

Fig. 1 Service-oriented sensor data & service platform.

Sensor Data as a Service -

A Federated Platform for Mobile Data-Centric Service Development and Sharing

1
Jia Zhang,

1
Bob Iannucci,

1
Mark Hennessy,

1
Kaushik Gopal,

1
Sean Xiao,

1
Sumeet Kumar,

1
David Pfeffer,

1
Basmah Aljedia,

1
Yuan Ren,

1
Martin Griss,

1
Steven Rosenberg,

 2
Jordan Cao,

3
Anthony Rowe

1
Carnegie Mellon University – Silicon Valley, USA

2
SAP, USA

3
Department of Electrical Computing Engineering, Carnegie Mellon University, USA

jia.zhang@sv.cmu.edu, bob @sv.cmu.edu, martin.griss@sv.cmu.edu, steven.rosenberg@sv.cmu.edu, jordan.cao@sap.com,

agr@ece.cmu.edu

Abstract—The Internet of Things (IoT) offers the promise

of integrating the digital world of the Internet with the phys-

ical world in which we live. But realizing this promise ne-

cessitates a systematic approach to integrating the sensors,

actuators, and information on which they operate into the

Internet we know today. This paper reports the design and

development of an open community-oriented platform aim-

ing to support federated sensor data as a service, featuring

interoperability and reusability of heterogeneous sensor data

and data services. The concepts of virtual sensors and virtu-

al devices are identified as central autonomic units to model

scalable and context-aware configurable/reconfigurable sen-

sor data and services. The decoupling of the storage and

management of sensor data and platform-oriented metadata

enables the handling of both discrete and streaming sensor

data. A cloud computing-empowered prototyping system

has been established as a proof of concept to host smart

community-oriented sensor data and services.

I. INTRODUCTION

With the advancement of the Internet of Things (IoT),

the number of active web-connected devices is rapidly ap-

proaching 50B. These include static and mobile sensors and

actuators planted in surrounding environments including

buildings and spaces, as well as devices embedded in mo-

bile smart phones and moving vehicles [1]. Such sensor-

equipped connected devices, collaboratively, could help

sense the world [2] and generate enormous amounts of po-

tentially interesting and useful data [3, 4]. More importantly,

such datasets present great opportunities to create unprece-

dented value-added services [5], for example, energy saving

recommendations based on usage pattern recognition and

exceptional situation prediction and detection for disaster

management.

Realizing this promise, however, necessitates a systemat-

ic approach to integrating the sensors, actuators, and infor-

mation on which they operate into the Internet we know

today. Recent years have witnessed a significant amount of

effort building various sensor networks. The first wave of

sensor networks was characterized by a broad and diverse

collection of mostly incompatible, purpose-built hardware.

It surfaced some issues in wireless networking and allowed

the building of 1000's-scale networks. Each such network

was mostly homogeneous internally; however, there was

little sharing of common elements from one network to the

next. The second wave is motivated by the barriers that the

first wave encountered. Making homogeneous networks

scale to 10,000 and beyond compels the view that the stack

must be divided up and that common functions should be

shared rather than re-invented.

With this motivation, a number of community-oriented

platforms have been established to allow users to contribute

and share sensor data in heterogonous data sources. Some

tools are also developed to assist users in mashing up shared

sensor data and developing value-added applications. Rep-

resentative platforms include Microsoft SenseWeb [6],

Global Sensor Networks (GSN) [7], SensorBase [8], IrisNet

[9], and Semantic Sensor Web [10]. Such a peer production

paradigm offers significant advantages such as large spatio-

temporal coverage, on-demand resource sharing, amortized

cost sharing over applications, and feasibility of developing

new value-added sensor data services [6].

With these many sensor networks, their interoperability

remains a challenge. Data stored at individual sensor net-

works are isolated and cannot be easily incorporated. As

shown in Fig. 1, the advancement of cloud computing, big

data and IoT calls for sensor data as a service. Therefore,

one objective is to develop an architecture that addresses the

fundamental issues of device semantics, heterogeneity,

semi-connectedness, fault tolerance, clustering, low-power

operation, and security [11, 12]. These devices may belong

to public and private owners and may move constantly and

may not remain available all the time. Inexpensive sensors

may break; batteries may run down; and software may be-

come obsolete. In addition, one must find relevant data

sources and transform the datasets into unified, machine

understandable forms. To properly understand data, its

provenance as how it was created and gathered may have to

2013 IEEE 10th International Conference on Services Computing

978-0-7695-5026-8/13 $26.00 © 2013 IEEE

DOI 10.1109/SCC.2013.34

446

be assessed. To process a federated set of data, one may

leverage reusable data processing tools developed by others

and compose them into an automated workflow (procedure).

