
 
Fig. 1 Motivating example. 
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Abstract—The Internet of Things (IoT) aims to integrate 

the digital world of the Internet with our encompassing 
physical world. However, existing IoT systems do not pro-
vide considerate services, meaning that sensors dynamically 
“collaborate” to provide context-aware federated sensor 
data, tuned to human needs. This paper reports our on-going 
work developing a sensor service federation and provision-
ing infrastructure. A novel approach is presented to build 
social sensor networks to record and study historical interac-
tion patterns among sensors. Workflow provenance is car-
ried by a dynamic virtual device concept that we have intro-
duced. A case study describes how to leverage an in-
memory database to monitor and manage real-time sensor 
service provisioning. 

 
I. INTRODUCTION 

Sensor-equipped connected devices (Internet of Things 
or IoT) have been helping people sense the physical world 
[1] and yielding unprecedented services [2]. However, the 
considerate attribute of sensor service provisioning has not 
been significantly studied. In the human world, we think of 
people as considerate when for example they introduce 
themselves and their intentions without interrupting an on-
going conversation [3]. The term considerate applied to a 
software system addresses attempts to reduce user disrup-
tions during communication [4]. To facilitate human inter-
actions, the system might coordinate, prioritize or time shift 
communications. It might also add other annotative state-
ments as well to introduce and orient the information re-
ceiver. By considerate sensor service, we mean that sensors 
dynamically “collaborate” to provide considerate context-
aware federated sensor data. 

This paper reports our on-going efforts to develop a ser-
vice oriented computing-empowered technology layer to 
provide “considerate” services over the Internet of Things. 
We have three primary technical contributions: (1) We have 
developed a novel approach to build social sensor networks 
to record and study historical interaction patterns among 
sensors. (2) We have designed and developed a sensor ap-
plication server, a service-oriented middleware that supports 
considerate sensor service discovery and provisioning. (3) 
We have developed a concept of dynamic virtual device to 
embody workflow provenance management and analysis. 

The remainder of the paper is organized as follows. In 

Section II, we describe a motivating example that will be 
used to discuss our work throughout the paper. In Sections 
III, IV, V, VI, VII, we successively present our sensor ser-
vice modeling, discovery, application server, infrastructure, 
and scalability study. In Section VIII, we discuss related 
work and inSection IX, we draw conclusions. 

 
II. MOTIVATING EXAMPLE 

Our motivating example is a physical therapy scenario il-
lustrated in Fig. 1. A patient John visits a physical therapist 
Bill at his office. Bill prescribes a therapy plan (a multi-step 
procedure called a workflow), which advises John to move 
his legs up to the horizontal level, for 20 times within 8 
minutes. John is advised to repeat same exercise twice a day 
for 3 weeks prior to a follow-up visit. Due to John’s medical 
condition, every time when he does the exercise, the process 
has to monitor his vital signs (i.e., heart rate, blood pressure, 
and body temperature), say every 2 minutes. 

In this scenario, sensor data is used to measure John’s 
medical condition during the exercise. John may attach a 
mobile phone to his leg as a motion sensor. When he moves 
his leg, the motion sensor will sense the activity and provide 
readings that can be used to study the frequency and quality 
of the movement. Based on John’s medical profile, after 20 
leg movements in the 8-minute time period, his body tem-
perature and heart rate, and perhaps his blood pressure 
should move up a certain amount. At the same time, the 
room temperature and humidity in which John does the ex-
ercise are also factors that may have an impact on the meas-
urement results. 



Based on observed sensor data, Bill may dynamically 
change his query to sensor data. For example, if John’s heart 
rate goes up too fast, Bill may decide to conduct a closer 
monitoring, e.g., every 15 seconds instead of every 2 
minutes. Such a change of request may lead to different 
sensor data gathering and analysis activities. 

As shown in Fig. 1, a TV is present in the environment. 
Assume that John watches TV while he does the exercise. If 
John does not raise his leg high enough in the exercise, Bill 
will be notified and he will guide John. If the TV is too 
loud, its volume will be automatically turned down in a con-
siderate manner to facilitate effective communication be-
tween Bill and John. 

