EDDY Software Development Kit QuickStart Guide, v1.2

Overview

This document provides QuickStart information to get you going with the EDDY Software Development Kit. Once you install and configure the EDDY SDK and its dependant software, you’ll be able to build new EDDY agents using the template agents as a starting point as well as reference complete EDDY agent samples included with the release.

Also included in this guide is an overview of some of the core features of the EDDY Framework. Sections on routing, filtering and the EDDY Framework pipeline describe these features to help you get a better understanding of how to develop EDDY agents and use the EDDY configuration files to suit your particular needs.

Installing the Java JDK & Eclipse

The first thing you’ll need to do to get going with the EDDY SDK is to install some software. What you’ll need to get includes the following:

(
J2SE 5.0 – Java Standard Edition JDK

(
Eclipse 3.1 – Integrated development environment

(
EDDY SDK – The EDDY Eclipse projects

The J2SE JDK that we use is from Sun and available here: http://java.sun.com/j2se/1.5.0/download.jsp. To install this software under Windows, download it (Windows Offline Installation, Multi-language) and run the installation program. When installing, accept the terms of the licensing agreement and accept all of the other defaults. To install the software under Linux, download it (Linux self-extracting file) and issue the following commands in the directory you downloaded it to:

(
chmod +x jdk-1_5_0_06-linux-i586.bin

(
./ jdk-1_5_0_06-linux-i586.bin

Accept the licensing terms after hitting space repeatedly to get to the acceptance prompt. The JDK will be installed in the directory where the .bin file is located,

The Eclipse 3.1 IDE is available here: http://www.eclipse.org/downloads/. To install this software under Windows, download it from one of the mirrors listed. The downloaded file is a Zip file and not a more standard Windows installation program. You’ll want to unzip it using a program such as WinZip (http://www.winzip.com/downwzeval.htm). That’s the extent of the installation procedure. The executable for Eclipse that you run is eclipse.exe in the eclipse directory. To install Eclipse under Linux, download it from one of the mirrors listed. The downloaded file is a gzip file and can be unpacked with the following commands:

(
gunzip eclipse-SDK-3.1.2-linux-gtk.tar.gz

(
tar -xvf eclipse-SDK-3.1.2-linux-gtk.tar

Like the Windows version, you simply change into the eclipse directory and run Eclipse by typing the executable name, in this case using the ./eclipse command. Before you start Eclipse in Linux however, you need to issue the following command inside the eclipse directory so that Eclipse knows where the J2SE JDK is located:

(
ln -s /usr/local/jdk/jre jre

In order to successfully build the EDDY software, you will need to configure Eclipse a bit to set it up for Java 5.0 and also to get around some warnings generated by the auto-generated JAXB classes used within the EDDY code.

The first time Eclipse is run, it asks you to specify a location where you want your workspace to be located. Accept the default or choose a directory to your liking. Once Eclipse is up and running, dismiss the Welcome screen to reveal the empty Package Explorer. Now configure Eclipse with the following settings:

(
Window - Preferences… - Java - Compiler - JDK Compliance - Compiler compliance level = 5.0

(
Window - Preferences… - Java - Compiler - Error/Warnings - Potential programming problems - Serialzable class without serialVersionUID = Ignore

(
Window - Preferences… - Java - Compiler - Error/Warnings - Deprecated and restricted API - Deprecated API = Ignore

(
Window - Preferences… - Java - Compiler - Error/Warnings - Unnecessary code - Local variable is never read = Ignore

(
Window - Preferences… - Java - Compiler - Error/Warnings - Unnecessary code - Unused local or private members = Ignore

(
Window - Preferences… - Java - Compiler - Error/Warnings - J2SE 5.0 options -Unchecked generic type operation = Ignore

Once all of the settings have been made, press the Apply button and then allow the projects in the Eclipse workspace to be rebuilt when prompted. Press the OK button to exit the preferences dialog box.

Installing & Building the EDDY SDK

The EDDY SDK is available via CMU anonymous CVS. You get this software by importing it inside Eclipse. In order to import the EDDY code, follow these steps:

(
Select: File - Import… - Checkout Projects from CVS - Next >

(
In the Enter Repository Location Information dialog, enter:

Location - Host = cvs.andrew.cmu.edu

Location - Repository path = /cvs

Authentication - User = anoncvs

Authentication - Password = anonymous

Connection - Connection type = pserver

(
Press: Next >

(
Choose: Use an existing module (…)

(
Click: src - e2ed - munster - release

(
Select: eddyframework

(
Press: Finish to import and build the project.