Throughout this data sharing and analysis process, privacy

and confidentiality may have to be preserved as well [6].

It has been claimed that service-oriented computing

would empower an infrastructure to provide a comprehen-

sive solution to these challenges [11]. However, sensor data

and services’ reusability and interoperability among various

middleware tools and platforms remains a challenge. Exist-

ing platforms and solutions do not provide system-level

support for such key features.

Toward enabling sensor data as a service, this project

aims to maximize the sharing and utility of available sensor

data sources, data, and data processing tools, to enable

greater sensor data services. Our strategy is to study the

programmability [13] and fundamental data model of sensor

networks, and develop a service-oriented platform to facili-

tate community-scale data services sharing and develop-

ment. The platform will be made accessible to research

groups and individuals in the global community who have

original data and tools, and will provide direct assistance to

potential contributors who will develop value-added data

and tools.

This paper reports on this on-going project and our pre-

liminary design and development of the platform prototype.

Our contributions are three-fold. (1) The platform is cen-

tered on a data model that supports scalable and interopera-

ble sensor data and services modeling. (2) Sensor data and

platform-oriented metadata are decoupled and stored sepa-

rately, to support sensor data federation and reuse. (3) A

cloud computing-empowered system architecture further

enhances the scalability of the platform.

Leveraging SOA, our presented platform provides a uni-

fied view of data and workflow provenance. The infrastruc-

ture directly improves the community-driven data-centric

service provisioning capabilities for the smart space. The

broader impact of our project lies in enabling more compre-

hensive data-oriented service development and sharing.

The remainder of the paper is organized as follows. In

Section 2, we discuss related work. In Section 3, we analyze

architectural decisions. In Section 4, we introduce our data

model. In Section 5, we present the system architecture of

the platform. In Section 6, we present our prototype imple-

mentation. In Section 7, we draw conclusions and discuss

future work.

II. RELATED WORK

At the most basic level, the ability to combine sensor da-

ta from disparate sources relies on a mechanism to readily

identify equivalence classes–mapping raw readings from

transducers of different manufacturers to correctly-

translated, error-bounded readings of well-recognized phys-

ical quantities (e.g., temperature, pressure). The IEEE

1451.4 Transducer Electronic Data Sheet (TEDS) standard

[14] provides such a mechanism. TEDS-equipped sensor

devices can self-identify and provide core information about

a sensor–its manufacturer, version, serial number, transducer

“type” (drawn from a set of well-known classes), and pa-

rameters for translating and interpreting raw readings.

Botts and Robin initiated the development of an XML-

based sensor modeling language that grew into SensorML

[15] which is under the oversight of the Open Geospatial

Consortium (OGC). SensorML provides means to describe

processes, including the process of translating measurement

by sensors into data in common formats.

Madden, Franklin, Hellerstein and Wong created TinyDB

[16] to demonstrate the concept of modeling sensor network

data access as SQL-like queries and demonstrated the ability

to push processing of sub-queries into the sensor network

itself.

Mohamed and Al-Jaroodi [11] surveyed the requirements

of service-oriented middleware for wireless sensor network

and reviewed some representative approaches. In recent

years, a number of efforts have established infrastructures

and tools to enable acquisition, storage, processing and rep-

lication of distributed sensor data.

Internet-scale Resource-Intensive Sensor Network Ser-

vices (IrisNet) [9] offers a set of generic functionalities and

APIs to allow user to query and process distributed collec-

tions of high-bit-rate sensors. IrisNet adopts a two-tier archi-

tecture comprising sensing agents (SA) that collect and pre-

process sensor data and organizing agents (OA) that store

sensor data. On top of IrisNet, Chen et al. [17] proposed X-

Tree Programming, a database-centric approach to pro-

gramming over a large-scale of Internet-connected sensing

devices. Microsoft SenseWeb [6] provides a Web 2.0 plat-

form for users to upload and access sensor data streams

from shared sensors across the Internet. SensorBase [8] built

a centralized data storage and management platform that

allows users to publish and share (“slog”) sensor network

data using a blog-like approach. It allows users to define

some data types, project groups, and access control policies.

SensorBase also allows users to query data sets based on

geographic location, sensor type, date/time range, and other

relevant fields.

On the other hand, Global Sensor Networks (GSN) [7]

adopts a scalable peer-to-peer architectural model in favor

of integrating heterogeneous sensor network technologies.

GSN also supports the asynchronous publish/subscribe pat-

tern in addition to synchronous queries.

