “transcendental methods™ from proofs of arithmetic theorems.

14. Support for this claim is given in Sieg (1990a, 271-272), The “mediating” role
of the program was not only described by the immediate members of the Gattingen
school, but also, for example, by Herbrand; see Herbrand (1971, 211-212).

15. These ‘connections are elaborated in Sicg (1984); as to the lively interest in

Kronecker’s ideas in Germany in the twenties, sce Pasch (1918) and Kneser (1925).
When describing the central features of “intuitionist” mathematics, for example in 1931a
and ¢, Herbrand emphasrzed exactiy Kronecker's points; see Herbrand (1971, 273, and
footnote 5, 288-289). '

16. I will come back to these remarks in section 4.2,

17. That is expressed in the Nachtrag to Bernays (1930), reprinted in Bemays {1976,
61). In & letter to Godel, written on September 7, 1942, Bernays emphasized that the
methodological points of the above character do not correspond to -a “strict formalist
standpoint”; he continued: “, vaber ginen solchen habe ich niemals eingenommen,
insbesondere habe ich mich in' meinem (Sommer 1930 geschriebenen) Aufsatz *Die
Philosophie der Mathematik und die Hilbertsche Beweistheorie’ deutlich davon distanz-
iert, und noch mehr dann in dem (Ihnen wohl bekannten) Vortrag ‘Sur le platonisme
dans les mathématiques”™ ~

18. Herbrand (1930a, 188); the same point is made in (1930b, 214).

- 19. Herbrand thought that this assumption was not restrictive: “And in general,”
he wrote (1930b, 213), “we can contrive so as to make all usual mathematical argu-
ments-in theories that have only a determinate finite number of hypotheses, Thus we
can see the importance of this problem, whose solution would allow us to decide with
certainty withregard to the truth of a proposition in a determinate theory

20, In Gandy (1988, 64—65), one finds the remark that this idea of requiring bounds
turns up-over and over “like a bad penny™; but in the context of the issues Herbrand
and others were working on it is a most natural constructivity requirement, However,
and here 1 ; agree with Gandy, in'd ‘general theory of computability there is no good
reason fo “mix together constructive and nonconstructive notions of existence.” This
point will come up again in the discussion of Gédel’s notion of genera! recurswe function
that was based, as Godel put it, on a suggestion of Herbrand,

21, Ldwenheim’s work o the decision problem was done in the Boole-Schrdder
tradition of algebraic logic. He had established results that could be used to obtain

(partial) answers to the decision problem also for Frege's Begriffsschrift; namely, he

solved the problem for monadic predicate logic and reduced that for fuil predlcate logic
to the fragmént with just binary predicates. Independently,’ Behmamf °(1922) proved
these results directly for a system of symbohc logic building on the work of Frege, and
Whitchead and Russell. -© < >

22, Herbrand (1930a, 176), compare also Herbrand {1929b, 42).

23. That was already explicit in Ldwenheim (1915); see van Heijenoort (1967, 246).
CI. also Herbrand (1930b, 207), where Herbrand speaks of an “experimental certainty”

succinctly summarized in his Wiener (1891), made this methodological point very

of computablllt)} (ii?tic‘.-:l,Ly[ggk s
his discussi of D?ophgntme
Tenth Probjem and, otl

”M(I%'i‘l, 1934)\;I'h&t naturally connectab Hi
ematical problems requiring -decision; progedures,hke‘
groups; see Gandy, (1988, 60-61)... - ; 27::See footnote
!g%ﬁ. 29 ,,Posts;proposal is d fs,eg ‘sect;
major dlﬂ‘erence w:th Turing’s. i

i:lenis

pre X
of Post (1936), repnnted"
3.1, where I also describé't}

28. In sectloq9 of i
in sections 11~13."
29. Tait (!9811argu'
and is cia:med t

30. Godel (1934), reprinted in Davis (1965“ 51y

31, _Gode_l added for, thqagublxcauon of the leoture notes- in- Davmr(lgmshm,,
statemeh is now ogtdgte, ;. 968 ? i f

! 1. Davig A 57 #5 1?‘{? B -
32,'As to'the background. for Herbrand’s proposal see sectxon 22, Kgl‘g;qr (1955) -1
pointed out that the class of functions satlsfymg such functional equatxons is stnctly '
greater than the class of (general) recursive functions.