(
Select: File - Import… - Checkout Projects from CVS - Next >

(
Press: Next >

(
Choose: Use an existing module (…)

(
Click: src - e2ed - munster - release

(
Select: all modules except eddyframework using control, right-click.

(
Press: Finish to import and build the projects.

You need to import and build the eddyframework project before the others that are imported because the other projects are dependant on the eddyframework project being available to be built. If you do not see any lines in the Problems tab at the bottom of the Eclipse window, all of the EDDY SDK modules have been built properly and are ready to run.

Here is a brief description of each of the EDDY SDK agents that you just imported and built:

(
eddyframework - The EDDY Framework all agents derive from.

(
eddyargusraw - Argus normalization agent (input: Argus flow data, output: Argus raw CERs).

(
eddyarguscooked - Argus transformation agent (input: Argus raw CERs, output: Argus cooked CERs).

(
eddyargusdisplay - Argus display agent, mostly stubbed (input: Argus cooked CERs, output: None).

(
eddyargusdragnet - Dragnet transformation agent (input: Argus flow data, output: Dragnet cooked CERs).

(
eddyargusiso - ISO transformation agent (input: Argus flow data, output: ISO cooked CERs).

(
eddyargusisodrag - Dragnet transformation agent (input: ISO cooked CERs, output: Dragnet non-anonymized cooked CERs).

(
eddyargusdraganon - Dragnet transformation agent (input: Dragnet non-anonymized CERs, output: Dragnet anonymized CERs).

(
eddyargusdisplaydrag - Dragnet display agent (input: Dragnet CERs, output: None).

(
eddyargusdisplayiso - ISO display agent (input: ISO CERs, output: None).

(
eddytopnete - Network event transformation agent (input: Network event CERs, output: Mocked up TopNetE analysis CERs).

(
eddytemplate - Template agent (used to create new agents) (input: None, output: None).

(
eddycbpd - CBPD transformation agent (input: Mocked up sensor data, output: CBPD cooked CERs).

(
eddycbpddisplay - CBPD display agent (input: CBPD CERs, output: None).

(
eddytemplateperl - Template agent (used to create new agents in Perl) (input: None, output: None).

(
eddymanager - Simple agent startup program.

(
eddycertificates - Certificates and scripts for TLS authorization and authentication.

(
eddymisc - Miscellaneous files.

Testing the EDDY Software

Now that the EDDY software has been imported and built, let’s quickly test a template agent to make sure it runs. The EDDY SDK includes scripts in each of the project’s directories that are used to start up the EDDY agent.

In each project there are three files, each with the name of the agent in lowercase. As an example, the eddyargusdragnet project has the eddyargusdragnet, eddyargusdragnet.bat and the eddyargusdragnet.cyg scripts in it.

Which script you use to start the agent depends on the operating system you are running it under:

(
Linux, use eddyargusdragnet.

(
Windows, use eddyargusdragnet.bat.

(
Cygwin, use eddyargusdragnet.cyg.

Bring up a command prompt in Windows or a shell in Linux/Cygwin so we can test the proper install and compilation of the EDDY code. Change directories to the location of the eddytemplate agent.

Before we run the EDDY template agent test, you’ll want to set the JAVA_HOME environment variable to the root directory of where your JDK is located. In Linux/Cygwin, you can do this with "export JAVA_HOME=/usr/local/jdk" (or wherever it is located and assuming your shell is Bash). In Windows it's "set JAVA_HOME=C:\jdk" (or wherever it is located).

Start the template agent in Windows by entering the command eddytemplate and then return. In Linux/Cygwin, start the agent with the command ./eddytemplate after first issuing the following command:

(
chmod +x eddytemplate

If you see the following output, you have a good EDDY SDK installation.

(
EDDYFramework::EDDYFramework(AgentType config)

(
EDDYTemplate::EDDYTemplate(AgentType config)

(
EDDYFramework::agentStart()

(
EDDYFramework::acquireInit()

(
EDDYFramework::filterInit()

(
EDDYFramework::transformInit()

(
EDDYTemplate::consumeInit()

(
EDDYFramework::routeInit()

(
EDDYFramework::acquire()

Hit Control-C to terminate the agent and close the command prompt or shell. Now would also be a good time to exit out of Eclipse.