Some researchers focus on building tools to support sen-

sor data manipulation. Among them, the Desthino (Distrib-

uted Embedded Things Online) project aims to provide a

practical set of software tools, such as Minos, to help users

collect and store sensor data from heterogeneous distributed

sensors [12]. Sensor Observation Service (SOS) is a stand-

ard Web service specification, defined by the Open Geospa-

tial Consortium (OGC) Sensor Web Enablement (SWE)

group, aiming to standardize the way of requesting, filtering,

and retrieving sensors and sensor data to enhance sensor

interoperability [18].

447

Fig. 2 Comparison of existing sensor platforms.

Some researchers explore how the Semantic Web can be

integrated with a Sensor Web. For example, SemSOS [19]

models the domain of sensors and sensor observations in a

suite of ontologies. Based on the SemSOS ontologies, Se-

mantic Sensor Web [10] was established where semantic

annotations are added to comprising sensor data; and sensor

observations can be reasoned through ontology models.

Some researchers study the scalability of sensor net-

works. For example, Liu et al. [1] studied a large operating

sensor network system, GreenOrbs, and concluded that an

event-based routing structure will gain more adaptability.

Minos [12] proposes a simple 5-tuple data model (sen-

sorType, node, nodeType, deployment, user). A concept of

virtual sensor is introduced in GSN [7] to abstract sensor

data as temporal streams of relational data, and to represent

derived views or a combination of sensor data from different

sources. SenseBox [20] introduced an autonomous compu-

ting unit encapsulating environment and REST APIs. In

contrast to their data models, ours favor seamless integration

of cyber world (functional units) and physical world (sen-

sors) allowing dynamic composition (i.e., through the con-

cept of device).

Three commercial sensor data platforms appear to be

close to the goal of our project: TempoDB [21], Cosm, and

SensorCloud. The three platforms share some common fea-

tures. First, they all focus on time-series datasets. Second,

the platforms concentrate on sensors with discrete readings

instead of continuous media. Third, they all provide REST

APIs to facilitate storing, retrieving, and querying time se-

ries data. The comparison of the unique features of the three

platforms is summarized in Fig. 2.

TempoDB [21] is a database as a service aiming to store

& analyze time series data from sensors, smart meters, and

automotive telematics. It provides range rollups, bulk data

upload, long range historical analysis and data summaries

that generate statistical answers. Metadata tags and attrib-

utes in TempoDB allows the data series to be grouped and

tagged. In-time data visualization is supported.

Cosm [22] is an online platform that allows users to up-

load sensor data and build applications based on the data.

Both pull and push modes for sensor data are supported in

multiple formats such as XML, JSON and CSV. An open

community has been established as well.

SensorCloud [23] is a time-series sensor data storage,

visualization and management platform that leverages cloud

computing technologies to provide data scalability, visuali-

zation, and user programmable analysis. Data API is

equipped to allow third-party devices, sensors, or sensor

networks to be linked in. Location-oriented query is sup-

ported. Data analysis applications can be applied through a

data aggregation platform.

Compared to the existing sensor data and management

platforms, our platform is centered on a data model that sup-

ports scalable and interoperable sensor data and services

modeling. Not intending to build yet another sensor data and

service repository in the increasingly crowded space, our

platform is designed to leverage SOA to allow other reposi-

tories to be plugged into our platform serving in different

roles, such as sensor data storage.

III. ARCHIECTURAL DECISIONS

We adopted the Architecture Tradeoff Analysis Method

(ATAM) methodology [7], a systematic architectural analy-

sis method, to study and evaluate the critical system re-

quirements in a utility tree. Requirements are elicited from

several domain experts who worked with the team through-

out the project. As summarized in Table I, quality attributes

are identified, associated with attribute concerns phrased by

user requirements and scenarios listing key performance

indicators. For example, as shown in Table I, finding the

standard platform for the IoT must, fundamentally, face the

hardest problem at the heart of the IoT: scalability. Based on

the ATAM analysis, several architectural design decisions

have been made: NoSQL database, SOA system, REST-

based API, distributed processing, load balancing, and ser-

vice health monitor.

NoSQL Database. The sensor repository needs to be flex-

ible, allowing for various types of devices, sensors, and sen-

sor readings. It should also allow “Free-form” metadata to

be associated with readings. Thus, data should be stored in

raw formats and rely on structured queries to synthesize the

information on demand. Furthermore, streaming data sets

should be supported in addition to discrete sensor readings.

Therefore, we chose to adopt NoSQL database in the format

of (key, value) pairs instead of table-oriented relational da-

tabase.

