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service to the outer world. Relying on one or more physical 
sensors, a virtual sensor will carry programmable workflow 
logic (using rules or formula) to present curated knowledge 
of environmental observations over a collection of sensors. 
Modeling embedded workflows as computable functions, 
virtual sensors can be composed to form comprehensive 
views of physical world, leveraging mathematical 
knowledge on functions as well as computability theory. 

To enable cross-platform development, we have adopted 
the HTML5 [1] technology to develop a browser-based 
integrated development environment. The backend is the 
Sensor Data and Service Platform (SDSP) developed at 
CMUSV [2], which provides backbone support of sensor 
data service registration, discovery, and composition. 

Our virtual sensor editor has the following four 
highlighted attributes: (1) native drag-and-drop: Instead of 
relying on third-party implementation of drag-drop function 
like jQuery library, we have utilized native drag & drop 
feature provided by HTML5. (2) in-time evaluation: Users 
will obtain real-time feedback during the process of 
designing virtual sensors. (3) reusability: User can perform 
create, read, update and delete (CRUD) operation over their 
virtual sensors. Virtual sensors can be both data sources and 
data targets, and virtual sensors can be used to compose new 
virtual sensors. (4) predefined and customizable sensors: 
Users can specify customized rules to define customizable 
sensors. 

The remainder of the paper is organized as follows. In 
Section 2, we discuss related work. In Section 3, we explain 
architectural decisions. In Sections 4 and 5, we present 
design and development of the virtual sensor development 
environment, respectively. In Section 6, we discuss virtual 
sensor composability. In Section 7, we present our 
performance and scalability study. In Section 8, we make 
conclusions and describe future work. 

 
II. RELATED WORK 

Microsoft SenseWeb [3] provides a Web 2.0 platform for 
users to upload and access sensor data streams from shared 
sensors across the Internet. SensorBase [4] built a 
centralized data storage and management platform that 
allows users to publish and share (“slog”) sensor network 
data using a blog-like approach. Global Sensor Networks 
(GSN) [5] adopts a scalable P2P model in favor of 
integrating heterogeneous sensor network technologies. In 
this work, we have developed a cross-platform virtual 
sensor editor tool to allow users to dynamically mashup 
heterogeneous data sources to provide sensor data services. 

Many researchers focus on building tools to support 
sensor data manipulation. Among them, the Desthino 
(Distributed Embedded Things Online) project aims to 
provide a practical set of software tools to help users collect 
and store sensor data from heterogeneous distributed sensors 
[6]. A concept of virtual sensor is introduced in GSN [5] to 
abstract sensor data as temporal streams of relational data, 

and to represent derived views or a combination of sensor 
data from different sources. In contrast to their work, we 
have proposed a sensor ecosystem concept, where virtual 
sensors become atomic service providers to provide 
customizable and programmable sensing data services. 
Virtual sensors are contributed back to persistent layers and 
are treated as composable data sources. 

Sensor Observation Service (SOS) is a standard Web 
service specification, aiming to standardize the way of 
requesting, filtering, and retrieving sensors and sensor data 
to enhance sensor interoperability [7]. Some researchers 
explore how the Semantic Web can be integrated with a 
Sensor Web, such as SemSOS [8] and Semantic Sensor Web 
[9]. Some researchers, such as Liu et al. [10], study the 
scalability of sensor networks. SenseBox [11] introduced an 
autonomous computing unit encapsulating environment and 
REST APIs. In our earlier work, we have developed an 
SOA-based Web 2.0 platform that allows users to view and 
federate heterogeneous sensor data sources [2]. The work 
reported in this paper aims to provide a service provisioning 
layer for our related work on developing the Sensor Data 
and Service Platform (SDSP) [2], to expose sensor data to 
the outer world in a (re)configurable and personalizable 
manner. 

 
III. DESIGN DECISIONS 

Carnegie Mellon University (CMU) has developed 
SensorAndrew, the largest nation-wide campus sensor 
network [12]. Hundreds and thousands of various types of 
sensors have been deployed over the Pittsburgh campus as 
well as the Silicon Valley campus. The CMU – Silicon 
Valley campus has developed a Sensor Data Service 
Platform (SDSP) on top of the SensorAndrew infrastructure 
and middleware, to provide sensor data service publication, 
discovery, and composition [2]. 

Virtual sensor editor aims to become an integral part of 
the SDSP, as a design tool to assist the design process of 
customizable sensors. In more detail, it should allow users 
to browse available sensors, pick up physical or virtual 
sensors in which they are interested, add rules under which a 
new ‘virtual sensor’ will work, and eventually persist the 
new virtual sensor if it works as expected. 

Extracting from user workshop, it is believed that the 
design tool should possess the following five key features: 
(1) platform neutrality: The tool should not be restricted to a 
certain platform; instead, it should support mobility. (2) 
visualization: The tool should support real-time 
visualization of all sensors, physical and virtual. (3) in-time 
feedback: The tool should allow users to establish rules and 
alert policies, to realize real-time monitoring and 
management of smart spaces. (4) reusability: The tool 
should support recursive virtual sensor composition with 
formal validation facility. (5) scalability: The tool should be 
oriented to the community and support many users to 
design, view, and manage their virtual sensors 



simultaneously. Towards fulfilling such user-defined goals, 
we have made the following architectural decisions. 