Writing Agents In Perl

If you are interested in creating EDDY Agents that are written in Perl, there is additional software that needs to be installed in order to make it work. The following instructions describes what you need to install:

First you need to have Perl running (I have version 5.8.6) on your system. I tested under Linux, specifically Fedora Core 4 that was a developer’s installation.

In order to use the Perl template agent and to build other Perl agents, you’ll need to grab a couple of Perl modules from CPAN (www.cpan.org). The specific ones you need are:

(
Parse-RecDescent-1.94: http://search.cpan.org/CPAN/authors/id/D/DC/ DCONWAY/Parse-RecDescent-1.94.tar.gz
(
Inline-0.44: http://search.cpan.org/CPAN/authors/id/I/IN/INGY/Inline-0.44.tar.gz
(
Inline-Java-0.50: http://search.cpan.org/CPAN/authors/id/P/PA/PATL/Inline-Java-0.50.tar.gz
These Perl modules are also available in the modules directory of the eddytemplateperl project. You’ll want to install these modules in the order show above.

To install Parse-RecDescent:

(
gunzip Parse-RecDescent-1.94.tar.gz

(
tar -xvf Parse-RecDescent-1.94.tar

(
cd Parse-RecDescent-1.94

(
cd lib

(
mv Parse /usr/lib/perl5/site_perl/5.8.6 (or wherever your Perl is)

To install Inline:

(
gunzip Inline-0.44.tar.gz

(
tar -xvf Inline-0.44.tar

(
cd Inline-0.44

(
perl Makefile.PL (accept defaults)

(
make (verify for no errors)

(
make test (verify for no errors)

(
make install (verify for no errors)

To install Inline-Java:

(
gunzip Inline-Java-0.50

(
tar -xvf Inline-Java-0.50

(
cd Inline-Java-0.50

(
perl Makefile.PL J2SDK=/usr/local/jdk (or wherever your JDK is) (Accept defaults except to build the Perl Interpreter extension, you’ll want that.)

(
make java (verify for no errors)

(
make (verify for no errors)

(
make test (verify for no errors)

(
make install (verify for no errors)

Once the three Perl modules listed above are installed, you can make sure the Perl setup is good by going to the eddytemplateperl project directory and starting it with the ./eddytemplateperl script after setting the JAVA_HOME environment variable to the location of your JDK.

You should see some debug messages before the agent stops printing out messages (because after it’s initialized, it’s waiting for CERs from the EDDY Backplane).

One message of interest is the third one “Perl::EDDYTemplatePerl::agentStart()”. The code that prints this message is in Perl, so if you see it, you know that Perl is getting called properly.

Testing The Dragnet Agents

A more complete test and demonstration of the EDDY software included in the SDK is to run multiple agents that normalize event data into EDDY CERs and pass those CERs between them over the EDDY Backplane. The following steps illustrate how to setup and run a couple of the EDDY Argus Dragnet agents included in the release distribution:

The first thing you’ll want to do is bring up two command prompts/shells and set the JAVA_HOME environment variable. Change into the eddyargusdragnet directory in one and eddyargusdisplaydrag in the other.

Set the JAVA_HOME environment to the root directory of where your JDK is located. Do this like it was described above. You'll need to set this environment variable in each of the command prompt/shells you have up.

You'll want to copy the jssecacerts file from the eddycertificates project into your JAVA_HOME/jre/lib/security directory. This file contains the root EDDY certificate and you’ll need it in order for TLS to work.