SOA System. Our platform is obviously centered on a

sensor data repository, and empowered by a number of ser-

vice components. For example, to extract meaningful infor-

mation, raw sensor data may have to be aggregated or de-

rived. Thus, a data processing component is needed. Our

platform will support extensibility and adaptability, and an

SOA-guided layered architectural model is adopted.

REST-based API. According to the best practice from

SOA applications, a REST-based API will be able to allow

an open community to easily access our services and build

new applications.

448

Table I. ATAM utility tree.
Quality Attribute Scalability

Attribute Concerns Supports different types of sensor data

Scenarios • System shall accept all kinds of sensors send in data in all forms.

• System shall verify same sensors sending different formats based on upgrades or revisions.

• Data from different repositories shall be federated to yield a composite result.

Attribute Concerns Facility to scale backend computing based on demand

Scenarios • Additional servers shall be added for parallel computing of data-intensive calculations.

Attribute Concerns Support scalable load

Scenarios • System shall support incoming of huge volumes of sensor data.

Quality Attribute Reliability

Attribute Concerns Database service available when database node breaks down.

Scenarios • Platform shall ensure data/data analysis operations reliable.

Quality Attribute Interoperability

Attribute Concerns The application must be easy to integrate with 3rd party data sources, software, and data processing.

Scenarios • System shall accept all kinds of sensors send in data in all forms.

• New data visualizers can be integrated with the solution to provide more views for querying the data.

• 3
rd

-party tools and software can query the data in our database and receive results in JSON format for consumption.

Quality Attribute Security

Attribute Concerns Platform must transfer data over a secured channel.

Scenarios • All data connections must be over Transport Layer Security (TLS).

Attribute Concerns Users/sensors must be securely authenticated to access the platform.

Scenarios • Access control shall be supported by sufficient credentials.

• Contributing sensors must provide sufficient credentials must be provided.

Quality Attribute Integrity

Attribute Concerns Data shall maintain accuracy and consistency during any operation, such as transfer, storage or retrieval.

Scenarios • During data transportation, connection must be secured by Transport Layer Security (TLS) from corruption.

Quality Attribute Data Freshness

Attribute Concerns Data freshness shall be ensured.

Scenarios • When sensors send data, proper timestamp shall be attached.

Quality Attribute Privacy

Attribute Concerns Data stored must be private by default, but can be shared with authorized users.

Scenarios • Users shall be able to share their data with other users.

• Users shall be able to change configurations.

Attribute Concerns Certain sensitive data must be manipulated to protect source of information.

Scenarios • Stored data shall be obfuscated in a way to protect privacy of individual while keeping dataset statistically accurate over dataset.

• Uniquely identifying data shall be drooped from authorized data sources to avoid reading from being traced back to sources.

Quality Attribute Performance

Attribute Concerns Querying a large dataset may be time and computationally intensive.

Scenarios • Database shall be indexed on certain elements to expedite common queries.

• Data shall be compressed or preprocessed to minimize data transfer over the network and storage utilization.

Quality Attribute Reusability

Attribute Concerns Different parts, or the entire application could be reused as services.

Scenarios • Query service and visualizer shall be reused for other data query services rather than sensor data.

• The entire solution shall be reused or redeployed as a subsystem in related systems.

Quality Attribute Extensibility

Attribute Concerns System supports extensions to future growth.

Scenarios • System shall handle addition of new features such as different methods of querying data.

• System shall support future changes in hardware and software infrastructure.

Distributed Processing. Performance is one critical re-

quirement. How to ensure real-time queries over big data

has to be resolved. We have decided to explore the pro-

grammability of sensors, and introduce a MapReduce-like

approach to enhance performance by allocating processing

tasks to distributed sensors. Our belief is that the storage

and processing capabilities of sensor systems needs to scale

with the addition of sensors, and that sensor devices, gate-

ways and other networking means will, increasingly, incor-

porate processing. This favors the notion of pushing compu-

tation to the lowest levels of the sensor directed acyclic

graph (DAG) and introduces interesting questions about

how this programmability can be abstracted. In addition, it

is important to recognize that distributed computing can be

used in either a “pull” fashion (query-demand-driven) or a

“push” model (data streaming). In both cases, the computa-

tion that is distributed within the DAG should be viewed as

performing both data-processing functions as well as power-

management functions. A jabbering sensor that repeats an

unchanging value, burning precious local energy and band-

width in the process, is much less desirable than a sensor

that reports truly interesting information as it happens. We

discuss, below, the concept of “actionable information.”