This example illustrates that, to provide a considerate 
service, multiple sensors may need to be identified in real 
time, and their data need to be dynamically federated to 
provide data analytics. Now that sensors can communicate 
with each other in sensor networks, a key motivation of our 
project is to determine how to leverage the latest technology 
advancement and establish an infrastructure over the sensor 
networks to enable and facilitate considerate service provi-
sioning. 

 
III. SENSOR SERVICE MODELING 

Our study is fundamentally based on our innovative 
mapping between sensors and services. Each sensor 
measures its surrounding environment and provides to the 
outside world its sensor readings, which can be considered 
as a service. Hence, sensors can be viewed as service pro-
viders. Thus we are exploring how to apply services compu-
ting techniques to sensor services and their relationships. 

In our previous work, we have introduced the concepts of 
virtual sensor and virtual device [5] to model sensor data 
federation. In this work, we extend our concepts to model 
workflow-oriented sensor services. A virtual sensor thus 
becomes a user-defined sensor service that reveals some 
information of a predefined environment. For example, a 
virtual sensor may be defined as a service to expose the av-
erage temperature of the room where John does exercises to 
help monitor his body condition. A virtual sensor may in-
volve one or more physical sensors. A virtual device refers 
to a user-defined abstract container that comprises one or 
more (virtual) sensors. It defines a user’s interest areas and 
it may represent a dynamic concept. For example, John may 
carry both a mobile phone and a medical watch, each con-
taining a collection of sensors. In this sense, John can be 
viewed as a virtual device, hosting multiple sensors. 

In the service level of our study, we only care about vir-
tual sensors that possess business logic (established by the 
context). Each virtual sensor that provides a (business) sen-
sor service to the outer world will thus become an atomic 
unit of our study. A typical multi-step procedure, called a 
workflow, may invoke multiple virtual sensor services. Fig. 
1 is an example of such a workflow involving a collection of 

sensor services. 
As shown in the motivating example, every time when 

John conducts the therapy exercise (a workflow run), the 
surrounding sensors will monitor and detect his body condi-
tion. Such data will help therapist Bill better understand 
John’s reaction to the therapy and better personalize the 
treatment for John. Therefore, we associate each workflow 
with a virtual device in order to record workflow prove-
nance (history) for later data analysis. The dependency be-
tween a workflow and sensor services is defined as follows. 

 

Definition 1. A workflow W comprises a global schema G 
and a virtual device with a finite set of actions for each sen-
sor service si of W. An action of service si is an expression 
Update :- Condition where Condition is a query over local 
schema Li, and Update is a non-empty sequence of positive 
and negative relational literals over Li such that each varia-
ble occurring in a negative literal also occurs in Condition. 

 

Based on the association between a workflow and a vir-
tual sensor, we model the relationship between a workflow 
and related sensor services. Leveraging social network theo-
ry and techniques, we will analyze usage history and behav-
iors of sensor services in a workflow context. 

We model all IoT sensors as social entities. The rationale 
is that sensors may be intelligently used together by people 
to better sense the world. We start by modeling the “use” 
relationship between a workflow and a sensor service. The 
workflow in the motivating example Fig. 1 monitors a set of 
sensors: a heart rate sensor, a blood pressure sensor, a body 
temperature sensor, and two room temperature sensors. We 
establish a social tie between them. A workflow-sensor net-
work is thus established based on their inclusive relation-
ships. Fig. 2(a) illustrates a segment of the network: an edge 
exists between a workflow and a sensor if the sensor’s read-
ings are used in the workflow. 

Such a network relationship can be formalized into a ma-
trix Q that describes the involvement relationships between 
workflows and sensors: 

 

[ ],0 ,0ijQ q i m j n     , where: 

1ijq  if workflow i retrieves sensor j; m workflows and 

n sensors are included. 
As discussed earlier, all workflow runs are maintained in 

provenance. Therefore, such provenance data can be ana-
lyzed to extract the above relationships. Fig. 2(b) illustrates 
a part of a workflow-sensor network. 

Based on the above relation Q, relation S can be retrieved: 

njisQQS ij
T  ,0],[ , where: 

sij = number of workflows where both sensors i and j are 
retrieved; sii = number of workflows where only sensor i is 
retrieved. 



