

Fig. 1 Motivating example.

An Infrastructure Supporting Considerate Sensor Service Provisioning

Jia Zhang1, Nimish Radia2, Zhipeng Li1, Norman Xin1, Yuan Ren1, Prateek Sachdeva1, Puja Subramanyam1, Sky Hu1, Song
Luan1, Lydian Lee1, Bo Xing2, Du Li2, Jordan Cao3, Ted Selker1, Bob Iannucci1, Martin Griss1, Anthony Rowe4

1Carnegie Mellon University – Silicon Valley, USA
2Ericsson, USA

3SAP, USA
4Carnegie Mellon University, USA

jia.zhang@sv.cmu.edu, nimish.radia@ericsson.com, du.li@ericsson,com, jordan.cao@sap.com, ted.selker@sv.cmu.edu,
bob@sv.cmu.edu, martin.griss@sv.cmu.edu, anthony.rowe@cmu.edu

Abstract—The Internet of Things (IoT) aims to integrate

the digital world of the Internet with our encompassing
physical world. However, existing IoT systems do not pro-
vide considerate services, meaning that sensors dynamically
“collaborate” to provide context-aware federated sensor
data, tuned to human needs. This paper reports our on-going
work developing a sensor service federation and provision-
ing infrastructure. A novel approach is presented to build
social sensor networks to record and study historical interac-
tion patterns among sensors. Workflow provenance is car-
ried by a dynamic virtual device concept that we have intro-
duced. A case study describes how to leverage an in-
memory database to monitor and manage real-time sensor
service provisioning.

I. INTRODUCTION

Sensor-equipped connected devices (Internet of Things
or IoT) have been helping people sense the physical world
[1] and yielding unprecedented services [2]. However, the
considerate attribute of sensor service provisioning has not
been significantly studied. In the human world, we think of
people as considerate when for example they introduce
themselves and their intentions without interrupting an on-
going conversation [3]. The term considerate applied to a
software system addresses attempts to reduce user disrup-
tions during communication [4]. To facilitate human inter-
actions, the system might coordinate, prioritize or time shift
communications. It might also add other annotative state-
ments as well to introduce and orient the information re-
ceiver. By considerate sensor service, we mean that sensors
dynamically “collaborate” to provide considerate context-
aware federated sensor data.

This paper reports our on-going efforts to develop a ser-
vice oriented computing-empowered technology layer to
provide “considerate” services over the Internet of Things.
We have three primary technical contributions: (1) We have
developed a novel approach to build social sensor networks
to record and study historical interaction patterns among
sensors. (2) We have designed and developed a sensor ap-
plication server, a service-oriented middleware that supports
considerate sensor service discovery and provisioning. (3)
We have developed a concept of dynamic virtual device to
embody workflow provenance management and analysis.

The remainder of the paper is organized as follows. In

Section II, we describe a motivating example that will be
used to discuss our work throughout the paper. In Sections
III, IV, V, VI, VII, we successively present our sensor ser-
vice modeling, discovery, application server, infrastructure,
and scalability study. In Section VIII, we discuss related
work and inSection IX, we draw conclusions.

II. MOTIVATING EXAMPLE

Our motivating example is a physical therapy scenario il-
lustrated in Fig. 1. A patient John visits a physical therapist
Bill at his office. Bill prescribes a therapy plan (a multi-step
procedure called a workflow), which advises John to move
his legs up to the horizontal level, for 20 times within 8
minutes. John is advised to repeat same exercise twice a day
for 3 weeks prior to a follow-up visit. Due to John’s medical
condition, every time when he does the exercise, the process
has to monitor his vital signs (i.e., heart rate, blood pressure,
and body temperature), say every 2 minutes.

In this scenario, sensor data is used to measure John’s
medical condition during the exercise. John may attach a
mobile phone to his leg as a motion sensor. When he moves
his leg, the motion sensor will sense the activity and provide
readings that can be used to study the frequency and quality
of the movement. Based on John’s medical profile, after 20
leg movements in the 8-minute time period, his body tem-
perature and heart rate, and perhaps his blood pressure
should move up a certain amount. At the same time, the
room temperature and humidity in which John does the ex-
ercise are also factors that may have an impact on the meas-
urement results.

Based on observed sensor data, Bill may dynamically
change his query to sensor data. For example, if John’s heart
rate goes up too fast, Bill may decide to conduct a closer
monitoring, e.g., every 15 seconds instead of every 2
minutes. Such a change of request may lead to different
sensor data gathering and analysis activities.

As shown in Fig. 1, a TV is present in the environment.
Assume that John watches TV while he does the exercise. If
John does not raise his leg high enough in the exercise, Bill
will be notified and he will guide John. If the TV is too
loud, its volume will be automatically turned down in a con-
siderate manner to facilitate effective communication be-
tween Bill and John.

