EDDY Software Development Primer, v1.2


Development Software Overview

All of the software development for the EDDY Project is in Java.  We use Eclipse as the integrated development environment to develop EDDY code.

In addition to Eclipse, we also utilize a couple of Eclipse plug-ins to assist us.  These plug-ins are the oXygen XML editor/XSLT debugger and the MyEclipse Enterprise Workbench.

Currently, we use oXygen for various XML related tasks including the generation of XSD schemas as well as verifying XML documents against that schema.  There are lots of other XML features in oXygen that we will likely start using in the future.

MyEclipse can be thought of a set of plug-ins for Eclipse.  It provides support for JSP, JSF, Struts, Hibernate, UML modeling, database exploring, etc., etc.  There’s a lot to it.  We currently use MyEclipse for its rich support for the development and deployment of JSP Web applications.

Eclipse is free, oXygen costs $48.00 for the academic version and MyEclipse is $31.75 for a one-year subscription.  Mark Poepping or Chas DiFatta can get you the license for these Eclipse plug-ins.

Eclipse requires a Java SDK/JDK in order to work.  We use the Java 2 Standard Edition (J2SE) from Sun Microsystems.  We could have used the Java 2 Enterprise Edition (J2EE), but decided that we didn’t need all of the extra features J2EE brought along and would use other packages for the J2EE features that we needed.

One of the J2EE features that we use is JAXB for marshalling/unmarshalling data types to and from XML documents.  We get the JAXB classes and features from the Java Web Service Developer Pack  (JWSDP), also from Sun.

In order to execute EDDY code, the only additional software on a system that is required other than the EDDY code itself is the J2SE and JWSDP SDKs.  Eclipse and the oXygen/MyEclipse plug-ins are not required.

To run the EDDY Web applications, the Tomcat JSP application server must also be installed.  I will not be covering installing and configuring Tomcat in this document.  More information about Tomcat can be found here: http://tomcat.apache.org/
Installing & Configuring Development Software

The steps that follow are for installing and configuring the EDDY development software on a Windows XP system.  You can set all of this up on a Linux system and I have; the steps are largely the same.  The main differences are the steps are done in a more Linux sort of way versus a Windows sort of way.

It would be good to have available the software license keys for the oXygen and MyEclipse plug-in readily available because entering them is covered below.  Both of these plug-ins allow you to use a trail version of the software that expires after a certain number of days if you want to proceed for now without the license keys.

(  Step 1: Download and install the Java 2 Standard Edition JDK (J2SE):

The JDK 5.0 Update 5 download is available here: http://java.sun.com/j2se/1.5.0/download.jsp
Download the Windows version (Windows Offline Installation, Multi-language) and run the installation program.

Accept the terms of the licensing agreement.  Take all of the other defaults.

(  Step 2: Download and install the Java Web Services Developer Pack (JWSDP):

The JWSDP 1.6 download is available here: http://java.sun.com/webservices/downloads/webservicespack.html
Download the Windows version and run the installation program.

Accept the terms of the licensing agreement.  Select “No Web container” on the “Select a Web Container” screen.  I also choose not to register the software in the “Register” screen.  Take all of the other defaults and allow the program to restart your PC as recommended in the final screen.

(  Step 3: Download and install the Eclipse IDE:

The Eclipse 3.1.1 download is available here:

http://www.eclipse.org/downloads/index.php
Download the Windows version.  I would recommend choosing a download location of reasonable political stability.  I choose the University of Florida in the North America section.

The Eclipse download is packaged as a Zip file.  If you don’t have a program that will unzip Zip files, you can grab a copy of WinZip here: http://www.winzip.com/downwz.htm
Unzip the Eclipse Zip archive to a directory of your choosing.  Eclipse is somewhat unique for Windows programs in that it doesn’t have a formal installation program.  You just use Eclipse from whatever location you unzipped it to.  A negative of this is that you don’t have any Eclipse entries added to the “Start” menus or icons placed on the desktop.  I typically create my own desktop shortcut and you might want to the do the same.  I also typically copy the entire “eclipse” directory structure to the “Program Files” directory, but feel free to place it wherever you want.

Now would be a good time to start up Eclipse and see if it works.  Go into the “eclipse” directory with the Windows Explorer and double-click on the ‘eclipse.exe” icon.  You should see the Eclipse 3.1 banner come up and then a dialog box asking where you want to place your Eclipse workspace.  Take the default or select a directory that you choose.  Eclipse will then start up and you will see the “Welcome to Eclipse 3.1” screen.  Exit Eclipse and continue on with Step 4.