33, In a letter to van Heijenoort of April 23, 1963, excerpted in the mtroductory
note to Herbrand (1931d); see Herbrand (1971, 283). (Gédel refers to his 1934 lectures.)
The background for, and oontent ol‘ the Herbrand—Godel correcpondenoe is descnbed
in Dawson (1991). ..., .05 lniae : - -

{

We
in co;:respondenoe w:th hvaqueuenooxt, partlaliy contamed in-van. Heijenoort: (1971
and in footnote 34 of Gédel (1934); that npte was expanded in'1964, An carllerdlscuss:o
of this xssﬁe 'foond i Biict
26, 1957
36. Herbrand co d cred; the As
asserts—without, gwmg ‘2. hmt ol an -argument, why . (b) is. sat:sﬁed——th

mtroduced accordmg to the F Ve, §ch,ema;; cfn, 37, :

Ky 'I‘hls holds in te o t_l}e explwtt (but.in thxs case; deﬁmtely faIse)
Ackermann’ nctlon is
this confusmg state o{ affajrs

conjecture m Apul and t_d

atit
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steps guarantees the recursive enumerability of the generated set, Cf. Kleene's discussion
of Church’s argument in (1954, 322-323), To see how pervasive thig kind of argument is,
compare note 39 and part 2 of Appendix. o e
50. As to the former, compare Godel (1986, 170 and 176); as 1o the latter, see Davis
(1965, 58), e
51. There is no indication of an argument for the absoluteness of computability; 1
can think only of proofs of the Normal Form Theorem type. Also, Gade] did not
compare the class of computable functions with other classes of fanctions, except for
remarking that, “In particular, all recursively defined functions, for example, are already
- computable in classical arithmetic, that is, the system §,.” But here, ¥ assume, he used - ;

truth Gould not be formalized |
be carried o6t in 'Z. Without wit
next letter  to- Gadel of May 3,
unformalizability, of certain. typéso def 1 Z, th
,and that of the ‘Ackermann faniction being among thém. (AsS the

Bernays-is still not right: it cannot be introd

induction for ZJ formulas, but in the fragment ictios ltcan be introduced.) “recursive™ either ini the sense of “primitive recursive” or “recutsive of arbitrarily high
38. In a letter to van Heijenoort qf‘szgy_st 14, 1964; se¢ van Heijenoort (19853, order,” but not “general recursive.” The concept of recursion of arbitrarily high order
1s-116) - - o R T e e

B is used in GEdel (1936b), & roview of Church (1935a), in the context of A-definability,
at the question raised in 52. The content of Godel's note was presented in a talk on June 19, 1935, Ses Davis

39. In the postscriptum, Davis (1965. 73), Gadel“algsérf”s‘“ n raised in
el recirsiveness ag giveii in ° " (1982, 15, footnote 17) and Dawson (1986, 39).

footnote 3 6f'thé lecitires can be“aniswered affirmatively™

section 9, “which is equivalent with general recursiveness as définéd today.* As'to the ~ 33. “Remark printed on p. 83" of Davis (1965) refers to the remark concerning

contemporiry defifiition, he séemis'to, point to HETCursivendssl Bili T'do not uriderstand’ absoluteness that Gadel added in proof to the original German publication.; -

how that definition could have conviriced Gdel th ““all Boksible” YestirSions™ are ) 54, Church's remark about the “necessity of proving preliminary theorems® can

cap‘tili‘éd;z,ﬁél“‘dﬁ?l’ﬁﬁaerstaﬁd”hbv?fthdﬁ Notmal Forrii Thetteni . ‘a8’ Divig (1981 11y be casily clarified: in my description of his argument for the recursiveness of tha function

indicates-~could do so without ‘assiriiifiy “Sonic Viriio CHiifoh'§" Ceiitral Thesis, i F that is caleulable in a Iogic T glossed over the very last step; to take it, Church refors

Indé‘ea;ffﬁuéﬁé‘ﬁ‘f&iﬁﬁémsfse'em-iiaffﬁe‘ieméially'-"‘:’&1 ‘HEquitS A Kppeat'to ‘that' thésis 'and" ‘ to an earlier theorem (IV) in his paper, asserting that the class of recursive functions s

are, esséntially, reformulations df-Cl'iﬁi?ch'"fﬁréuri‘rént’ﬁiiififiédfiﬁiiﬁi‘félio"bﬁnﬁiféx‘tf‘-That closed under the g-operator—in the “normal case” L R

holds also for Yhe-appeal to thEtebursion thesred 1 (1954352),Wikizh Kleene ‘argues - : 55. As to the crucial points of difference, see Kieene's discussion in (1954, 361),

that “Our methods ., are now developed to the'p it wher't see"rﬁg'ra(de”ﬁﬁﬁe for | where it is also stated that this treatment “is closer in some respects to Post 1936>

handlini 'y electivé definition fa arietion w }sréposed" Ao 56. In Feferman (1991, 1-2) the case is made “for the pﬁmﬂry"sisniﬁcunce for ‘
40). ! i 4 Jed b practice of the various notions of relative (rather than absolute) computability,.,.” i

(1982, 9)

i Indeed, Feferman argues later (p. 25) that “notions of relative computability have a
much greater significance for practice than those of absolute computability.” The teason
given is that the organizatior and control of computational devices have to be structured
; ction ‘ into “conceptual levels and at each level into interconnected components.” Although ¥ can
of the proposition: that 2 is choses toindicate “trirth s, as & h remarked, dccidental P hardly disagree with that remark, it is heeded in the theory of absolute computability and,
and nonessential, e i e ) : : i TOCESS ¢ i
437 Church{19362; footnote 3), feprinted in Davis