This example illustrates that, to provide a considerate
service, multiple sensors may need to be identified in real
time, and their data need to be dynamically federated to
provide data analytics. Now that sensors can communicate
with each other in sensor networks, a key motivation of our
project is to determine how to leverage the latest technology
advancement and establish an infrastructure over the sensor
networks to enable and facilitate considerate service provi-
sioning.

III. SENSOR SERVICE MODELING

Our study is fundamentally based on our innovative
mapping between sensors and services. Each sensor
measures its surrounding environment and provides to the
outside world its sensor readings, which can be considered
as a service. Hence, sensors can be viewed as service pro-
viders. Thus we are exploring how to apply services compu-
ting techniques to sensor services and their relationships.

In our previous work, we have introduced the concepts of
virtual sensor and virtual device [5] to model sensor data
federation. In this work, we extend our concepts to model
workflow-oriented sensor services. A virtual sensor thus
becomes a user-defined sensor service that reveals some
information of a predefined environment. For example, a
virtual sensor may be defined as a service to expose the av-
erage temperature of the room where John does exercises to
help monitor his body condition. A virtual sensor may in-
volve one or more physical sensors. A virtual device refers
to a user-defined abstract container that comprises one or
more (virtual) sensors. It defines a user’s interest areas and
it may represent a dynamic concept. For example, John may
carry both a mobile phone and a medical watch, each con-
taining a collection of sensors. In this sense, John can be
viewed as a virtual device, hosting multiple sensors.

In the service level of our study, we only care about vir-
tual sensors that possess business logic (established by the
context). Each virtual sensor that provides a (business) sen-
sor service to the outer world will thus become an atomic
unit of our study. A typical multi-step procedure, called a
workflow, may invoke multiple virtual sensor services. Fig.
1 is an example of such a workflow involving a collection of

sensor services.
As shown in the motivating example, every time when

John conducts the therapy exercise (a workflow run), the
surrounding sensors will monitor and detect his body condi-
tion. Such data will help therapist Bill better understand
John’s reaction to the therapy and better personalize the
treatment for John. Therefore, we associate each workflow
with a virtual device in order to record workflow prove-
nance (history) for later data analysis. The dependency be-
tween a workflow and sensor services is defined as follows.

Definition 1. A workflow W comprises a global schema G
and a virtual device with a finite set of actions for each sen-
sor service si of W. An action of service si is an expression
Update :- Condition where Condition is a query over local
schema Li, and Update is a non-empty sequence of positive
and negative relational literals over Li such that each varia-
ble occurring in a negative literal also occurs in Condition.

Based on the association between a workflow and a vir-
tual sensor, we model the relationship between a workflow
and related sensor services. Leveraging social network theo-
ry and techniques, we will analyze usage history and behav-
iors of sensor services in a workflow context.

We model all IoT sensors as social entities. The rationale
is that sensors may be intelligently used together by people
to better sense the world. We start by modeling the “use”
relationship between a workflow and a sensor service. The
workflow in the motivating example Fig. 1 monitors a set of
sensors: a heart rate sensor, a blood pressure sensor, a body
temperature sensor, and two room temperature sensors. We
establish a social tie between them. A workflow-sensor net-
work is thus established based on their inclusive relation-
ships. Fig. 2(a) illustrates a segment of the network: an edge
exists between a workflow and a sensor if the sensor’s read-
ings are used in the workflow.

Such a network relationship can be formalized into a ma-
trix Q that describes the involvement relationships between
workflows and sensors:

[],0 ,0ijQ q i m j n     , where:

1ijq if workflow i retrieves sensor j; m workflows and

n sensors are included.
As discussed earlier, all workflow runs are maintained in

provenance. Therefore, such provenance data can be ana-
lyzed to extract the above relationships. Fig. 2(b) illustrates
a part of a workflow-sensor network.

Based on the above relation Q, relation S can be retrieved:

njisQQS ij
T  ,0],[, where:

sij = number of workflows where both sensors i and j are
retrieved; sii = number of workflows where only sensor i is
retrieved.

(a) (b)
Fig. 2 A “social” relation between Internet of Things.

Relation S represents a “social network” among sensors.
Such a network of sensors forms a Social Internet of Things
(SIoT). The semantic meanings of its comprising connec-
tions are: if two sensors are retrieved by the same workflow,
there is a social tie between them. Note that rich context
information may be carried by the edges in the network as
labels. For example, an edge between two sensors may be
labeled with the corresponding workflow run that retrieves
sensor readings among them. By analyzing the details of a
specific workflow run, we can understand when and under
which circumstances the two sensors’ readings were feder-
ated. The collaboration relationship maps to the association
rules in social network analysis.