(a)                                                 (b) 
Fig. 2 A “social” relation between Internet of Things. 

Relation S represents a “social network” among sensors. 
Such a network of sensors forms a Social Internet of Things 
(SIoT). The semantic meanings of its comprising connec-
tions are: if two sensors are retrieved by the same workflow, 
there is a social tie between them. Note that rich context 
information may be carried by the edges in the network as 
labels. For example, an edge between two sensors may be 
labeled with the corresponding workflow run that retrieves 
sensor readings among them. By analyzing the details of a 
specific workflow run, we can understand when and under 
which circumstances the two sensors’ readings were feder-
ated. The collaboration relationship maps to the association 
rules in social network analysis. 

In addition, the social ties can be further differentiated 
into tight and loose collaboration relationships. Recall that 
our concept of virtual sensor implies that some formula is 
specified to federate readings from multiple homogeneous 
sensors, e.g., calculating an average room temperature from 
two sensors in a room. We call this relationship a tight col-
laboration tie, in the sense that their sensor readings are fed-
erated, and the original sensor readings are not shown in the 
final values. 

In contrast, the relationships among multiple sensors in a 
virtual device are called loose collaboration relationship. 
Sensors in a virtual device may not be the same type of sen-
sors. Even if they belong to the same type of sensor (e.g., 
the body temperature sensor and room temperature sensors 
in the motivating example), their readings are simply aggre-
gated to show that there may be some correlation between 
them. For example, room temperature may have an impact 
on body temperature. Such loose collaboration relationship 
may be useful for users to conduct further data analysis. 

After establishing the workflow-sensor networks, we 
calculate various metrics over them to comprehend the in-
teraction patterns between sensors and workflows, as well as 
patterns among sensor usages. We adopt the tradition of 
calculation of centrality and prestige in social network 
analysis, including degree centrality (popularity), between-
ness centrality, and clique. Through degree centrality analy-
sis, highly used sensors can be identified based on the popu-
larity of corresponding nodes. Through betweenness cen-
trality analysis, hinge sensors can be identified. Through 
clique, we can identify collaborative sensors, i.e., associa-

tion rules among services. 
If a sensor is used multiple times in multiple workflows, 

popularity can be considered as an annotation to be used for 
future purpose. For example, if a sensor is used heavily by 
many queries, then its readings may need to be pre-fetched, 
pre-processed, or redirected, and so on. Using the k-path 
betweenness algorithm, we can identify the key sensors, in 
the sense that they collaborate with other sensors in user 
queries (i.e., workflow runs). 

Through these analyses, we can answer user queries re-
garding sensor query (usage) behaviors. For example, “how 
are different sensors used together in workflows?” And “in 
what types of workflows is a sensor usually used?” As an-
other example on sensor-sensor relationship, we can ask 
“are there many sensors that collaborate with each other in 
workflows, and how?” And “what are the key sensors in 
these collaborations?” Such information will help our Sen-
sor Service Discovery (SSD) service to help select proper 
sensors to provide considerate service provisioning. This 
will be discussed in the next section. 

 
IV. SENSOR SERVICE DISCOVERY 

Since we are studying considerate service provisioning, 
one core requirement is to understand personalization. For a 
specific service oriented to a specific user, a considerate 
service implies that we need to discover related sensors that 
can contribute to understand the context of the user, as well 
as the specific service query. 

Based on the workflow instance assigned by therapist 
Bill to patient John, we need to dynamically construct its 
associated virtual device to find physical sensors whose 
features satisfy the considerate requirements. In the motivat-
ing workflow, a motion sensor, a blood pressure sensor, 
abody temperature sensor, a heart rate sensor, and room 
temperature sensors at the user’s location should be discov-
ered. Along with this, users can also have various prefer-
ences, e.g., nearby and popular sensors will have higher 
priority. 

Synchronization among sensors may also need to be con-
sidered. In the motivating example the temperature sensor in 
the room in which John does his exercise may be triggered 
to wake up to send readings if the motion sensor in the mo-
bile phone on his leg has sensed that John has started an 
exercise. After the exercise is done, the temperature sensor 
does not have to send in readings. The temperature sensor 
does not have to send readings unless necessary – saving 
energy as another considerate service provisioning. 

