Homework 9

1. Let $P : \textbf{Set} \to \textbf{Set}$ be the functor which sends each set A to its powerset $P(A)$, and each function $f : A \to B$ to the function $P(f) : P(A) \to P(B)$ defined by $P(f)(U) = \{ f(a) | a \in U \}$ for $U \subseteq A$. Show that the functions $\eta_A : A \to P(A), \ a \mapsto \{a\}$ define a natural transformation $1_{\textbf{Set}} \to P$.

2. Let A be an object in a cartesian closed category \mathbb{C}. Let $P_A : \mathbb{C} \to \mathbb{C}$ be the ‘product with A’ functor with object part $B \mapsto B \times A$, and let $E_A : \mathbb{C} \to \mathbb{C}$ be the ‘exponentiation by A’ functor, with object part $B \mapsto B^A$.

 (a) Show that the evaluation maps $\varepsilon_B : B^A \times A \to B$ define a natural transformation $\varepsilon : P_A \circ E_A \to 1_{\mathbb{C}}$.

 (b) Define a natural transformation $\eta : 1_{\mathbb{C}} \to E_A \circ P_A$.

3. Given three objects A, B, C of a cartesian closed category \mathbb{C}, we can define an ‘internal composition’ map

 $$m : C^B \times B^A \to C^A$$

 as exponential transpose of the composite map

 $$C^B \times B^A \times A \xrightarrow{\text{CB} \times \varepsilon} C^B \times B \xrightarrow{\varepsilon} C.$$

 In the case where C is \textbf{Cat} and A, B, C are small categories, we obtain a functor of type

 $$\text{Fun}(B, C) \times \text{Fun}(A, B) \to \text{Fun}(A, C),$$

 with object part $(G, F) \mapsto G \circ F$. Give an explicit description of the morphism part of this functor.
4. (*) Show that for any category C, the natural transformations
\[\eta : \text{id}_C \to \text{id}_C \]
from the identity functor to itself form a *commutative* monoid under composition.
What is this monoid in the case of the categories Sets, Rel, and CMon? In the last case you can just guess, no proof required.

5. Given an object C of a locally small category C we we have seen the functors
\[\text{hom}(C, -) : C \to \text{Set} \quad \text{and} \quad \text{hom}(-, C) : C^{\text{op}} \to \text{Set} \]
called *hom-functors* or *representable functors*. More generally, a functor $F : C \to \text{Set}$ or $G : C^{\text{op}} \to \text{Set}$ is called representable, if it is *isomorphic* to one of the form $\text{hom}(C, -)$ or $\text{hom}(-, C)$, respectively, for some C.

(a) Show that the functor $U : \text{Cat} \to \text{Set}$ which sends each small category to its set of objects is representable.
(b) Show that the functor $U : \text{Mon} \to \text{Set}$ which sends each monoid to its underlying set is representable.
(c) Show that the functor P from exercise 1 is *not* representable.