Cut and paste the following XML text and save (replacing) the eddyconfig.xml file in the eddyargusdragnet directory:

<?xml version="1.0" encoding="UTF-8"?>
<eddyConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <host name="localhost">
 <agent name="edu.cmu.acs.eddy.EDDYArgusDragnet">
 <base>
 <route>
 <strOption name="keystore">
 <value>../eddycertificates/eddyhost.ks</value>
 </strOption>
 <strOption name="rules">
 <value>route.rules</value>
 </strOption>
 </route>
 </base>
 <extended>
 <acquire>
 <boolOption name="anonymize" value="true"/>
 <boolOption name="transport" value="true"/>
 <boolOption name="gargoyle" value="false"/>
 <boolOption name="stdin" value="true"/>
 <strOption name="keyFile">
 <value>dragnet.key</value>
 </strOption>
 <strOption name="subnets">
 <value>
 128.2
 128.237
 </value>
 </strOption>
 </acquire>
 <consume>
 <intOption name="total" value="100"/>
 </consume>
 </extended>
 </agent>
 </host>
</eddyConfig>
Cut and paste the following XML text and save (replacing) the eddyconfig.xml file in the eddyargusdisplaydrag directory:

<?xml version="1.0" encoding="UTF-8"?>
<eddyConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <host name="localhost">
 <agent name="edu.cmu.acs.eddy.EDDYArgusDisplayDrag">
 <base>
 <acquire>
 <boolOption name="encrypt" value="true"/>
 <intOption name="readPort" value="2561"/>
 <strOption name="keystore">
 <value>../eddycertificates/eddyhost.ks</value>
 </strOption>
 </acquire>
 </base>
 <extended>
 <consume>
 <!-- <boolOption name="dump" value="true"/> -->

 <boolOption name="javaXML" value="true"/>
 <!-- <boolOption name="parse" value="true"/> -->

 <intOption name="total" value="100"/>
 </consume>
 </extended>
 </agent>
 </host>
</eddyConfig>
These configuration files differ from the default ones in the projects in a couple of ways. First, the debug and status information is turned off and second, the eddyargusdragnet agent is configured to read Argus event data from stdin and not from the Argus daemon itself.

Start the agents and watch the counts of CERs that are processed. For the eddyargusdragnet agent, start it up as follows in Windows: "type ..\eddymisc\argus_11.Jan.06_18.35.00-30.out.anon | eddyargusdragnet". In Linux use "cat ../eddymisc/argus_11.Jan.06_18.35.00-30.out.anon | ./eddyargusdragnet". In Linux, before you do this though, you’ll need to make the startup scripts executable. Do this by issuing the following commands:

(
chmod +x eddyargusdragnet

(
chmod +x eddyargusdisplaydrag

Start up the eddyargusdisplaydrag agent in Windows with "eddyargusdisplaydrag" and in Linux with "./eddyargusdisplaydrag".

It'll take a little time to get everything going, mainly because of the complexity of the code to do anonymization caching. You should start seeing counts of hundreds of CERs processed. The argus_11.Jan.06_18.35.00-30_anon.out file has a little over 77,100 Argus flow records in it. Both agents will display their counts until both hit 77,100 CERs processed and then stop. They stop displaying CER counts because the eddyargusdragnet agent wants to read more Argus event data, but there is no more data in the file to read.
Agent Configuration Preferences

EDDY agents are configured by modifying the settings of the eddyconfig.xml file. Each agent supports a universal set of configuration options that are common to every EDDY agent. The functionality of these settings are implemented in the EDDY Framework that all agents are based off of. All universal agent settings are grouped together in the <base> section of the eddyconfig.xml file.

In addition to the universal configuration settings, each agent supports its own set of preferences. These settings are located in the <extended> section of the eddyconfig.xml file. We can change the behavior of the eddyargusdisplaydrag agent by editing its eddyconfig.xml file. Change the following line in the file as follows:

(
From: <!-- <boolOption name="dump" value="true"/> -->

(
To: <boolOption name="dump" value="true"/>
This edit uncomments the “dump” option and sets it to true. When this option is set, the eddyargusdisplaydrag agent will display the XML of all CERs that it reads from the EDDY Backplane. If you rerun the agents as instructed above, you’ll see lots of lots of CERs being displayed to the screen.

Another configuration setting to take a look at is the “parse” option. If you uncomment this option in the eddyconfig.xml file in the same way you did for the “dump” command and rerun the agents, you will see screenful after screenful of the parsed elements of the CERs that were read from the EDDY Backplane. In the code of the eddyargusdisplaydrag project itself, this is a good location to take the parsed element variables and do something more useful with the data such as storing it in a database, etc.