In addition, the social ties can be further differentiated
into tight and loose collaboration relationships. Recall that
our concept of virtual sensor implies that some formula is
specified to federate readings from multiple homogeneous
sensors, e.g., calculating an average room temperature from
two sensors in a room. We call this relationship a tight col-
laboration tie, in the sense that their sensor readings are fed-
erated, and the original sensor readings are not shown in the
final values.

In contrast, the relationships among multiple sensors in a
virtual device are called loose collaboration relationship.
Sensors in a virtual device may not be the same type of sen-
sors. Even if they belong to the same type of sensor (e.g.,
the body temperature sensor and room temperature sensors
in the motivating example), their readings are simply aggre-
gated to show that there may be some correlation between
them. For example, room temperature may have an impact
on body temperature. Such loose collaboration relationship
may be useful for users to conduct further data analysis.

After establishing the workflow-sensor networks, we
calculate various metrics over them to comprehend the in-
teraction patterns between sensors and workflows, as well as
patterns among sensor usages. We adopt the tradition of
calculation of centrality and prestige in social network
analysis, including degree centrality (popularity), between-
ness centrality, and clique. Through degree centrality analy-
sis, highly used sensors can be identified based on the popu-
larity of corresponding nodes. Through betweenness cen-
trality analysis, hinge sensors can be identified. Through
clique, we can identify collaborative sensors, i.e., associa-

tion rules among services.
If a sensor is used multiple times in multiple workflows,

popularity can be considered as an annotation to be used for
future purpose. For example, if a sensor is used heavily by
many queries, then its readings may need to be pre-fetched,
pre-processed, or redirected, and so on. Using the k-path
betweenness algorithm, we can identify the key sensors, in
the sense that they collaborate with other sensors in user
queries (i.e., workflow runs).

Through these analyses, we can answer user queries re-
garding sensor query (usage) behaviors. For example, “how
are different sensors used together in workflows?” And “in
what types of workflows is a sensor usually used?” As an-
other example on sensor-sensor relationship, we can ask
“are there many sensors that collaborate with each other in
workflows, and how?” And “what are the key sensors in
these collaborations?” Such information will help our Sen-
sor Service Discovery (SSD) service to help select proper
sensors to provide considerate service provisioning. This
will be discussed in the next section.

IV. SENSOR SERVICE DISCOVERY

Since we are studying considerate service provisioning,
one core requirement is to understand personalization. For a
specific service oriented to a specific user, a considerate
service implies that we need to discover related sensors that
can contribute to understand the context of the user, as well
as the specific service query.

Based on the workflow instance assigned by therapist
Bill to patient John, we need to dynamically construct its
associated virtual device to find physical sensors whose
features satisfy the considerate requirements. In the motivat-
ing workflow, a motion sensor, a blood pressure sensor,
abody temperature sensor, a heart rate sensor, and room
temperature sensors at the user’s location should be discov-
ered. Along with this, users can also have various prefer-
ences, e.g., nearby and popular sensors will have higher
priority.

Synchronization among sensors may also need to be con-
sidered. In the motivating example the temperature sensor in
the room in which John does his exercise may be triggered
to wake up to send readings if the motion sensor in the mo-
bile phone on his leg has sensed that John has started an
exercise. After the exercise is done, the temperature sensor
does not have to send in readings. The temperature sensor
does not have to send readings unless necessary – saving
energy as another considerate service provisioning.

Dynamic sensor service discovery is an integral and key
part of our system. We have designed a service discovery
engine that takes into account user preferences before iden-
tifying the sensors to be involved in a specific workflow
run. Each sensor has a sensor type and carries values for a
set of QoS attribute dimensions. Users may configure their
own preferences by selecting a subset of these QoS dimen-
sions. Without loss of generality, we consider the following
five QoS dimensions: location, availability/reliability, popu-

larity, accuracy, and usage.

Location: We care more about relative location than ab-
solute GPS location. For example, if John does exercise in
Building 23, room 120 - the sensors whose locations relative
to the room within a threshold of distance are identified.

Availability/Reliability: Historical sensor data readings
are examined to evaluate the availability and reliability of a
sensor. Example measurements are: mean time between
failures of the sensor, whether the sensor bandwidth exhibits
some problem; or whether there is a need for real-time data
or achieved data is sufficient.

Popularity: This dimension refers to the number of users
who have used this sensor in the past, in other words, their
workflows (virtual devices) invoke the sensor service.

Accuracy: The value of this dimension can be measured
based on: whether the sensor readings are semantically rea-
sonable; or whether the sensor readings are consistent to
those from sensors close by.

