Recitation Notes
Spring 16, 21-241: Matrices and Linear Transformations
March 22, 2016

Abstract

1 Administrative Matters
2 Definitions / Notation
 1. Dimension
 2. Rank
3 Problems
 1. Let
 \[
 A = \begin{bmatrix}
 1 & 1 & 0 & 1 \\
 0 & 1 & -1 & 1 \\
 0 & 1 & -1 & -1 \\
 \end{bmatrix}
 \]
 (a) David Poole \textit{Linear Algebra: a modern introduction} (4th Ed.) Ex 3.5.17. Give a basis for \(\mathcal{R}(A) \) and \(\mathcal{C}(A) \).
 (b) David Poole \textit{Linear Algebra: a modern introduction} (4th Ed.) Ex 3.5.23. Find bases for \(\mathcal{R}(A) \) and \(\mathcal{C}(A) \) using \(A^T \) this time.

 \[
 \begin{bmatrix}
 1 & 1 & 0 & 1 \\
 0 & 1 & -1 & 1 \\
 0 & 1 & -1 & -1 \\
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 0 & 1 \\
 0 & 1 & -1 & 1 \\
 0 & 0 & 0 & -2 \\
 \end{bmatrix}
 \]
 Thus
 \[
 \mathcal{R}(A) \text{ has basis } \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} \right\}
 \]
where we simply read off the nonzero rows of the reduced matrix. Also,

$$C(A) \text{ has basis } \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\}$$

where we find the columns in A corresponding to the pivot columns in the reduced matrix.

(b) We shall row reduce A^T:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \xrightarrow{R_4 \rightarrow R_4 - R_1, R_2 \rightarrow R_2 + R_3} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_2 \rightarrow R_2 - R_1, R_4 \rightarrow R_4 + R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -2 \end{bmatrix} \xrightarrow{\text{some row swaps}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus we read off the rows to get a basis of

$$\mathcal{R}(A^T) = C(A) \text{ to be } \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} \right\},$$

and the columns in A^T corresponding to the pivot columns in the reduced matrix form a basis for

$$C(A^T) = \mathcal{R}(A) \text{ to be } \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \right\}.$$

Note: Although the basis derived in parts (a) and (b) are different, they span the same space.

2. David Poole *Linear Algebra: a modern introduction* (4th Ed.) Ex 3.5.33. Prove that if R is a matrix in echelon form, then a basis for $\mathcal{R}(A)$ consists of the nonzero rows of R.

Solution. Let r_1, \ldots, r_k be the nonzero rows of R starting from the 1st row to the k-th row.

Step 1: We want to show that

$$\mathcal{R}(R) = \text{span}\{r_1, \ldots, r_k\}$$
For any vector \(v \in \mathcal{R}(R) \), we may write
\[
v = c_1 r_1 + c_2 r_2 + \cdots + c_k r_k + c_{k+1} 0 + \cdots + c_m 0.
\]
Then
\[
v = c_1 r_1 + c_2 r_2 + \cdots + c_k r_k,
\]
so
\[v \in \text{span}\{r_1, \ldots, r_k\}.
\]
Thus
\[
\mathcal{R}(R) \subseteq \text{span}\{r_1, \ldots, r_k\}.
\]
But trivially,
\[
\text{span}\{r_1, \ldots, r_k\} \subseteq \text{span}\{r_1, \ldots, r_k, 0, \ldots, 0\} = \mathcal{R}(R),
\]
so
\[
\text{span}\{r_1, \ldots, r_k\} = \mathcal{R}(R).
\]

Step 2: We want to show that \(r_1, \ldots, r_k \) are linearly independent. Suppose otherwise, then we can write
\[
c_1 r_{i_1} + \cdots + c_\ell r_{i_\ell} = 0
\]
where \(c_1, \ldots, c_\ell \neq 0 \) and \(\{r_{ij}\}_{1 \leq j \leq \ell} \subseteq \{r_j\}_{1 \leq j \leq k} \). Let the leading entry of row \(r_{i_1} \) be in the \(j \)-th column. Then
\[
c_1 r_{i_1,j} + \cdots + c_\ell r_{i_\ell,j} = 0
\]
where we look only at the \(j \)-th column. However, since all entries below the pivot entry are 0, we just have
\[
c_1 r_{i_1,j} + 0 + \cdots + 0 = 0,
\]
which is a contradiction since \(c_1 \neq 0 \) and \(r_{i_1,j} \neq 0 \). Thus it must be that \(r_1, \ldots, r_k \) are linearly independent.