Dynamic sensor service discovery is an integral and key 
part of our system. We have designed a service discovery 
engine that takes into account user preferences before iden-
tifying the sensors to be involved in a specific workflow 
run. Each sensor has a sensor type and carries values for a 
set of QoS attribute dimensions. Users may configure their 
own preferences by selecting a subset of these QoS dimen-
sions. Without loss of generality, we consider the following 
five QoS dimensions: location, availability/reliability, popu-



larity, accuracy, and usage. 
 

Location: We care more about relative location than ab-
solute GPS location. For example, if John does exercise in 
Building 23, room 120 - the sensors whose locations relative 
to the room within a threshold of distance are identified. 

Availability/Reliability: Historical sensor data readings 
are examined to evaluate the availability and reliability of a 
sensor. Example measurements are: mean time between 
failures of the sensor, whether the sensor bandwidth exhibits 
some problem; or whether there is a need for real-time data 
or achieved data is sufficient. 

Popularity: This dimension refers to the number of users 
who have used this sensor in the past, in other words, their 
workflows (virtual devices) invoke the sensor service. 

Accuracy: The value of this dimension can be measured 
based on: whether the sensor readings are semantically rea-
sonable; or whether the sensor readings are consistent to 
those from sensors close by. 

Usage: This dimension considers power consumption. 
For example, a patient asked to do the exercise 20 times 
may use the sensor data more often than a patient asked to 
do the exercise 10 times. This implies that a motion sensor 
used in the former case would consume more power than 
that used in the latter case. Therefore, if a sensor is required 
for a longer time, we will recommend a low power consum-
ing sensor. 

 

Here we model a user preference space P for user ui as 
௨೔݌ ൌ ሼ݌ଵ,݌ଶ, … , ௜݌ ௞ሽ, where݌ ∈ ܳ and pi denotes a dimen-
dimension affecting ui’s decision. ܲ ⊆ Q. 

Definition 2. Sensor Dominance: A sensor service si is 
said to dominate another sensor service sj on ܳ iff ∀ݍ௜ ∈ ܳ, 
,௜ݏ ௜ݍ ൒ ,௝ݏ ௧ݍ∃ ௜ andݍ ∈ ,௜ݏ ,ܳ ௧ݍ ൒ ,௝ݏ  .௧ݍ

Definition 3. Sensor Skyline: A sensor service si is a sky-
skyline sensor iff there does not exist a sensor service 
௝ݏ ്  .௜ dominating sjݏ

Definition 4. User Preference-Aware Sensor Dominance 
(UPD): Given a user preference space P, a sensor service si 
is said to dominate another sensor service sj on P iff 
௝݌∀ ∈ ,௜ݏ ,ܲ ௝݌ ൒ ,௝ݏ ௧݌∀ ௜ and݌ ∈ ,௜ݏ ,ܲ ௧݌ ൐ ,௝ݏ  .௧ݍ

Definition 5. User Preference-aware sensor Skyline 
(UPS): A sensor service si is a skyline sensor on P iff there 
does not exist a sensor service ݏ௝ ്  .௜ dominating si on Pݏ

 

We thus decompose the process of sensor service discov-
ery into the following two phases: 

Local Optimization: Given a workflow W, a user pref-
preference space P, and a candidate sensor service class Si 
for a task tiϵW, compute the UPD(Si,P)|ti. 

Global Optimization: Given UPD(Si,P) for each task 
tiϵW, compute the top-k Virtual Devices for workflow W. 

 

As shown in the example below, the local optimization 
phase aims to select the top-k sensor services based on their 
QoS attributes, e.g., availability, accuracy, and usage. Each 

QoS dimension is associated with an index. We apply a 
multi-index based algorithm to compute the UPD of indi-
individual QoS dimensions. For a workflow wi, the UPD 
will be calculated to partition sensors based on user 
preferences, such that sensors are sorted in a descending 
order of maximum value in that dimension. 

