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Objective

• Quantify the ammonia emissions from one of the major
potential carbon capturing processes, amine scrubbing.

• Evaluate the implications for air quality, focusing on the
impact on PM2.5.

1. Background

• Carbon Capture and Storage (CCS) is a potential strategy for
reducing CO2 emissions at coal power plants.

• Amine scrubbing is one of the most proven CCS technologies
currently available [1].

• The major potential environmental concerns of amine
scrubbing are spent solvent, amine and NH3 emissions [2].

• An aggressive deployment of amine scrubbing may increase
NH3, a PM2.5 precursor, in the atmosphere.

2. NH3 emissions and CCS in 2050
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Figure 1: Amine loss
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Figure 2: US CCS deployment potential in 2050

• US NH3 emissions from CCS in 2050
= (NH3 Emissions Factor) × (CO2 captured by CCS)
= 0.43 Tg N/year in the Eastern US

3. Scenarios
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Figure 3: January emissions assumptions of three scenarios
•Current: represents current emissions as of 2001-2002.
•No-CCS 2050: Current and future air quality regulations
reduce 80% of SO2, 50% of NOx, and 30% of NH3.

•CCS 2050: In addition, coal power plants with amine
scrubbing CCS capture 2.0Gt CO2/year.

4. PM2.5 and Ammonia

• PM2.5, particulate matter having a diameter of 2.5 μm or less, is
known to pose the greatest human health risks.

• NH3 reacts with SO2 and NOx non-linearly to form PM2.5.
• PM nitrate (NH4NO3) formation may significantly increase PM2.5
concentrations in winter in the US [3].

Table 1: PM2.5 nitrate formation governing conditions.
NH3 availability PM2.5 nitrate form? Limited by
Limited No -
Moderate Yes NH3
Excess Yes HNO3

5. Results of Air Quality Simulations
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(a) Current: January [PM2.5]
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(b) No-CCS 2050: January [PM2.5]
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(c) CCS 2050: January [PM2.5]
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(d) Future January [PM2.5] w/o CCS
Δ[PM2.5] = (No-CCS 2050) – (Current)
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(e) Impact of CCS on January [PM2.5]
Δ[PM2.5] = (CCS 2050) – (No-CCS 2050)
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(f) Impact of CCS on July [PM2.5]
Δ[PM2.5] = (CCS 2050) – (No-CCS 2050)

Figure 4: Air quality simulation results from PMCAMx, a 3D chemical transport model. The average PM2.5 increase in nonattainment
areas (Gray dots) is 0.53 μg/m3 in January and 0.04 μg/m3 in July.

6. Sensitivity Analyses

Table 2: Emissions assumption of two
sensitivity scenarios, which capture the
uncertainty of future emissions.

Scenarios for 2050 SO2 NOx NH3
No-CCS 2050 80% 50% 30%
High-sensitivity 90% 20% 50%
Low-sensitivity 30% 70% 0%
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Figure 5: Sensitivity of January PM2.5 increase
to two major uncertainties, NH3 emissions and
future air quality.

7. Social Health Risks and Economic Valuations

• Software: BenMAP 4.0 developed by US EPA.
• Health Endpoint: Premature death from PM2.5.
• Value of a Statistical Life (VSL): $8 millions (in 2010$).
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(a) Premature mortality change
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(b) The valuation of the change
Figure 6: Social health risks of PM2.5 increase from CCS NH3 in 2050. Only
uncertainties surrounding the CR functions and VSL are represented.

Table 3: Social health costs of CCS NH3 and CO2.
CR function 2010$/t NH3 2010$/t CO2

Laden et al. (2006) 120,000 28
Pope et al. (2002) 46,000 11

8. Conclusions

• January PM2.5 may increase by 0.5 μg/m3 on average and up to
0.9 μg/m3 in PM2.5 nonattainment areas, a considerable
amount if not a tremendous increase.

• NH3 from CCS may be burdensome for PM2.5 nonattainment
regions targeting 1-2 μg/m3 reductions.

• If not properly controlled, amine scrubbing CCS may seriously
compromise the CCS social benefits from CO2 reductions.

• Since 60% of the social health costs occur during the winter,
seasonal regulation could be considered.
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