(  Step 4: Download and install the oXygen plug-in:

The oXygen plug-in should be installed from within Eclipse.  The download instructions can be found here (Eclipse 3.1 Plugin - Update Site Instructions): http://www.oxygenxml.com/download.html#eclipse3.1_instructions
These instructions are a little quirky and not 100% complete.  But the steps you need to follow should be reasonably clear.

Within the oXygen plug-in specific installation, take all of the defaults and/or make the obvious choices.  Allow Eclipse to restart when prompted to do so.  Exit Eclipse and continue to Step 5.

(  Step 5: Download and install the MyEclipse Enterprise Workbench plug-in:

The MyEclipse 4.0.3 plug-in download is available here: http://www.myeclipseide.com/ContentExpress-display-ceid-10.html
Accept the terms of the licensing agreement.  The MyEclipse folks are somewhat obnoxious because they make you login in order to download their software.  There is a link to register and all they ask for is a login name, password to use and your email address.  This seems harmless enough I guess.  Once you log in, you can download the software.  You’ll want to pick the “Download MyEclipse 4.0 for 3.1 Eclipse” choice.  On the download screen, select the “MyEclipse Enterprise Workbench 4.0.3 GA for Windows 98/2000/XP (10/25/2005)” entry.

Run the installation program.  Select “Next” on the initial screen and then accept the terms of the licensing agreement on the following screen.  On the “Choose Eclipse Folder” screen, select the location where you unzipped Eclipse to.  Choose the remaining defaults.

(  Step 6: Test your development configuration:

We now want to verify that the oXygen and MyEclipse plug-ins have been installed correctly into Eclipse.  We also want to register the plug-ins at this time.  Start up Eclipse in the same manner you did in Step 3.

Select Window ( Open Perspective ( Other ( oXygen XML… from the main Eclipse menu.  Enter the registration key sent to you by Chas or whoever got the license for you on your behalf.  You can also sign up for a trial license at this time as well.  If you can successfully enter the licensing key and see the oXygen XML perspective, the software has been set up correctly.

Now we will verify the installation of the MyEclipse plug-in.  Select Window ( Open Perspective ( Other ( MyEclipse… from the main Eclipse menu.  If you see the MyEclipse perspective, the software has been set up correctly.  The unlicensed MyEclipse software will work for a trail period of 30 days.  You can register the software by selecting MyEclipse ( Update Subscription… from the main Eclipse menu.  Enter the Subscriber and Subscriber Code given to you.

Switch back to the Java perspective by selecting Window ( Open Perspective ( Other ( Java (default) and exit Eclipse.

Congratulations!  Your Eclipse has been EDDYfied and you are ready to develop code for the project.

Getting and Building EDDY Source Code

All of the EDDY source code is under CVS control on Carnegie Mellon servers.  At the time of the writing of this document, the most recent code has been checked in.  The EDDY team is pretty good about making sure commits are done on a timely basis and Eclipse makes using CVS easy.  The CVS features in Eclipse are also pretty powerful and implement everything you would typically use source code control for (committing, updating, merging, comparing, etc.).

The way we organized the EDDY source code on CVS is somewhat quirky.  The code is arranged around CVS modules that have a root directory of the initial EDDY developer’s user name.  So for code that I originally developed, the starting point to drill down to specific CVS modules is jgargani.  We probably should have organized things better, but for now, this is how things are.

Let’s grab all of the EDDY code that we are currently working on or have distributed to other people.  The code is comprised of Ugo’s EDDY Framework that we are in the process of refactoring, Jim’s pre-Framework code, Walter’s configuration code and Tom’s TOPE utility.  There’s some historical code that may be of interest, and you can download that stuff later if you like, but for right now, I recommend just getting the code mentioned above.

Begin by bringing up Eclipse.  To import projects from CVS, select File ( Import ( Checkout Projects from CVS from the main Eclipse menu and select “Next”.  Fill out the fields in the dialog box that is shown as follows:


(  Host: unix.andrew.cmu.edu


(  Repository path: /afs/andrew.cmu.edu/system/cvs


(  User: <Your Andrew login>


(  Password: <Your Andrew password>


(  Connection type: extssh

Click “Next”.  Choose “Use an existing module (this will allow you to browse the modules in the repository)”.  Accept the RSA key fingerprint, the known_hosts and the directory creation messages.