#, Tbid, 100 Lo
argumétit pertaining i
Chuch'grappled with the

representability in
T il

41 As o the Siofuton of i Golpi'or
of the thesis, 5ot Appendix, i - - B
42, Church (1936a), reprinted in Davis (1965, 89-90).1i th'e'c;xagacteriéh S function

57. Post (1936), reprinted in Davis (1965, 289). Post remarks that the infinite
sequence of boxes can be replaced by a potentially infinite one, expanding the finite
sequence as necessary. o L s

8. The emphasis is mine, To clarify some of the difficultics here, one has to consider

¥lagn

other papers of Post’s. A good starting point might be the discussion in Davis (1982,
21~22) and Post’s remarks on finite méthods in Davis (1965, 426428

39, Post (1936), reprintéd in Davis (1965, 291), L o

60. This is from Kleans (1988, 34). In Gandy (1985, 98), ‘one finds the pertinent /

47 Compare footnote 20 in Day:
case where the reltion of irmisdiate vo

ure, equivalent !

48, The rori dfromifoo
(1965, 101); by replacing “ar i
letter to Jozef Pepis' quoted in p

and correct remark on Post’s 1936 paper: “Post does not analyze nor justify his
formulation, nor does he indicate any chain of ideas leading to it,” In his feview of that ,
paper Church is also quite critical, But compare the second part of nots 58, - /

61. My eniphasis. This justification is discussed in section 33. o
62. 1 am following the useful convention of Gandy's whereby a human carrying

out a computation is a computor, whereas computer refers to some machine or other, In .l

take the un Iying

49Tt is, most nhatural and. ge ,to take the o ’ fing prooedures ‘ the Oxford English Dictionary the meaning of “mechanical” as applied t0 g person is [
dirtctly as finitary inductive definiions, That s Post’s approach via his prodiiction given by: “resembling (inanimate) machines or their operations; acting or performed |
i

systems; using Church's Central Thesis to fix the restrictéd’; haracter of the generating ~  without the exercise of thought or volition; ,, "




sinted in Davis (1965, 135).
£ a computor operating in a two-dimensional computing space
forthooming); such & computor satisfies appropriately generalized
“can be shown that his computations can be carried out by
mputor. So this step is indeed without theoretical consequence. This
sianificantly more general character than the investigations of generalized
ines in Kleene (1934). _ L
‘Davis (1965, 135) a very similar reason is given for testricting the number
+f mind.- My account here is not a pure reconstrilctiof, but joins Turing’s
f ons for restricting the number of symbols and states of mind with the (later)
o on immediate recognizability.
" ¢6. Turing relates state of mind to memory in section 1, p. 117, for his machines:
‘By altering its m-configuration [ic, its state of mind] the machine can effectively
.emember some of the symbols which it has ‘seen’ (scanned) previously.” This point is
\lso emphasized by Kleene (1988, 22): “A person computing is not constrained to
working from just what he sees on the square he is momentarily observing. He can
-emember information he previously read from other squares. This memory consists in
1 state of mind, his mind being in a different state at a given moment of time depending
on what he remembers from before.”

67. Turing actually argues that the changed squares must satisfy similar conditions
as the observed squares and, for that reason, can be taken as being among them; in
addition, the changes can be carried out one square at a time.

68. This last condition is specific for a “linear™ computor; in general, one would
have to require that there is a fixed finite number of configurations that can serve as
“paths” from one observed symbolic configuration to the next. (CL. n. 64.)

69, Turing (1936), reprinted in Davis (1965, 137).

70. Ibid,, 138, ‘ ‘

71. Church, in the letter to Kleenc of November 29, 1935, quoted in Davis (1982, 9).

72. Postscriptum to Gédel (1934), reprinted in Davis (1965, 72). CL also Turing's
remark in which formal systems are characterized as “mechanical” ones: Turing (1939),
reprinted in Davis (1965, 194).

73, Turing (1936), reprinted in Davis (1965, 139).

74, 1t should be possible to present counterexamples that would show—as those
in Gandy (1980)—that weakening of the conditions (1.1)-(2.2) leads to “omniscient
computors” :

75. Turing (1936), reprinted in Davis (1965, 135),

76. Post {1944), reprinted in Davis (1965, 310). See also footnote 1 of Post (1965).

77. Compare Webb (1990) for a detailed discussion that in my view is mistaken—
mainly because Webb accepts the premise of Godel's argument; that premise is clearly
congenial to Webb’s understanding of Turing’s Thesis. (For the latter, sce my note 5)

78, It is informative to compare this statement of Gddel's with the (incorrect)
translation on p. 241 and, most significantly, with the corresponding remark in Godel
(1972a, 273). In the latter, Gddel in effect added “from a refiection upon” to “insights
that derive” in this remark. =~ o

79. Thens isa rich literature dealing with the “iterative conception of set,” including
papers by Parsons and Wang; this literature cannot be discussed here, For references
to it, sce the second edition of Philosophy of Mathematics, editéd by P.’ Benacerraf and
H. Putnam and published by Cambridge University Press in 1983, and also Parsons
(19%0). ' .
80, The categoricity of the second-order theory of complete ordered fields does not
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