One other aspect of distribution is the notion of memoiza-

tion and invalidation. Storage of raw readings with on-the-

fly or scheduled translation to application meaningful read-

ings permits delayed binding on the translation function

(e.g., updating a TEDS record for a set of sensors). But, for

449

Fig. 3 Concept of device/sensor.

performance reasons, the sensor system may elect to mem-

oize such translated values to avoid the reprocessing costs.

When any such value is derived from translation rules

(again, TEDS being an example), the dependence of these

values on the translation rules must be maintained so that

proper invalidation takes place when, for instance, the rules

are updated.

Load balancing. To ensure availability of the platform,

load balancing has to be supported. Scheduling algorithms

will be adopted to direct requests to some of the stack of

backend servers.

Service Health Monitor. To ensure scalability, perfor-

mance, and availability, a dedicated service monitoring and

management module has to be established on the platform.

IV. DATA MODEL

One central step in designing a heterogeneity-oriented

data platform is an appropriate data model [12]. Recall that

our main goal is to favor interoperability and reusability. We

do not intend to add yet another sensor data and service re-

pository in the already crowded space. Instead, our platform

is designed as a data and service layer, to leverage SOA to

allow other repositories to be plugged into our platform

serving in different roles, such as sensor data storage.

We thus differentiate the cyber world from the physical

world and allow dynamic composition, by introducing two

concepts of container (device) and virtual unit (sen-

sor/device). A container represents an aggregation relation-

ship of one to many sensors. As shown in Fig. 3, various

types of sensors serve different purposes, for example, sen-

sor measuring pressure, sensor catching audio, sensor re-

cording light, humidity, temperature, and so on. In other

words, each sensor is able to provide some services (func-

tionality) to the outer world. In reality, a device is typically

used to gather a collection of sensors (as well as actuators)

and install them into a physical container. As shown in Fig.

3, a physical device (e.g., Firefly at Carnegie Mellon Uni-

versity, http://www.ece.cmu.edu/firefly/) is constructed to

host a set of sensors serving various functionalities, and then

deployed and installed into an actual physical location. Such

a device is therefore able to provide a vector of measure-

ments. If a comprised sensor is broken, it can be replaced by

another one and the device will remain functioning properly.

We also adopt a concept of virtual unit (sensor/device) to

represent certain services (functionalities) without referring

to actual physical implementations. For example, a virtual

temperature sensor may be defined to represent the average

temperature inside a room, which can be computed over a

collection of sensors distributed inside the room. Similarly,

a virtual device represents a set of services to be provided

(e.g., temperature+humidity+noise), which can be realized

by a set of concrete sensors that are actually located in dif-

ferent physical devices. As a result, these two concepts ena-

ble the seamless integration of logical units (functional

units) and physical units (sensors) allowing dynamic com-

position.

Fig. 4 illustrates a simplified version of our data model

underlying our sensor data and service platform. It centers

around the concept of an abstract Discoverable, Federatable

Sensor (DFableSensor). A DFableSensor is registered to our

platform with a public service interface, representing its

functions that can be leveraged by the outer world. An ab-

stract DFableSensor is realized as either a virtual sensor or a

physical sensor. As aforementioned, a virtual sensor may be

an aggregation of multiple physical sensors. A DFableSen-

sor is modeled as an autonomous unit, carrying meta-sensor

section that helps to interpret how to understand its sensor

reading.

Sensor reading is identified as an independent entity as-

sociated with each sensor unit, which may refer to the data

format of either discrete reading or streaming reading. Such

a separation enables separate storage of raw sensor reading

data from the metadata of corresponding sensor.

An abstract Discoverable Device (DisDevice) is intro-

duced as a generalization of device and virtual device, as

shown in Fig. 4. It shows an aggregation relationship to a

collection of DFableSensors. A DisDevice is published with

a service interface. Both sensors and devices can carry at-

tributes including locations (e.g., gps-location), context (the

best way to use the unit), and security and privacy require-

ments. Their detailed discussions and implementations are

out of the domain of this paper.

As shown in Fig. 4, all discoverable and reusable units

are organized by corresponding public registries hosted by

our sensor data and service platform: sensor registry, device

registry, and device agent registry, all generalized as regis-

tries. At the registry, license and access control permissions

can be defined and associated by users. Note that sensors

from other third-party repositories can be registered into our

registries so as to expand our data pool and enable distribut-

ed data storage and handling. The same as third-party devic-

es. The mappings between registered sensors and devices

are stored in the registry, serving as “yellow-pages” to ena-

ble sensor/device sharing, discovery, and federation. The

device registry stores information about each physical de-

vice, which can be used for queries and to look up devices

when in the event of a failure in a sensor network.