Usage: This dimension considers power consumption.
For example, a patient asked to do the exercise 20 times
may use the sensor data more often than a patient asked to
do the exercise 10 times. This implies that a motion sensor
used in the former case would consume more power than
that used in the latter case. Therefore, if a sensor is required
for a longer time, we will recommend a low power consum-
ing sensor.

Here we model a user preference space P for user ui as
௨೔݌ ൌ ሼ݌ଵ,݌ଶ, … , ௜݌ ௞ሽ, where݌ ∈ ܳ and pi denotes a dimen-
dimension affecting ui’s decision. ܲ ⊆ Q.

Definition 2. Sensor Dominance: A sensor service si is
said to dominate another sensor service sj on ܳ iff ∀ݍ௜ ∈ ܳ,
,௜ݏ ௜ݍ ൒ ,௝ݏ ௧ݍ∃ ௜ andݍ ∈ ,௜ݏ ,ܳ ௧ݍ ൒ ,௝ݏ .௧ݍ

Definition 3. Sensor Skyline: A sensor service si is a sky-
skyline sensor iff there does not exist a sensor service
௝ݏ ് .௜ dominating sjݏ

Definition 4. User Preference-Aware Sensor Dominance
(UPD): Given a user preference space P, a sensor service si
is said to dominate another sensor service sj on P iff
௝݌∀ ∈ ,௜ݏ ,ܲ ௝݌ ൒ ,௝ݏ ௧݌∀ ௜ and݌ ∈ ,௜ݏ ,ܲ ௧݌ ൐ ,௝ݏ .௧ݍ

Definition 5. User Preference-aware sensor Skyline
(UPS): A sensor service si is a skyline sensor on P iff there
does not exist a sensor service ݏ௝ ് .௜ dominating si on Pݏ

We thus decompose the process of sensor service discov-
ery into the following two phases:

Local Optimization: Given a workflow W, a user pref-
preference space P, and a candidate sensor service class Si
for a task tiϵW, compute the UPD(Si,P)|ti.

Global Optimization: Given UPD(Si,P) for each task
tiϵW, compute the top-k Virtual Devices for workflow W.

As shown in the example below, the local optimization
phase aims to select the top-k sensor services based on their
QoS attributes, e.g., availability, accuracy, and usage. Each

QoS dimension is associated with an index. We apply a
multi-index based algorithm to compute the UPD of indi-
individual QoS dimensions. For a workflow wi, the UPD
will be calculated to partition sensors based on user
preferences, such that sensors are sorted in a descending
order of maximum value in that dimension.

The sensors in the UPD are then ranked based on the

scores and the top-k sensors are identified. Thus we get the
top-k available sensors for the workflow locally. The score
of a sensor is calculated as:

௜ሻݏሺ݁ݎ݋ܿܵ ൌ෍
௝,௠௔௫ݍ െ ௝ݍ

௝,௠௔௫ݍ െ ௝,௠௜௡ݍ

௔

௝ୀଵ

where ݍ௝,௠௔௫	and ݍ௝,௠௜௡ are the maximum and minimum
values of the candidate sensor class on the dimension j and
qj is the value of the sensor i for dimension j.

For global optimization, we leverage “social” relation-
ships among sensors (as described in Section III above) to
select composite services. For each service cluster in the
virtual device, we obtain top-k candidate services from the
local optimization procedure. We then get all combinations
of composite services. A social tie of each combination is
calculated. The top one will be recommended to the user.
The pseudo code is summarized as below.

Alg. 1: Global Optimization Algorithm (top-k):
1. Virtual_Device ← ∅;
2. Heap = Root Node comprising services with lowest score;
3. initialize(ParentTable);
4. while Heap ് ∅ do
5. x = top(Heap);
6. if (∄ݕ ∈ Virtual_Device, dominated(x,y)) then
7. insert(x, Virtual_Device)
8. end if
9. Child_Nodes = Expand (x);
10. for ∀݊ ∈ do ݏ݁݀݋ܰ_݈݄݀݅ܥ
11. Number_of_Parents (n)--;
12. if Number_of_Parents (n) == 0 then
13. insert(n,Heap);
14. end if
15. end for
16. end while

As illustrated, top-k services are sorted based on their
scores. All combinations of composite services are
enumerated using a lattice, based on a min-Heap strategy
that extracts the composite services with minimum scores
and compares the social coalition against other virtual
devices. A composite service is added to the final list of
virtual devices only if it is not dominated by any other
composite services in the list.

The performance of the Global Optimization Algorithm
is decided by two major factors:

Fig. 3 Sensor application server.

1. Heap operations: It is affected by the heap size,
which grows exponentially with the number of sensors. This
behavior is observed because the size of the heap is bounded
by the number of nodes on the middle level of the lattice.
After every extraction the heap needs to be reorganized.
With increasing number of members in the heap this
operation becomes more costly.