 
The sensors in the UPD are then ranked based on the 

scores and the top-k sensors are identified. Thus we get the 
top-k available sensors for the workflow locally. The score 
of a sensor is calculated as: 

௜ሻݏሺ݁ݎ݋ܿܵ ൌ෍
௝,௠௔௫ݍ െ ௝ݍ

௝,௠௔௫ݍ െ ௝,௠௜௡ݍ

௔

௝ୀଵ
 

 

where ݍ௝,௠௔௫	and ݍ௝,௠௜௡  are the maximum and minimum 
values of the candidate sensor class on the dimension j and 
qj is the value of the sensor i for dimension j. 

For global optimization, we leverage “social” relation-
ships among sensors (as described in Section III above) to 
select composite services. For each service cluster in the 
virtual device, we obtain top-k candidate services from the 
local optimization procedure. We then get all combinations 
of composite services. A social tie of each combination is 
calculated. The top one will be recommended to the user. 
The pseudo code is summarized as below. 

 

Alg. 1: Global Optimization Algorithm (top-k): 
1. Virtual_Device ← ∅; 
2. Heap = Root Node comprising services with lowest score; 
3. initialize(ParentTable); 
4. while Heap ് ∅ do 
5.    x = top(Heap); 
6.    if ( ∄ݕ ∈ Virtual_Device, dominated(x,y)) then 
7.       insert(x, Virtual_Device) 
8.    end if 
9.    Child_Nodes = Expand (x); 
10.  for ∀݊ ∈  do ݏ݁݀݋ܰ_݈݄݀݅ܥ
11.      Number_of_Parents (n)--; 
12.      if Number_of_Parents (n) == 0 then 
13.          insert(n,Heap); 
14.      end if 
15.   end for 
16. end while 

 

As illustrated, top-k services are sorted based on their 
scores. All combinations of composite services are 
enumerated using a lattice, based on a min-Heap strategy 
that extracts the composite services with minimum scores 
and compares the social coalition against other virtual 
devices. A composite service is added to the final list of 
virtual devices only if it is not dominated by any other 
composite services in the list. 

The performance of the Global Optimization Algorithm 
is decided by two major factors: 



 
Fig. 3 Sensor application server. 

1. Heap operations: It is affected by the heap size, 
which grows exponentially with the number of sensors. This 
behavior is observed because the size of the heap is bounded 
by the number of nodes on the middle level of the lattice. 
After every extraction the heap needs to be reorganized. 
With increasing number of members in the heap this 
operation becomes more costly. 

2. Social tie comparisons: It grows exponentially with 
the number of sensors involved. The high computational 
complexity of Global Optimization Algorithm makes it 
impractical to compute the virtual devices with a large 
number of sensors. A bottom-up strategy may be adopted, 
using the same algorithm but iteratively. Instead of creating 
combinations of all sensor types at one time, this algorithm 
iteratively combines these services thus providing a faster 
and more scalable solution. 

 
V. SENSOR APPLICATION SERVER 

Based on our sensor service modeling and discovery 
techniques, we have developed a sensor-oriented 
infrastructure. We name it Sensor Application Server, 
analogous to the software-oriented application servers such 
as WebLogic and WebSphere. This supports our two main 
goals: service collaboration provenance management, and 
sensor service discovery and composition. 

As explained in Section III, we have introduced a virtual 
device concept to carry contextual information (sensor data 
provenance) of a specific workflow execution (workflow 
run). Following this idea, we differentiate three concepts: 
workflow template, workflow instance, and workflow run. A 
workflow template represents an abstract definition of 
stepwise activities; a workflow instance represents a 
personalized workflow template for a particular user; a 
workflow run represents an actual execution of a workflow 
instance. 

As shown in Fig. 3, a workflow template is retrieved 
from a medical workflow repository representing a type of 
physical therapy procedure. Then Bill checks John’s 
medical record, in order to configure the workflow 
specifically for John. Such a workflow instance is stored 
back in the database, as a customized workflow for John for 

a specific time period. Each time when John does the exer-
cise, the corresponding workflow instance is triggered for 
execution as a workflow run. The provenance of each work-
flow run is also stored into the database for Bill to analyze 
in later diagnosis. 