Go down through the CVS tree until you get to the EDDY code by expanding: src ( e2ed ( munster.

Bring in Jim and Tom’s code by expanding jgargani and clicking down through source ( release ( eclipse.  Individually select each of the CVS modules in that directory and choose “Finish”.  The CVS modules will be loaded as individual projects into your Eclipse workspace.  Close the Eclipse 3.1 Welcome screen if it is still shown.  

There will be a number of errors shown on the “Problems” window that prevent a successful build of the code; we’ll fix those shortly.

Bring in Ugo’s code like you did for Jim’s code, except expand uenyioha instead of jgargani.  You will notice that you won’t need to enter the CVS server information a second time.  Be sure to choose the default “Use existing repository location” in the initial import screen to bypass the CVS server setup dialog.

In Ugo’s CVS directory, select the “Eddy”, “Eddy-Example”, “NewEddy” and “NewEddy-Example” modules.  Click “Finish” to load the modules as projects within your Eclipse workspace.  Don’t worry about the error message you see and click “OK” on it.

Now that all of the current code has been imported into your workspace, we can begin the task of fixing the Eclipse settings so that the code will build.  You may ask why won’t the code build when it’s first imported.  The reasons are two-fold.  First, a lot of Jim’s code was migrated from Eclipse 3.0 and there are Java compiler settings that need to be adjusted in order to make the code build.  Jim’s code never required any setting adjustment in Eclipse 3.0, but when the code was brought over to Eclipse 3.1, the code build broke.  Second, a number of the projects require JAR files that are within other projects in the workspace, but Eclipse requires those JAR files to be configured as absolute file paths as opposed to relatively.  So this means that the JAR file locations need to be set to those locations where those files physically live.  Yes, a major pain I know and I challenge everyone reading this to tell us how we can specify our JAR file locations relatively.

Let’s fix the Eclipse 3.1 Java compiler settings first.  Select Window ( Preferences… ( Java ( Compiler and set the following configuration settings:

(  Compiler compliance level: 5.0

(  Errors/Warnings ( J2SE 5.0 options (
Unchecked generic type operation: Ignore

(  Errors/Warnings ( Unnecessary code (
Local variable is never read: Ignore

(  Errors/Warnings ( Unnecessary code (
Unused local or private members: Ignore

(  Errors/Warnings ( Unnecessary code (
Unused imports: Ignore

(  Errors/Warnings ( Potential programming problems (
Serializable class without serialVersionUID: Ignore

Once these selections have been made, click “OK” and accept the message box windows that are displayed.  Now that we have the compiler settings configured, we can adjust the JAR file locations so the code will successfully build.

For each of the argusXXX, cerXXX and eddyminXXX projects with build errors, first select the project name and then right-click.  Select the “Properties” menu item and then the “Java Build Path” and then the “Libraries” tab.  Each of the problematic JAR files will have a small exclamation point shown in front of them.  You’ll want to find the actual location on your system where their files are located and choose them instead of the JAR file that you see.

Start the painful process of finding where all of these JAR files are located and add them to the project by browsing to them once you have selected “Add External JARS…”.  Once the JAR file has been added, delete the exclamation point version of it.  Once you are done adding and deleting the JAR file locations, select “OK” and the project will be rebuilt with success.

To help with this arduous task and if you installed the JWSDP into its default location, the JAR files will be found in the following directories:

(  jaxb-api.jar - C:\Sun\jwsdp-1.6\jaxb\lib

(  jaxb-impl.jar - C:\Sun\jwsdp-1.6\jaxb\lib

(  jaxb-libs.jar - C:\Sun\jwsdp-1.6\jaxb\lib

(  xsdlib.jar - C:\Sun\jwsdp-1.6\jwsdp-shared\lib

(  relaxngDatatype.jar - C:\Sun\jwsdp-1.6\jwsdp-shared\lib

(  ArgusAnon.jar - <workspace>\cerschema

(  ArgusOri.jar - <workspace>\cerschema

(  CER.jar - <workspace>\cerschema (for all but eddyminXXX projects)

(  CER.jar - <workspace>\eddyminschema (for eddyminXXX projects)

(  CERHelper.jar - <workspace>\cerhelper

(  CERTransport.jar - <workspace>\certransport

In order to build the NewEddy project, select the “Libraries” tag like you have just done and delete the exclamation point reference to ArgusAnon.jar.  This is an erroneous JAR file inclusion and removing it allows the project to be built successfully.