2. Social tie comparisons: It grows exponentially with
the number of sensors involved. The high computational
complexity of Global Optimization Algorithm makes it
impractical to compute the virtual devices with a large
number of sensors. A bottom-up strategy may be adopted,
using the same algorithm but iteratively. Instead of creating
combinations of all sensor types at one time, this algorithm
iteratively combines these services thus providing a faster
and more scalable solution.

V. SENSOR APPLICATION SERVER

Based on our sensor service modeling and discovery
techniques, we have developed a sensor-oriented
infrastructure. We name it Sensor Application Server,
analogous to the software-oriented application servers such
as WebLogic and WebSphere. This supports our two main
goals: service collaboration provenance management, and
sensor service discovery and composition.

As explained in Section III, we have introduced a virtual
device concept to carry contextual information (sensor data
provenance) of a specific workflow execution (workflow
run). Following this idea, we differentiate three concepts:
workflow template, workflow instance, and workflow run. A
workflow template represents an abstract definition of
stepwise activities; a workflow instance represents a
personalized workflow template for a particular user; a
workflow run represents an actual execution of a workflow
instance.

As shown in Fig. 3, a workflow template is retrieved
from a medical workflow repository representing a type of
physical therapy procedure. Then Bill checks John’s
medical record, in order to configure the workflow
specifically for John. Such a workflow instance is stored
back in the database, as a customized workflow for John for

a specific time period. Each time when John does the exer-
cise, the corresponding workflow instance is triggered for
execution as a workflow run. The provenance of each work-
flow run is also stored into the database for Bill to analyze
in later diagnosis.

As shown in Fig. 3, each workflow run will query the
sensor service discovery (SSD) service to dynamically form
a virtual device to support the execution of the workflow.
Using the motivating example shown in Fig. 1, SSD locates
two room temperatures in the room where John does his
exercise. Therefore, Fig. 3 illustrates a formed virtual device
comprising a virtual sensor representing the average room
temperature based on two temperature sensors, a body
temperature sensor, a heart rate sensor, and a blood pressure
sensor. As shown in Fig. 3, a workflow run dynamically
formed a virtual device comprising multiple sensors. In oth-
er words, these sensors collaborate with each other in the
context of the workflow.

A. Message Bus

At Ericsson lab, we have developed a prototype of a
Message Bus. In contrast to generic message bus [6], to
enable sensor-oriented information changing through
common message-based communication. As shown in Fig.
4, sensors are not isolated. Instead, they can “talk” to each
other via message passing with the support of a centralized
Messaging system. Each message notifies an event
happening at the corresponding sensor. As the following
example shows, a sensor may declare that a corner red light
is turned on by publishing the following message:

publish(“turn on light”, null, “color=red&location=corner”);

A publish/subscribe pattern is adopted in the Message
Bus. Sensors can publish messages to the Message Hub; and
sensors can subscribe to interested messages. The following
example shows that a sensor is interested in receiving
notifications when some corner red light is turned on.

subscribe(“http://eus2.fuatara.com/callback”,
 “turn on light”,
 [“color=red”, “location=corner”, “eco-friendly=true”]);

As shown in Fig. 4, sensor peers thus form a loose
coupling relationship. The Messaging Catalog acts as a
filter, so that only allowed topics and metadata can be
published and subscribed to devices. In addition, four forms
of messaging are supported: unicast, multicast, broadcast,
and publish-subscribe.

B. Message Bus-based Service Collaboration

As shown in Fig. 3, all physical sensors are mapped into
an agent in the Message Bus as its representative. It is
analogous to an Entity Bean in a (software) application
server to its persistent object. It is an agent’s responsibility
to monitor the health of the corresponding physical sensor.
In other words, sensors interact with each other through
their agents in the Message Bus.

Inspired by the EJB concepts that differentiate between

Fig. 4 Message Bus.

Fig. 5 Supporting considerate service provisioning.

entity beans and session beans, we differentiate between
sensor-oriented agents and virtual entities, i.e., virtual
sensors and virtual devices. As shown in Fig. 3, in the
Message Bus, virtual entities are modeled as agents as well.
But in addition, they carry business logic.

Message Bus requires that the agents be deployed ahead
of time. Therefore, for scalability, we have preconfigured
and deployed a pool of anonymous peers (agents) when the
Message Bus is deployed onto the Web server. At run time,
peers will be extracted from the pool and dynamically
assigned to act as various roles for workflow runs. Upon
completion, the peers will be released back to the pool to be
used by other workflow runs.