To leverage the programmability of sensors, each device

is associated with a dedicated device agent, which serves as

the manager (gateway) of the corresponding local sensor

450

Fig. 5 System architecture.

Fig. 4 Data model.

network. A device gateway may also be responsible for con-

verting the comprising device readings to a consumable

format (e.g., JSON), and transmitting it to our platform for

storage. All entities are centered around the entity location,

which represents the contextual situation of a unit. The enti-

ty of location also implies the portability of a unit.

Focusing on that subset of the IoT that is made up of sen-

sors, experience has shown that the simple-minded approach

of transmitting sensor readings periodically to a central da-

tabase suffers from the real cost of communication and the

fact that, amidst the sea of data, there is comparatively little

actionable information. Our improvement over this ap-

proach, as mentioned above, is to design and program sen-

sors to process locally and recognize the actionable infor-

mation - which is then transmitted up the chain for further

action. The downfall of this approach is that one’s view of

“actionable information” may change over time - and it may

not be recognizable purely from single-sensor readings. This

lends support to the notion that the preferred IoT architec-

ture should presume programmability and generality top-to-

bottom including the ability to aggregate, store, process and

react at every level – in both pull and push models. As expe-

rience with IoT networks grows, we imagine that domain-

specific specialization will naturally follow. But for now,

general networks, nodes and gateways provide the richest

proving ground.

V. SYSTEM ARCHITECTURE

Based on our established data model, we have designed

the high-level system architecture of our sensor data plat-

form. As shown in Fig. 5, a Model-View-Controller pattern

is adopted. Sensor reading data and metadata serve as the

backend persistent layer. A personalizable dashboard serves

as a front-end interface based on user requirements and pro-

files. In the middle tier of the federated sensor data plat-

form, six major service components are defined.

The data modeler provides templates for users to de-

scribe their sensor data. The data federator offers facilities

for users to dynamically aggregate data to create new

knowledge. The search engine helps users define their needs

and find data that may interest the users. The Data service

modeler allows users to define and contribute specific data

analysis procedures that can be researchable and reusable to

other community users. The data service mashup offers a

workflow engine to help users compose existing data ser-

vices into value-added services. The contributor manager

handles registered community users and their profiles.

The deployment view of the entire platform is illustrated

in Fig. 6. Sensors are grouped and encapsulated into devic-

es. Covering a certain range, a receiver is established dedi-

cated for a collection of devices. A sensor gateway is estab-

lished to interface between sensors and our platform. Raw

sensor readings and registry management data are decou-

pled, to enhance scalability and adaptability of the platform.

Raw sensor readings may be gathered and used in various

ways oriented to the open community. Their trend toward

“big data” demands scalable data storage. On the other

hand, registry management data should be organized in a

structured manner to ensure metadata discovery and analy-

sis.

VI. PROTOTYPE IMPLEMENTATION

The prototyping platform was implemented as a proof of

concept of our data model at Carnegie Mellon University -

Silicon Valley campus (CMUSV), as shown in Fig. 6. Ama-

zon DynamoDB (http://aws.amazon.com/dynamodb) was

adopted as a NoSQL database to host raw sensor data. One

major reason why we selected it is its scalability. Facing

traffic, storage can automatically grow, by spreading data

and processing over a sufficient number of servers. A sim-

451

Fig. 6 Deployment view.

plified database schema includes sensor name, status, hash

key, range key, read and write throughput.

PostgreSQL (http://www.postgresql) was used to deploy

the relational databases of the metadata and data dependen-

cies at the platform. It is a powerful, open source object-

relational database system. A collection of tables were cre-

ated: device_agent, device, device registry, device_type,

sensor, sensor registry, sensor_type, and user.

In order to integrate the NoSQL and the relational data-

bases and be able to retrieve data corresponding to each

sensor, a sensor’s GUID, the primary key identifying a sen-

sor,is used as a foreign key in the NoSQL database.

The platform was implemented as a web application de-

ployed on the open Heroku using Ruby on Rails

(http://rubyonrails.org/), providing RESTful web services.

Ruby on Rails is a popular technology known for helping

develop web applications and services. Data visualization

was implemented using jqPlot (http://www.jqplot.com/). It

is a configurable and rich “plotting and charting” plugin for

the jQuery Javascript framework.