As shown in Fig. 3, each workflow run will query the 
sensor service discovery (SSD) service to dynamically form 
a virtual device to support the execution of the workflow. 
Using the motivating example shown in Fig. 1, SSD locates 
two room temperatures in the room where John does his 
exercise. Therefore, Fig. 3 illustrates a formed virtual device 
comprising a virtual sensor representing the average room 
temperature based on two temperature sensors, a body 
temperature sensor, a heart rate sensor, and a blood pressure 
sensor. As shown in Fig. 3, a workflow run dynamically 
formed a virtual device comprising multiple sensors. In oth-
er words, these sensors collaborate with each other in the 
context of the workflow. 

 
A. Message Bus 

At Ericsson lab, we have developed a prototype of a 
Message Bus. In contrast to generic message bus [6], to 
enable sensor-oriented information changing through 
common message-based communication. As shown in Fig. 
4, sensors are not isolated. Instead, they can “talk” to each 
other via message passing with the support of a centralized 
Messaging system. Each message notifies an event 
happening at the corresponding sensor. As the following 
example shows, a sensor may declare that a corner red light 
is turned on by publishing the following message: 
 

publish(“turn on light”, null, “color=red&location=corner”); 
 

A publish/subscribe pattern is adopted in the Message 
Bus. Sensors can publish messages to the Message Hub; and 
sensors can subscribe to interested messages. The following 
example shows that a sensor is interested in receiving 
notifications when some corner red light is turned on. 

 

subscribe(“http://eus2.fuatara.com/callback”, 
    “turn on light”, 
    [“color=red”, “location=corner”, “eco-friendly=true”]); 

 

As shown in Fig. 4, sensor peers thus form a loose 
coupling relationship. The Messaging Catalog acts as a 
filter, so that only allowed topics and metadata can be 
published and subscribed to devices. In addition, four forms 
of messaging are supported: unicast, multicast, broadcast, 
and publish-subscribe. 

 
B. Message Bus-based Service Collaboration 

As shown in Fig. 3, all physical sensors are mapped into 
an agent in the Message Bus as its representative. It is 
analogous to an Entity Bean in a (software) application 
server to its persistent object. It is an agent’s responsibility 
to monitor the health of the corresponding physical sensor. 
In other words, sensors interact with each other through 
their agents in the Message Bus. 

Inspired by the EJB concepts that differentiate between 



 
Fig. 4 Message Bus. 

Fig. 5 Supporting considerate service provisioning. 

entity beans and session beans, we differentiate between 
sensor-oriented agents and virtual entities, i.e., virtual 
sensors and virtual devices. As shown in Fig. 3, in the 
Message Bus, virtual entities are modeled as agents as well. 
But in addition, they carry business logic. 

Message Bus requires that the agents be deployed ahead 
of time. Therefore, for scalability, we have preconfigured 
and deployed a pool of anonymous peers (agents) when the 
Message Bus is deployed onto the Web server. At run time, 
peers will be extracted from the pool and dynamically 
assigned to act as various roles for workflow runs. Upon 
completion, the peers will be released back to the pool to be 
used by other workflow runs. 

As described earlier, sensors communicate with each 
other via message passing. As shown in Fig. 3, our strategy 
is to establish a listener over the Message Bus. All sensor 
messages will be scanned and stored. As shown in Fig. 3, 
the Message Bus is treated as a standalone generic service. 
After a processing a message, the Messaging Hub forwards 
the message to our message listener as a JSON object. We 
have built a message bus listener as a separate service. A 
logging mechanism is available in the Message Hub. Every 
event in Message Hub will trigger a log message to be sent 
to the listener server. 

By building a listener for message bus, the sensor 
application server knows what exactly happens in the 
system at runtime. In this way, we can use this information 
to determine which service/sensor needs to be used in real-
time conditions, and how to properly compose services to 
make the system considerate based on real-time needs. By 
representing sensors as agents with methods, we can model 
a certain service workflow by using methods as primitives. 
Sensors (via their corresponding sensor agents) publish their 
readings onto the Message Bus. Workflow runs subscribe to 
specific sensor readings (through service discovery) and will 
receive the sensor readings. At the same time, workflow 
runs leverage analytical methods to monitoring the 
incoming streaming data at real time (will be discussed in 
the next section). If there is a change of plan (e.g., to change 
the frequency of heart rate monitoring), the workflow run 
will publish a request to the Message Bus. 