As described earlier, sensors communicate with each
other via message passing. As shown in Fig. 3, our strategy
is to establish a listener over the Message Bus. All sensor
messages will be scanned and stored. As shown in Fig. 3,
the Message Bus is treated as a standalone generic service.
After a processing a message, the Messaging Hub forwards
the message to our message listener as a JSON object. We
have built a message bus listener as a separate service. A
logging mechanism is available in the Message Hub. Every
event in Message Hub will trigger a log message to be sent
to the listener server.

By building a listener for message bus, the sensor
application server knows what exactly happens in the
system at runtime. In this way, we can use this information
to determine which service/sensor needs to be used in real-
time conditions, and how to properly compose services to
make the system considerate based on real-time needs. By
representing sensors as agents with methods, we can model
a certain service workflow by using methods as primitives.
Sensors (via their corresponding sensor agents) publish their
readings onto the Message Bus. Workflow runs subscribe to
specific sensor readings (through service discovery) and will
receive the sensor readings. At the same time, workflow
runs leverage analytical methods to monitoring the
incoming streaming data at real time (will be discussed in
the next section). If there is a change of plan (e.g., to change
the frequency of heart rate monitoring), the workflow run
will publish a request to the Message Bus.

We have designed a two-phase publish/subscribe pattern.
When a workflow instance is established for a workflow
run, it will construct a representative agent in the Message

Bus. A two-way relationship is built between the workflow
agent and the corresponding sensor agents. On one hand, the
workflow run will subscribe to all identified sensor agents
for their readings. On the other hand, the sensor agents will
subscribe to the workflow agent to receive particular
requests.

VI. INFRASTRUCTURE SUPPORTING CONSIDERATE

SERVICES
We have designed a service-oriented infrastructure

supporting considerate service provisioning. As shown in
Fig. 5, our infrastructure builds a layer on our Sensor Data
& Service Platform (SDSP) and Message Bus. It comprises
four horizontal layers and four vertical layers. For all
sensors registered in our SDSP, the service modeling and
publishing layer analyzes their interactions and establishes a
sensor social network. The service composition and
collaboration layer monitors the sensor interactions through
a listener service, and handles dynamic service composition.
The service visualization and analytics layer helps to
visualize and analyze sensor relationships. The service
provisioning layer interfaces with external sensors and
deliver considerate services.

Vertically, the service discovery layer is in charge of
dynamic sensor service discovery and integration. The
considerate layer controls the quality of service provisioning
focusing on the considerate property. The data architecture
layer decides the data model and structure of service
management. The governance layer monitors the health of
the overall system.

One specific feature that we consider is the scalability.
Our previous work adopted the traditional client-server
model [5], where SDSP receives all sensor readings and
forwards them to persistent storage (i.e., Amazon
DynamoDB). Although straightforward, the SDSP server
becomes the bottleneck. To support streaming sensor data
and real-time data analytics, we decided to adopt the
Message Bus in our infrastructure. As shown in Fig. 5, all
registered sensors directly send notifications to the message
bus.

To make the sensor network considerate, it is critical to
seamlessly integrate human interaction. Without losing gen-

Fig. 6 Scalability study.

erality, we have incorporated language processing and lan-
guage feedback to our social sensor network. John (or other
treated subject) interacts with the social sensor networks
through voice, and the social sensor networks provide voice
feedback according to the subject’s words, the prescription
for this subject, and the data collected from this subject.
Such a feature becomes extremely useful when the patient
feels uncomfortable during a physical treatment, which in-
dicates the necessity of the modification of the prescription.

When the exercise starts, the therapist may start a query,
to ask to send to him the patient’s average heart rate every 2
minutes. The service layer will then generate a workflow,
caching the heart rate sensor’s streaming data and send back
average values every 2 minutes.

During the exercise (workflow run), the patient may feel
uncomfortable. Bill may then change his query as to send
the patient’s heart rate every 15 seconds. Then the service
will not cache heart rate sensor readings for later analysis.
Instead, all readings will be sent to the therapist directly for
him to better monitor the patient’s body situation.

VII. SCALABILITY STUDY

A. Sensor Service Analytics
The scalability and performance are the major concerns

of our infrastructure. For analyzing sensor behaviors, all
messages are stored. We have decided to adopt in-memory
database to address the performance concern. Our
preliminary study focuses on the feasibility of our
infrastructure to support message-based considerate service
discovery. Although our current environment is built on an
SAP HANA database instance configured at Amazon Web
Service (AWS), the techniques developed are generic
enough to be applied to other environments.

We use SAP HANA as a scalable solution to the volumes
of data. HANAis an in-memory data platform that can be
deployed in the cloud. Unlike other database engines, SAP
HANA provides column-based storage which allows us to
easily monitor data. This helps provide real-time analytics.
As explained in Section V, sensor communications are
represented by topic-based messages. Each topic is
represented by a <key, value> pair. The sensor messages can
be stored in SAP HANA and can be used for real-time

analytics. Since we have to store messages passed around,
the data can be stored easily. We store raw sensor readings
using the schema of <time stamp, device id, sensor type,
sensor reading>, and also aggregated the readings in a 1-
minute time window.