Sensor readings are either pushed or pulled from hetero-

geneous types of sensors (encapsulated in the device shown

in Fig. 3), which are deployed over the buildings at CMUSV

for smart space projects. Sensor types include FireFly,

Sweetfeedback (CMUSV-created sensor), and JeeNode

(http://jeelabs.net/projects/hardware/wiki/JeeNode).
As part of our sensor deployment, about 60 FireFly de-

vices are deployed over the Building 23 at CMUSV. Each

device pushes reading into our platform every 5 seconds,

each reading carrying about 100 bytes of raw data. On the

daily basis we are accumulating about 103.7MB of sensor

data. The dataset is going toward to be a big dataset – how

to handle its storage and query efficiently will be our future

research.

Programs have been developed at the Sensor Gateway.

Upon registration and configuration, the Sensor Gateway

will automatically push sensor readings in the JSON format

to the platform, or publish sensor readings and wait for the

platform to pull the data at prescheduled time intervals. Be-

low is a simplified sensor reading containing temperature

data (e.g., pressure, humidity, timestamp):

Data visualization tools are developed in our platform.

The dashboard allows users to select sensor readings and

visualize the data in a preferred manner. Fig. 7 shows a

screen shot in a chart form supporting [Line, Pie] styles.

Users can specify the start and end date for the readings.

A collection of data services have been developed in our

platform. Here we briefly explain a simplified example ser-

vice of user-defined sensor data reading. Given a sensor, the

input parameters include start_time and end_time. They

allow users to delimit the time frame (inclusive) of the sen-

sor readings in which users are interested. The return values

will be tuples. Instead of returning the entire set of sensor

readings as raw data, the service will return the specified

amount of aggregate readings or tuples. If there are fewer

readings than the given number of tuples, then no results

will be returned. Attributes unique to tuples are: aver-

age_timestamp, first, last, min, max, average.

Given Example 1 with a request on readings on sensor 1:
http://sdscmusv.herokuapp.com/sensor_readings/1
The response will be:

[{"id":"1","temp":71.0312,"timestamp":"1353441831000.0"},

{"id":"1","temp":71.7818,"timestamp":"1353441891000.0"}]

For Example 2 with a request on sensor 1 over a speci-

fied time frame:
http://sdscmusv.herokuapp.com/sensor_readings/1?start_time=

1353441891000&end_time=1453442011000&tuples=4

The response will be in the following JSON format:

[{"id":"1","average_timestamp":"1354431255526.1044176706

82730923694779116","first":71.7818,"last":70.20554,"min":53.01

68,"max":88.295,"average":70.3395828915661},{"id":"1","averag

e_timestamp":"1354580794706.827309236947791164658634538"

,"first":70.20554,"last":70.28059999999999,"min":69.37988,"max

":70.58084,"average":70.2916530120474}]

452

Fig. 7 Data visualization.

This data service is provided as a REST service, so that

other applications can “plug-in” our platform to build new

applications. For example, we are constructing an iPad ap-

plication illustrating all sensors located in the buildings in

our campus as well as the dynamic statistical temperature

information at various rooms.

In order to study big data analytics that is important to

our sensor data service platform, we also explored the op-

tion of leveraging in-memory database (SAP HANA:

http://www.saphana.com) as an alternative to NoSQL data-

base to store, monitor, and analyze streaming sensor data.

Our preliminary experience shows noteworthy performance

enhancement.

VII. SUMMARY AND FUTURE WORK

In this paper, we have presented the core design and pro-

totyping of a Web 2.0 platform aiming to provide sensor

data as a service, to allow users to discover reusable data

and data analysis tools, and to integrate them into value-

added workflows. Our work will contribute to an open

community to support small research groups and individuals

to contribute and share data sources and data services.

In our future work, we plan to develop version-controlled

data analysis tools. In addition, we plan to study a business

model, aiming to monetize sensor data by charging users to

access and query the federated set of information from a

community of contributed. Furthermore, we plan to evaluate

and enhance our platform through a collection of ongoing

smart space applications and disaster management applica-

tions under construction at the CyLab Mobility Research

Center (CMRC) and Disaster Management Initiative (DMI)

of Carnegie Mellon University Silicon Valley.

VIII. ACKNOWLEDGEMENT

This project is partially sponsored by research gifts pro-

vided by SAP to Carnegie Mellon University.

VIV. REFERENCES
[1] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, L. Mo, W. Dong, Z. Yang, M.

Xi, J. Zhao, and X.-Y. Li, "Does Wireless Sensor Network Scale? A

Measurement Study on GreenOrbs", in Proceedings of IEEE International

Conference on Computer Communications (INFOCOM), 2011, Apr. 10-15,

pp. 873-881.

[2] R. Nagpal, H. Shrobe, and J. Bachrach, "Organizing a Global

Coordinate System from Local Information on an ad hoc Sensor Network",

in Proceedings of 2nd International Conference on Information Processing

in Sensor Networks (IPSN), 2003, Palo Alto, CA, USA, pp. 333-348.