A final configuration setting to consider in the eddyargusdisplaydrag agent is the “javaXML” option. The eddyargusdisplaydrag agent parses the data from the incoming CERs in one of two ways. The first that is used when the “javaXML” option is set to false or not present is to use JAXB to unmarshall the data. Using JAXB is great when the incoming CER rate is less than about 3,000 CERs a second, but above that rate it can’t keep up. That’s why a second approach to unmarshall the data is used in the eddyargusdisplaydrag agent. When the “javaXML” option is set to true, custom parsing of the XML is called on to pull out the elements. This second approach is brute force, but has the advantage of being very fast, somewhere in the order of 12,000 or more CERs decoded a second on a typical PC-based server.

EDDY Framework Pipeline

An EDDY agent is built on top of or derived from the EDDY Framework. What this means in practical terms is that the derived agent will inherit capabilities of the EDDY Framework without having to implement those features itself. Functionality such as reading CERs from the EDDY Backplane, routing CERs to destinations over the EDDY Backplane, applying filtering rules to CERs to determine further processing and reading and writing CERs using a mutually authenticated and optionally encrypted transport layer are all available to agents based off of the EDDY Framework.

An agent derived from the EDDY Framework does not have to provide any code to use the built-in features of the EDDY Framework. The derived agent is only responsible for implementing the features that are specific to that agent. For example, a Snort IDS normalizing agent would be responsible for taking native Snort event data and generating an EDDY CER from that data. It would then rely on the filtering, routing and transport features of the EDDY Framework to move the CER on to other destinations over the EDDY Backplane.

Another example would be a database agent that is responsible for archiving into a file-based structure all of the CERs it receives from the EDDY Backplane. In this case, the agent would utilize the built-in EDDY Framework features to acquire CERs from the EDDY Backplane, filter them and then would provide code to take the CERs it receives and archive them. If this agent didn’t want further routing and transport of the CERs it receives, it would be able to achieve this by disabling the built-in routing capabilities.

An agent derived from the EDDY Framework provides its specific functionality by overloading a method of the EDDY Framework by the same name. Overloading a method (function) means to provide an implementation of that method with the same name, return type and parameters of that method in the EDDY Framework. When this is done, the agent’s version of the method is called and not the EDDY Framework’s implementation in a running agent.
The EDDY Framework operates using a pipelined architecture as the following diagram illustrates:

[image: image1.emf]Acquire

Filter

Transform

Consume Route

CER

CER

CER

CER

EDDY Backplane

EDDY Backplane

The EDDY Framework pipeline consists of five stages. The Acquire stage is responsible for acquiring a CER either from the EDDY Backplane or by generating one from a native event source. The Filter stage is responsible for apply filtering rules in order to determine if the CER should be processed in later stages of the pipeline. The Transform stage is used to modify an incoming CER and output a modified version of it. The Consume stage is responsible for using the CER in some way, possibly storing or displaying it. Lastly, the Route stage is used to transport the pipelined CER to other locations.

An agent derived from the EDDY Framework overloads any of the five stages it needs to in order to provide capabilities at that point in the pipeline. The concept is pretty basic. For example, the default behavior of the acquire() method in the EDDY Framework is to read CERs from the EDDY Backplane. For many agents derived from the EDDY Framework this makes sense, but for a normalizing agent, it needs to take native event data and generate a CER. For this type of agent, it would overload the acquire() method and implement the code needed to produce a CER. This new CER would then be returned by the acquire() method into the EDDY Framework pipeline for further processing.

Each of the five pipeline stages also allow start and stop methods that can be overloaded in order to provide initialization and destruction capabilities. For example, the consume() method has a corresponding consumeInit() and consumeStop() overload.

The following bullets describe each of the five stages of the EDDY Framework pipeline, highlighting the default behavior of each, its configuration options as well as exploring possibilities for overloading it in an agent derived from the EDDY Framework:

(
acquire() - The default behavior of the acquire() method in the EDDY Framework pipeline is to read CERs from the EDDY Backplane.

Configuration options that can be specified in the eddyconfig.xml preferences file include options to specify what TCP port the EDDY Framework should listen on, whether TLS encryption should be used or not and also the location of the Java keystore file that is used by the EDDY Framework to authenticate itself to the EDDY agent that is sending the agent CERs over the EDDY Backplane. The default acquire() method is able to accept connections from multiple agents.

The acquire() method is typical overridden by a derived agent when it is normalizing its own event data and providing that newly generated CER into the EDDY Framework pipeline for further processing.