The platform is used for providing real-time analytics.
We run the K-means algorithm (directly provided by
HANA's Predictive Analysis Library) to monitor sensor
health. It detects any anomaly in a sensor reading's interval,
and flags outliers as sensor readings having an abnormal
interval from the previous readings.

B. Experimental Study

We have conducted simulations to evaluate the
scalability of our infrastructure. We simulated different
scales of a sensor network, which comprising from 1 to
30,000 physical sensors. On each of the simulated sensor
network, we simulated different numbers of concurrent
users: from 1 to 50 users. As shown in Fig. 6, when the
scale of a sensor network is moderate (comprising less than
1,000 physical sensors), our system scales well even when
the number of concurrent users go up to 50. To better
illustrate the experimental results, we keep only significant
data in Fig. 6.

Note that the aforementioned experiments were
conducted based on the SAP HANA database. In our earlier
implementation, all sensor readings were stored in NoSQL
DynamoDB database. We repeated the same set of
experiments. As shown in Fig. 6, the scalability of the
system relying on HANA significantly surpasses that on
DynamoDB. This symptom is resulted from the specific
pattern of frequent query over certain types of sensors, e.g.,
a user is working on a virtual sensor involving multiple
temperature sensors. Thus, the specific column-based query
used by HANA yields better results.

VIII. RELATED WORK

Mohamed and Al-Jaroodi [7] surveyed the requirements
of service-oriented middleware for wireless sensor network.
Internet-scale Resource-Intensive Sensor Network Services
(IrisNet) [8] offers a set of generic functionalities and APIs
to allow user to query and process distributed collections of
high-bit-rate sensors. On top of IrisNet, Chen et al. [9]
proposed X-Tree Programming, a database-centric approach
to programming over a large-scale of Internet-connected
sensing devices. Microsoft SenseWeb [10] provides a Web
2.0 platform for users to upload and access sensor data
streams from shared sensors on the Internet. SensorBase
[11] built a centralized data storage and management
platform that allows users to publish and share (“slog”)
sensor network data using a blog-like approach. Global
Sensor Networks (GSN) [12] adopts a scalable P2P model
in favor of integrating heterogeneous sensor network
technologies. In this work, we explore how SOA can be
leveraged to provide considerate sensor services.

Some researchers focus on building tools to support sen-

sor data manipulation. For example, the Desthino (Distrib-
uted Embedded Things Online) project identifies a practical
set of software tools to help users collect and store sensor
data from heterogeneous distributed sensors [13].

Sensor Observation Service (SOS) is a standard Web
service specification, aiming to standardize the way of
requesting, filtering, and retrieving sensors and sensor data
to enhance sensor interoperability [14]. Some researchers
explore how the Semantic Web can be integrated with a
Sensor Web, such as SemSOS [15] and Semantic Sensor
Web [16]. Some researchers, such as Liu et al. [17], study
the scalability of sensor networks. A concept of virtual
sensor is introduced in GSN [12] to abstract sensor data as
temporal streams of relational data, and to represent derived
views or a combination of sensor data from different
sources. SenseBox [18] introduced an autonomous
computing unit encapsulating environment and REST APIs.
In our earlier work, we have developed an SOA-based Web
2.0 platform that allows users to federate heterogeneous
sensor data sources [5]. In this project, we have extended
our earlier work and build an infrastructure to support
considerate sensor service discovery and composition.

Our previous work also leverages social network
techniques to facilitate workflow reuse, by analyzing usage
history and behaviors of software components [19]. In this
project, we have extended our techniques to facilitate sensor
federation.

IX. CONCLUSIONS

This paper has reported our efforts of exploring how to
develop a service oriented computing-empowered
infrastructure to provide “considerate” services. By mapping
sensors to services and modeling sensor federation as social
networks, we leverage past sensor usage history to provide
more considerate services.

In our future work, we plan to refine our prototyping
system and provide our middleware for the community to
use. We also plan to conduct a performance study between
using various databases as backend, including an in-memory
database, a NoSQL database, and a relational database.

X. ACKNOWLEDGEMENT

This project is partially sponsored by research gifts provided
by Ericsson and SAP to Carnegie Mellon University.