We have designed a two-phase publish/subscribe pattern. 
When a workflow instance is established for a workflow 
run, it will construct a representative agent in the Message 

Bus. A two-way relationship is built between the workflow 
agent and the corresponding sensor agents. On one hand, the 
workflow run will subscribe to all identified sensor agents 
for their readings. On the other hand, the sensor agents will 
subscribe to the workflow agent to receive particular 
requests. 

 
VI. INFRASTRUCTURE SUPPORTING CONSIDERATE 

SERVICES 
We have designed a service-oriented infrastructure 

supporting considerate service provisioning. As shown in 
Fig. 5, our infrastructure builds a layer on our Sensor Data 
& Service Platform (SDSP) and Message Bus. It comprises 
four horizontal layers and four vertical layers. For all 
sensors registered in our SDSP, the service modeling and 
publishing layer analyzes their interactions and establishes a 
sensor social network. The service composition and 
collaboration layer monitors the sensor interactions through 
a listener service, and handles dynamic service composition. 
The service visualization and analytics layer helps to 
visualize and analyze sensor relationships. The service 
provisioning layer interfaces with external sensors and 
deliver considerate services. 

Vertically, the service discovery layer is in charge of 
dynamic sensor service discovery and integration. The 
considerate layer controls the quality of service provisioning 
focusing on the considerate property. The data architecture 
layer decides the data model and structure of service 
management. The governance layer monitors the health of 
the overall system. 

One specific feature that we consider is the scalability. 
Our previous work adopted the traditional client-server 
model [5], where SDSP receives all sensor readings and 
forwards them to persistent storage (i.e., Amazon 
DynamoDB). Although straightforward, the SDSP server 
becomes the bottleneck. To support streaming sensor data 
and real-time data analytics, we decided to adopt the 
Message Bus in our infrastructure. As shown in Fig. 5, all 
registered sensors directly send notifications to the message 
bus. 

To make the sensor network considerate, it is critical to 
seamlessly integrate human interaction. Without losing gen-



 
Fig. 6 Scalability study. 

erality, we have incorporated language processing and lan-
guage feedback to our social sensor network. John (or other 
treated subject) interacts with the social sensor networks 
through voice, and the social sensor networks provide voice 
feedback according to the subject’s words, the prescription 
for this subject, and the data collected from this subject. 
Such a feature becomes extremely useful when the patient 
feels uncomfortable during a physical treatment, which in-
dicates the necessity of the modification of the prescription. 

When the exercise starts, the therapist may start a query, 
to ask to send to him the patient’s average heart rate every 2 
minutes. The service layer will then generate a workflow, 
caching the heart rate sensor’s streaming data and send back 
average values every 2 minutes. 

During the exercise (workflow run), the patient may feel 
uncomfortable. Bill may then change his query as to send 
the patient’s heart rate every 15 seconds. Then the service 
will not cache heart rate sensor readings for later analysis. 
Instead, all readings will be sent to the therapist directly for 
him to better monitor the patient’s body situation. 

 
VII. SCALABILITY STUDY 

A. Sensor Service Analytics 
The scalability and performance are the major concerns 

of our infrastructure. For analyzing sensor behaviors, all 
messages are stored. We have decided to adopt in-memory 
database to address the performance concern. Our 
preliminary study focuses on the feasibility of our 
infrastructure to support message-based considerate service 
discovery. Although our current environment is built on an 
SAP HANA database instance configured at Amazon Web 
Service (AWS), the techniques developed are generic 
enough to be applied to other environments. 

We use SAP HANA as a scalable solution to the volumes 
of data. HANAis an in-memory data platform that can be 
deployed in the cloud. Unlike other database engines, SAP 
HANA provides column-based storage which allows us to 
easily monitor data. This helps provide real-time analytics. 
As explained in Section V, sensor communications are 
represented by topic-based messages. Each topic is 
represented by a <key, value> pair. The sensor messages can 
be stored in SAP HANA and can be used for real-time 

analytics. Since we have to store messages passed around, 
the data can be stored easily. We store raw sensor readings 
using the schema of <time stamp, device id, sensor type, 
sensor reading>, and also aggregated the readings in a 1-
minute time window. 

