Homework 10

1. Given categories \(C, D \) and an adjunction between \(C \) and \(D \), consisting of functors \(F : C \to D \) and \(U : D \to C \) and a family of bijections

\[
\varphi_{A,B} : \text{hom}(FA, B) \cong \text{hom}(A, UB)
\]

natural in \(A \in \text{obj}(C) \) and \(B \in \text{obj}(D) \), show that the morphisms

\[
\varepsilon_B = \varphi_{U_B,B}^{-1}(1_{UB}) : FUB \to B \quad \text{for } B \in \text{obj}(D)
\]

constitute a natural transformation \(\varepsilon : F \circ U \to 1_D \).

2. To every small category \(C \) we can associate a preorder \(P(C) \) whose elements are the objects of \(C \), with \(A \leq B \) iff there exists a morphism from \(A \) to \(B \) in \(C \). Show that the inclusion functor \(J : \text{Preord} \to \text{Cat} \) has a left adjoint which maps every category \(C \) to \(P(C) \). Describe the unit and counit of this adjunction.

3. Let \(U : \text{SGph} \to \text{Set} \) be the forgetful functor from simple graphs.

 (a) Does \(U \) have a left adjoint? (Hint: look at the old homeworks.)
 (b) Does \(U \) have a right adjoint?

4. The category of elements \(\int F \) of a presheaf \(F : C^{\text{op}} \to \text{Sets} \) on a locally small category \(C \) has as objects pairs \((C, x)\) with \(C \in C \) and \(x \in F(C) \), and morphisms \(f : (C, x) \to (D, y) \) are morphisms \(f : C \to D \) in \(C \) satisfying \(F(f)(y) = x \). Composition and identities are inherited from \(C \). Show that \(F \) is representable if and only if \(\int F \) has a terminal object.

5. (*) Given a functor \(F : C \to D \) where \(C \) is small and \(D \) is locally small, the nerve functor \(N_F : D \to \hat{C} \) maps each object \(D \in D \) to the presheaf

\[
\text{hom}_D(F(-), D) : C^{\text{op}} \to \text{Sets}
\]

 (a) Complete the definition of \(N_F \) by giving its morphism part.
A functor \(F : \mathbb{C} \to \mathbb{D} \) is called \emph{dense}, if its nerve \(N_F \) is full and faithful. A subcategory \(\mathbb{C} \subseteq \mathbb{D} \) is called dense, if the nerve \(N_I \) of the canonical inclusion functor \(I : \mathbb{C} \hookrightarrow \mathbb{D} \) is full and faithful.

(b) Let \(\Delta_0 \) be the full subcategory of \emph{Preord} containing only the terminal preorder \(\{0\} \), and let \(\Delta_1 \) be the full subcategory of \emph{Preord} containing the terminal preorder \(\{0\} \) and the two-element preorder \(\{0 \leq 1\} \). Show that \(\Delta_0 \) is not dense in \emph{Preord}, but \(\Delta_1 \) is.

(c) Since every preorder is a category, \(\Delta_1 \) can also be regarded as a full subcategory of \emph{Cat}. Show that \(\Delta_1 \) is not dense in \emph{Cat}.

(d) (Optional) \(\Delta_2 \) is the full subcategory of \emph{Cat} containing besides the objects of \(\Delta_1 \) also the preorder \(\{0 \leq 1 \leq 2\} \). Show that \(\Delta_2 \) is dense in \emph{Cat}.