VIII. REFERENCES

[1]. R. Nagpal, H. Shrobe, and J. Bachrach, "Organizing a Global
Coordinate System from Local Information on an ad hoc Sensor Network",
in Proceedings of 2nd International Conference on Information Processing
in Sensor Networks (IPSN), 2003, Palo Alto, CA, USA, pp. 333-348.
[2]. J. Yick, B. Mukherjee, and D. Ghosal, "Wireless Sensor Network
Survey", Computer Networks, Aug. 22, 2008, 52(12): pp. 2292-2330.
[3]. R. Rajan, J. Hsiao, and T. Selker, ""Roger that!" - The Value of Adding
Social Feedback in Audio-mediated Communications", in Proceedings of
Interact, Sep., 2013, Cape Town, South Africa, pp.
[4]. T. Selker, "Understanding Considerate Systems - UCS (pronounced:
You See Us)", in Proceedings of The 2010 International Symposium on

Collaborative Technologies and Systems, May 17-21, 2010, Chicago, IL,
pp. 1-12.
[5]. J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao, S. Kumar, D.
Pfeffer, B. Aljedia, Y. Ren, M. Griss, S. Rosenberg, and A. Rowe, "Sensor
Data as a Service - A Federated Platform for Mobile Data-Centric Service
Development and Sharing", in Proceedings of IEEE International
Conference on Services Computing (SCC), Jun. 26-Jul. 2, 2013, Santa
Clara, CA, USA, pp. 446-453.
[6]. TIBCO, "TIBCO Rendezvous", accessed on: Oct. 27, 2013, Available
from: http://www.tibco.com/multimedia/ds-rendezvous_tcm8-826.pdf.
[7]. N. Mohamed and J. Al-Jarood, "A Survey on Service-Oriented
Middleware for Wireless Sensor Networks", Service Oriented Computing
and Applications, 2011, 5(2): pp. 71-85.
[8]. P.B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, "IrisNet: An
Architecture for a World-Wide Sensor Web", IEEE Pervasive Computing,
Oct.-Dec., 2003, 2(4): pp. 22-33.
[9]. S. Chen, P.B. Gibbons, and S. Nath, "Database-Centric Programming
for Wide-area Sensor Systems", in Proceedings of 1st International
Conference on Distributed Computing in Sensor Systems (DCOSS), Jun.
30-Jul. 1, 2005, Marina del Rey, CA, USA, pp. 89-108.
[10]. W.I. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao, "SenseWeb: An
Infrastructure for Shared Sensing", IEEE MultiMedia, Oct.-Dec., 2007,
14(4): pp. 8-13.
[11]. K. Chang, N. Yau, M. Hansen, and D. Estrin, "SensorBase.org-A
Centralized Repository to Slog Sensor Network Data", in Proceedings of
International Conference on Distributed Computing in Sensor Network
(DCOSS)/Euro-American Workshop on Middleware for Sensor Networks
(EAWMS), 2006, San Francisco, CA, USA, pp.
[12]. K. Aberer, M. Hauswirth, and A. Salehi, "Infrastructure for Data
Processing in Large-Scale Interconnected Sensor Networks", in
Proceedings of International Conference on Mobile Data Management,
May 7-11, 2007, Mannheim, Germany, pp. 198-205.
[13]. S. Santini and D. Rauch, "Minos: A Generic Tool for Sensor Data
Acquisition and Storage", in Proceedings of 19th IEEE International
Conference on Scientific and Statistical Database Management, 2008, pp.
[14]. OGC, "Sensor Observation Service (SOS)", Open Geospatial
Consortium, accessed on: 12/30/2012, Available from:
http://www.opengeospatial.org/standards/sos.
[15]. C.A. Henson, J.K. Pschorr, A.P. Sheth, and K. Thirunarayan,
"SemSOS: Semantic Sensor Observation Service", in Proceedings of 2009
International Symposium on Collaborative Technologies and Systems
(CTS), May 18-22, 2009, Baltimore, MD, USA, pp. 44-53.
[16]. A. Sheth, C. Henson, and S. Sahoo, "Semantic Sensor Web", IEEE
Internet Computing, Jul./Aug., 2008: pp. 78-83.
[17]. Y. Liu, Y. He, M. Li, J. Wang, K. Liu, L. Mo, W. Dong, Z. Yang, M.
Xi, J. Zhao, and X.-Y. Li, "Does Wireless Sensor Network Scale? A
Measurement Study on GreenOrbs", in Proceedings of IEEE International
Conference on Computer Communications (INFOCOM), Apr. 10-15, 2011,
pp. 873-881.
[18]. A. Bröring, A. Remke, and D. Lasnia, "SenseBox-A Generic Sensor
Platform for the Web of Things", Mobile and Ubiquitous Systems:
Computing, Networking, and Services, 2012, 104: pp. 186-196.
[19]. J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri,
"Recommend-As-You-Go: A Novel Approach Supporting Services-
Oriented Scientific Workflow Reuse", in Proceedings of IEEE
International Conference on Services Computing (SCC), Jul. 4-9, 2011,
Washington DC, USA, pp. 48-55.