The platform is used for providing real-time analytics. 
We run the K-means algorithm (directly provided by 
HANA's Predictive Analysis Library) to monitor sensor 
health. It detects any anomaly in a sensor reading's interval, 
and flags outliers as sensor readings having an abnormal 
interval from the previous readings. 

 
B. Experimental Study 

We have conducted simulations to evaluate the 
scalability of our infrastructure. We simulated different 
scales of a sensor network, which comprising from 1 to 
30,000 physical sensors. On each of the simulated sensor 
network, we simulated different numbers of concurrent 
users: from 1 to 50 users. As shown in Fig. 6, when the 
scale of a sensor network is moderate (comprising less than 
1,000 physical sensors), our system scales well even when 
the number of concurrent users go up to 50. To better 
illustrate the experimental results, we keep only significant 
data in Fig. 6. 

Note that the aforementioned experiments were 
conducted based on the SAP HANA database. In our earlier 
implementation, all sensor readings were stored in NoSQL 
DynamoDB database. We repeated the same set of 
experiments. As shown in Fig. 6, the scalability of the 
system relying on HANA significantly surpasses that on 
DynamoDB. This symptom is resulted from the specific 
pattern of frequent query over certain types of sensors, e.g., 
a user is working on a virtual sensor involving multiple 
temperature sensors. Thus, the specific column-based query 
used by HANA yields better results.  

 
VIII. RELATED WORK 

Mohamed and Al-Jaroodi [7] surveyed the requirements 
of service-oriented middleware for wireless sensor network. 
Internet-scale Resource-Intensive Sensor Network Services 
(IrisNet) [8] offers a set of generic functionalities and APIs 
to allow user to query and process distributed collections of 
high-bit-rate sensors. On top of IrisNet, Chen et al. [9] 
proposed X-Tree Programming, a database-centric approach 
to programming over a large-scale of Internet-connected 
sensing devices. Microsoft SenseWeb [10] provides a Web 
2.0 platform for users to upload and access sensor data 
streams from shared sensors on the Internet. SensorBase 
[11] built a centralized data storage and management 
platform that allows users to publish and share (“slog”) 
sensor network data using a blog-like approach. Global 
Sensor Networks (GSN) [12] adopts a scalable P2P model 
in favor of integrating heterogeneous sensor network 
technologies. In this work, we explore how SOA can be 
leveraged to provide considerate sensor services. 

Some researchers focus on building tools to support sen-



sor data manipulation. For example, the Desthino (Distrib-
uted Embedded Things Online) project identifies a practical 
set of software tools to help users collect and store sensor 
data from heterogeneous distributed sensors [13]. 

Sensor Observation Service (SOS) is a standard Web 
service specification, aiming to standardize the way of 
requesting, filtering, and retrieving sensors and sensor data 
to enhance sensor interoperability [14]. Some researchers 
explore how the Semantic Web can be integrated with a 
Sensor Web, such as SemSOS [15] and Semantic Sensor 
Web [16]. Some researchers, such as Liu et al. [17], study 
the scalability of sensor networks. A concept of virtual 
sensor is introduced in GSN [12] to abstract sensor data as 
temporal streams of relational data, and to represent derived 
views or a combination of sensor data from different 
sources. SenseBox [18] introduced an autonomous 
computing unit encapsulating environment and REST APIs. 
In our earlier work, we have developed an SOA-based Web 
2.0 platform that allows users to federate heterogeneous 
sensor data sources [5]. In this project, we have extended 
our earlier work and build an infrastructure to support 
considerate sensor service discovery and composition. 

Our previous work also leverages social network 
techniques to facilitate workflow reuse, by analyzing usage 
history and behaviors of software components [19]. In this 
project, we have extended our techniques to facilitate sensor 
federation. 

 
IX. CONCLUSIONS 

This paper has reported our efforts of exploring how to 
develop a service oriented computing-empowered 
infrastructure to provide “considerate” services. By mapping 
sensors to services and modeling sensor federation as social 
networks, we leverage past sensor usage history to provide 
more considerate services. 

In our future work, we plan to refine our prototyping 
system and provide our middleware for the community to 
use. We also plan to conduct a performance study between 
using various databases as backend, including an in-memory 
database, a NoSQL database, and a relational database. 
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