 
AD1: Universal Unique Identifier (UUID) 
Problem: It is needed to identify in a unique way every 

component in the structure of a virtual sensor. 
Solution: An id table is maintained at the server to keep 

a unique identifier for every sensor registered at SDSP, 
physical or virtual. At the current stage, version control of 
the virtual sensors registered is left for individual users to 
handle. 

Alternatives: A1) unique identifier within the scope of a 
virtual sensor: Although guaranteeing no repetition of the 
ids within the context of a virtual sensor, managing ids in 
interdependent virtual sensors is challenging. A2) 
disposable identifiers: A new identifier is created every time  
a component is shared by multiple virtual sensors. In spite 
of less id management, this approach increases the 
complexity to recreate the relationships among components 
(which are store as relationships among Id’s). 

 
AD2: Virtual sensor definition stored in a serialized 

JSON string 
Problem: A persistence mechanism to store created 

virtual sensors is needed. 
Solution: Centralize the definition of a virtual sensor in a 

unique object that later will be serialized in a JSON string. 
Such a decision makes it easy to handle at backend. 
However, the entire definition of a virtual sensor is 
serialized every time when a change occurs. This may lead 
to performance concern if the number of virtual sensors 
becomes significant. Currently, the JSON object is saved in 
the browser’s local storage; but it can be sent over the 
Internet to a backend service. 

Alternatives: A1) backend database: All JSON objects 
are persisted to a backend database. In spite of robustness, it 
implies additional work to deal with atomic operations (i.e., 
queries) at development. A2) local storage key-pair: Store 
editing operations instead of the entire definition. 

 
AD3: Use of separated layers for calculations 
Problem: An efficient method is needed to control the 

overhead due to pull the data of the sensors. 
Solution: We have decided to separate the presentation, 

business logic and data pulling functions in different layers. 
The idea is to define a middleware data structure to hold a 
buffer of the readings of the comprising sensors. Every time 
when canvas needs to recalculate the value of a sensor, it 
does not have to invoke a separate HTTP request to the 
server. Such a design decision will significantly reduce the 
overhead required to process the streaming sensor data. 

Alternatives: A1) individual request: Every visual 
control in the canvas will control their individual request for 
data to the server. This option however, may endure 
inefficiency because every control will open a separate 
HTTP request adding overhead. A2) push approach using 

web sockets: This option may be ideal because the server 
pushes data to a browser only when changes happen in 
sensor state. Due to time constraints and the need to re-
configure the backend to support web sockets, it will be 
adopted as future work. 

 
AD4: Use of JavaScript 
Problem: A programming language is needed to allow 

users to define dataflow logic for virtual sensors. 
Solution: We evaluated a collection of languages 

including JavaScript, Matlab, and Python. The main reason 
why we decided to adopt JavaScript is its ability to conduct 
real-time processing over data streaming in a web browser. 
In addition, JavaScript is compatible with other real-time 
frameworks like node.js. One potential concern though is its 
fragility to XSS attacks, which is important to sanitize code 
before being persistent to server. One possible solution is to 
run code in a JS sandbox (i.e., Caja, a Google security 
project for “virtual iframes” 
http://code.google.com/p/google-caja/ ). 

Alternatives: A1) Matlab or python: Many scientific 
users are more familiar with these languages. However, it is 
unlikely to achieve the level of performance that JavaScript 
can reach for processing real-time data. A2) domain-specific 
programming language: This option can provide a more 
compact, secure and powerful way to define the logic of 
virtual sensors. It is in our future work plan. However, this 
option will not be able to leverage the rich JavaScript 
libraries. 

 
AD5: Language to define logic of virtual sensors 
Problem: Users need a method to define the logic of a 

virtual sensor. 
Solution: A high-level descriptive language is needed for 

users to precisely define the dataflow logic of a virtual 
sensor. Visual programming has been proved to be a 
powerful way to ensure productivity [13]. In addition, we 
have embedded domain-specific libraries developed 
specifically for Internet of Things. 

Alternatives: A1) ad-hoc formula builder: This option 
refers to offer a plug-and-play way to define the logic of a 
workflow without writing code. How to build a 
comprehensive formula design tool with a complete list of 
proper functions remains a challenge. A2) ad-hoc predefined 
templates (widgets): The option refers to offer a graphical 
interface for users to define the logic of a virtual sensor 
without writing code. How to provide a meaningful quantity 
of widgets remains challenging. 

 
IV. VIRTUAL SENSOR ECOSYSTEM 

A. Looped Sensor Ecosystem 

Fig. 2 depicts our overall blueprint of a sensor 
ecosystem. Sensors from the physical world are registered 
into our Sensor Data Service Platform (SDSP) to become 
persistent and discoverable to the community. Through our 
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In our future work, we plan to explore the web socket 
technique. Currently, our tool adopts a polling way to query 
sensor database. Another alternative might be to utilize the 
HTML5 web socket technique to fetch data. Clients will be 
called if and only if there is data update on the server side. 
Such a strategy will further reduce the number of Ajax calls. 
In addition, we plan to enrich the notification widget 
collection. Currently, our tool has a single “monitor” tool to 
handle sound and visual effect. More widgets will be 
developed and added to the toolkit to simulate more 
physical objects. For example, an alarm clock, an LED 
screen or a message sender will be developed. 
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