From Steps 1 and 2, we have proven that the nonzero rows of \(R \) form a basis for the row space.

3. David Poole *Linear Algebra: a modern introduction* (4th Ed.) Ex 3.5.59a. Prove that \(\text{rank}(AB) \leq \text{rank}(B) \).

Solution. Let \(v_1, \ldots, v_n \) be the rows of \(B \). We shall show that the row space of \(AB \) is a subspace of the rowspace of \(B \).

\[
AB = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}, \quad B = \begin{bmatrix} a_1^T B \\ \vdots \\ a_m^T B \end{bmatrix}
\]
Now observe that in the i-th row,

$$a_i^T B = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_1^T \\ \vdots \\ b_n^T \end{bmatrix} = a_{i1}b_1^T + \cdots + a_{in}b_n^T$$

Since every vector in $\mathcal{R}(AB)$ is a linear combination of the rows of AB, which in turn are linear combinations of the rows of B, we conclude that $\mathcal{R}(AB)$ is a linear combination of the rows of B. (Rigorous proof in previous recitation.) Thus for every $v \in \mathcal{R}(AB)$,

$$v \in \text{span}(b_1, \ldots, b_n) = \mathcal{R}(B).$$

Thus

$$\mathcal{R}(AB) \leq \mathcal{R}(B).$$

Let B be a basis for $\mathcal{R}(AB)$ and let $\text{rank}(AB) = k$. Then B is a linearly independent set in $\mathcal{R}(B)$. Thus any basis for $\mathcal{R}(B)$ must have $\geq k$ vectors. Thus $\text{rank}(B) \geq k$.

$$\therefore \text{rank}(AB) \leq \text{rank}(B).$$

4. David Poole *Linear Algebra: a modern introduction* (4th Ed.) Ex 3.5.64. Prove that, for $m \times n$ matrices A and B,

$$\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B).$$

Solution. Let $k := \text{rank}(A)$ and $\ell := \text{rank}(B)$. Let $\{v_1, \ldots, v_k\}$ be a basis for $\mathcal{R}(A)$ and $\{u_1, \ldots, u_\ell\}$ be a basis for $\mathcal{R}(B)$. We shall show that

$$\mathcal{R}(A + B) \leq \text{span}\{v_1, \ldots, v_k, u_1, \ldots, u_\ell\}.$$

Consider specifically row i. We may write

$$a_i = \sum_{\alpha=1}^{k} c_\alpha v_\alpha \text{ and } b_i = \sum_{\beta=1}^{\ell} d_\beta u_\beta.$$

Thus we may write the i-th row of $A + B$ as

$$a_i + b_i = \sum_{\alpha=1}^{k} c_\alpha v_\alpha + \sum_{\beta=1}^{\ell} d_\beta u_\beta.$$

Now since every row of $A + B$ can be written as a linear combination of $v_1, \ldots, v_k, u_1, \ldots, u_\ell$, thus every linear combination of the rows of $A + B$ can be written as a linear combination of $v_1, \ldots, v_k, u_1, \ldots, u_\ell$ (Rigorous proof in previous recitation.) Thus

$$\mathcal{R}(A + B) \leq \text{span}\{v_1, \ldots, v_k, u_1, \ldots, u_\ell\} \Rightarrow \text{rank}(A + B) \leq k + \ell.$$

$$\therefore \text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B).$$
4 Additional Notes

1. To prove that $\dim V \leq \dim U$ where U and V are vector spaces, you need to show that the number of vectors in a basis of V is less than or equal the number of vectors in a basis of U.

2. The column space of matrix A consists of all vectors of the form Ax, whereas the row space of A consists of all vectors of the form y^TA.

5 Exercises

1. (a) Let v_1, \ldots, v_n be linearly independent vectors. Find a counterexample to the following statement:

 Then we can express v_1 as a linear combination of the other vectors v_2, \ldots, v_n, i.e.

 $$v_1 = c_2v_2 + \cdots + c_nv_n.$$

 (b) Why is this exercise important?