The NewEddy-Example project contains build errors that can’t be resolved like the others.  Simply stated, there are problems with the project that won’t let it be built under any circumstances; the build is broken, it’s not a configuration issue.

EDDY Source Code Overview

In the previous section it was noted that the EDDY code that you just imported from CVS is the latest and greatest.  Currently, the code imported from the jgargani directory is in a retired state, but it serves as a good reference to see how Normalization and Transformation agents are built in the EDDY system.  The code used for CER transport is still the basis for moving events from agent to agent in EDDY.  The filtering and routing modules which exist as standalone entities in the jgargani code have largely had their functionality implemented in the next-generation of the EDDY Framework under development.

The code imported from uenyioha was our first attempt at putting together an EDDY framework that was more Java-like than the jgargani code and serves as the basis for the Framework refactoring we are currently working on.  The previous EDDY Framework and the code you have imported show how a generic framework is used to derive a specific implementation from it.  It is good code and would serve as a great reference to come up to speed with the philosophy of what we need out of an EDDY agent framework.

All told, the Eclipse projects that have been imported from CVS are obsolete in their implementation but still very relevant for the ideas and architecture of EDDY moving forward.  The following descriptions serve as a quick reference to each of the modules that were imported in the previous section:


(   argusoriraw – Normalization agent that reads event data and produces/outputs Raw CERs from Argus network flow data.  Writing of CERs is achieved via the EDDY Backplane.

(   argusrawcook – Transformation agent that reads CERs and produces/outputs Cooked CERs from Raw Argus network flow CERs.  Reading and writing of CERs is achieved via the EDDY Backplane.

(  arguscookdrag – Transformation agent that reads CERs and produces/outputs Cooked “Dragnet” CERs from Cooked Argus CERs.  Reading and writing of CERs is achieved via the EDDY Backplane.

(  argusoridrag – Normalization/Transformation agent that combines the functionality of the three previously listed agents.

(  argusdragfilter – Agent that provides input filtering of CERs read from the EDDY Backplane.  CERs that pass the filtering rules are outputted on the EDDY Backplane.

(  argusdragroute – Agent that provides routing capabilities for CERs.  Routing rules define where CERs are routed to on the EDDY Backplane.

(  argusdragstub – Consumer agent that provides “pretty printing” of CERs reads from the EDDY Backplane.

(  argustope – Consumer agent that graphically displays the “top talkers” of Argus Dragnet network flow events.

(  argusdragdb – Consumer/Storage agent that archives Argus Dragnet network flow events to a MySQL database.

(  argusdragview – JSP Web application to display and analyze Argus Dragnet flow events archived by the argusdragdb Consumer/Storage agent.

(  cerhelper – JAR file and source code that contains utility classes, methods and fields for other EDDY projects.

(  certransport – JAR file and source code that contains the functionality for reading and writing CERs to and from the EDDY Backplane.

(  eddycerts – Scripts and generated files used by the certransport project for secure and authenticated communication between agents over the EDDY Backplane.

(  cerschema – XSD files, sample XML documents and JAXB generated classes/JAR files used by other EDDY projects.

(  argusminwrite – Experimental EDDY Normalization agent that was extremely lightweight.

(  eddyminread – Experimental EDDY Consumer agent that was extremely lightweight.

(  eddyminschema – Experimental EDDY schema that was extremely lightweight.

(  Eddy – Generic EDDY framework that provides base functionality for Normalization, Transformation and Consumer/Storage agents with a object-oriented Java programming focus.

(  Eddy-Example – Specific implementations of Normalization, Transformation and Consumer/Storage agents for Argus and Dragnet network flow events utilizing the EDDY Framework in project Eddy.

(  NewEddy – Generic EDDY framework that provides base functionality for Normalization, Transformation and Consumer/Storage agents with a object-oriented Java programming focus.  Mostly overlapped with the Eddy project.

(  NewEddy-Example – Specific implementations of Normalization, Transformation and Consumer/Storage agents for Argus and Dragnet network flow events utilizing the EDDY Framework in project Eddy.  Mostly overlapped with the Eddy-Example project.

07-November-2006
6 of 9
jgargani@cmu.edu