[3] P.P. Rezaeiye and M. Gheisari, "Performance Analysis of Two Sensor

Data Storages", in Proceedings of 2nd International Conference on Circuits,

Systems, Communications & Computers (CSCC), 2011, pp. 133-136.

[4] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A

Survey on Sensor Networks", IEEE Communications Magazine, 2002,

40(8): pp. 102-114.

[5] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless Sensor Network

Survey", Computer Networks, Aug. 22, 2008, 52(12): pp. 2292-2330.

[6] W.I. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao, "SenseWeb: An

Infrastructure for Shared Sensing", IEEE MultiMedia, Oct.-Dec., 2007,

14(4): pp. 8-13.

[7] K. Aberer, M. Hauswirth, and A. Salehi, "Infrastructure for Data

Processing in Large-Scale Interconnected Sensor Networks", in

Proceedings of International Conference on Mobile Data Management,

2007, Mannheim, Germany, May 7-11, pp. 198-205.

[8] K. Chang, N. Yau, M. Hansen, and D. Estrin, "SensorBase.org-A

Centralized Repository to Slog Sensor Network Data", in Proceedings of

International Conference on Distributed Computing in Sensor Network

(DCOSS)/Euro-American Workshop on Middleware for Sensor Networks

(EAWMS), 2006, San Francisco, CA, USA, pp.

[9] P.B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, "IrisNet: An

Architecture for a World-Wide Sensor Web", IEEE Pervasive Computing,

Oct.-Dec., 2003, 2(4): pp. 22-33.

[10] A. Sheth, C. Henson, and S. Sahoo, "Semantic Sensor Web", IEEE

Internet Computing, Jul./Aug., 2008: pp. 78-83.

[11] N. Mohamed and J. Al-Jarood, "A Survey on Service-Oriented

Middleware for Wireless Sensor Networks", Service Oriented Computing

and Applications, 2011, 5(2): pp. 71-85.

[12] S. Santini and D. Rauch, "Minos: A Generic Tool for Sensor Data

Acquisition and Storage", in Proceedings of 19th IEEE International

Conference on Scientific and Statistical Database Management, 2008, pp.

[13] L. Mottola and G.P. Picco, "Programming Wireless Sensor Networks:

Fundamental Concepts and State of the Art", ACM Computing Surveys

(CSUR), Apr., 2011, 43(3).

[14] IEEE Std 1451.5™-2007, IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators— Wireless Communication Protocols

and Transducer Electronic Data Sheet (TEDS) Formats, 2007, IEEE

Instrumentation and Measurements Society, TC-9, The Institute of

Electrical and Electronics Engineers, Inc., New York, NY, USA.

[15] M. Botts and A. Robin, "OpenGIS ® Sensor Model Language

(SensorML) Implementation Specification", Open Geospatial Consortium,

Inc., 2007, Accessed on Feb. 15, 2013, Available from:

http://www.opengeospatial.org/standards/sensorml.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, "TinyDB: An

Acquisitional Query Processing System for Sensor Networks", ACM

Transactions on Database Systems, 2005, 30(1): pp. 122-173.

[17] S. Chen, P.B. Gibbons, and S. Nath, "Database-Centric Programming

for Wide-area Sensor Systems", in Proceedings of 1st International

Conference on Distributed Computing in Sensor Systems (DCOSS), 2005,

Marina del Rey, CA, USA, Jun. 30-Jul. 1, pp. 89-108.

[18] OGC, "Sensor Observation Service (SOS)", Open Geospatial

Consortium, Accessed on 12/30/2012, Available from:

http://www.opengeospatial.org/standards/sos.

[19] C.A. Henson, J.K. Pschorr, A.P. Sheth, and K. Thirunarayan,

"SemSOS: Semantic Sensor Observation Service", in Proceedings of 2009

International Symposium on Collaborative Technologies and Systems

(CTS), 2009, Baltimore, MD, USA, May 18-22, pp. 44-53.

[20] A. Bröring, A. Remke, and D. Lasnia, "SenseBox-A Generic Sensor

Platform for the Web of Things", Mobile and Ubiquitous Systems:

Computing, Networking, and Services, 2012, 104: pp. 186-196.

[21] "TempoDB", Accessed on 12/31/2012, Available from: http://tempo-

db.com/features/.

[22] "Cosm", Accessed on 12/31/2012, Available from: https://cosm.com/.

[23] MicroStrain, Accessed on 12/31/2012, Available from:

www.sensorcloud.com.

453