The acquire() method does not receive any input and is required to return a complete EDDY CER of some form back to the EDDY Framework pipeline.

(
filter() - The default behavior of the filter() method in the EDDY Framework is to apply the filtering rules described in the section below to determine whether or not the CER should continue to be processed within the EDDY Framework pipeline.

Configuration options that affect the EDDY Framework implementation of the filter() method include options to display the result of filtering decisions as well as the location of the filtering rules file that drives the decision making of the EDDY Framework filtering engine.

The filter() method would be overridden by a derived agent when it would want to provide a filtering method of its own that would differ from the default EDDY Framework's approach for doing so.

The filter() method receives an EDDY CER produced by the acquire() method. If the CER is to continue to be processed by the EDDY Framework pipeline, the filter() method should return the same CER that was passed in to it. Otherwise, if the CER is not be processed further, the filter() method must return a value of null.

(
transform() - The default EDDY Framework behavior of the transform() method is not to do anything to the CER it receives as input and simply to pass it along to the next stage of the EDDY Framework pipeline. Since there is no default EDDY Framework behavior for the transform() method, there are no supported configuration options.

The transform() method would be overridden in a derived EDDY Framework agent, more specifically, an EDDY transformation agent. The transformation agent would take the CER it receives as input and modify it before passing it on to the later stages of the EDDY Framework. An example of a transformation agent would be one that anonymizes the IP addresses of an incoming CER before passing it along for consumption or routing.

The transform() method receives an EDDY CER produced by the filter() method. The transform() method can either return a modified CER or return null if it wants the EDDY Framework pipeline not to process the CER further. Returning null is particularly useful in the case of a transformation agent that produces analysis CERs that represent summary information on a stream of CERs.

(
consume() - The default EDDY Framework behavior of the consume() method is not to do anything with the CER it receives as input. Like the transform() method, since there is no default EDDY Framework functionality for the consume() method, there are no supported configuration options.

The consume() method would typically be overidden in a derived EDDY Framework agent when it wants to use or consume the CER in one way or another. Some possibilities would include storing the CER in a database or displaying the data of the CER on the screen in some manner, etc.

The consume() method does not return a CER back to the EDDY Framework like the acquire(), filter() and transform() methods do and its return type is specified as void.

(
route() - The default behavior of the route() method in the EDDY Framework is to apply the routing rules described in the section below to determine where the CER it receives should be sent to. Thr routing rules may also specify that the CER not be forwarded to a destination at all.
Configuration options that affect the EDDY Framework implementation of the route() method include options to display the result of routing decisions as well as the location of the routing rules file that drives the decision making of the EDDY Framework routing engine. An additional option specifies the location of the Java keystore file that contains the certificate used to authenticate the agent to the hosts it is routing CERs to.

The route() method would be overridden by a derived agent that wants to provide a routing approach of its own that would differ from the default EDDY Framework's approach.

The route() method does not return a CER back to the EDDY Framework like the acquire(), filter() and transform() methods do and its return type is specified as void like the consume() method.
EDDY Framework Filtering

The EDDY Framework provides filtering functionality to all agents derived from it. A filtering decision is made on a CER after it has been acquired or normalized. By default, if an agent derived from the EDDY Framework does not overload the “filter()” method, the EDDY Framework will apply its default filtering capabilities to the CER. A decision is made by the EDDY Framework filtering code whether or not to provide further processing of the CER within the EDDY Framework pipeline.

The file that contains the filtering rules is specified in the eddyconfig.xml file. A typical filtering configuration section from the eddyconfig.xml file might look as follows:

<filter>
 <boolOption name="status" value="true"/>
 <strOption name="rules">
 <value>filter.rules</value>
 </strOption>
</filter>
The “status” option is used for debugging and instructs the filtering code to display the status of CER filtering decisions. Normally, this would be set to false. The “rules” option specifies the location of the filtering rules file.

Filtering rules in the rules file are specified using a series of regular expressions and logical operators. To simplify internal processing complexity, we are using RPN (Reverse Polish Notation) to determine the order of evaluated filtering rule expressions. Using the RPN expression format supports generalized combinations of regular expressions and logical operators on those expressions to form the basis of complex filtering functionality.
Comments in the filtering rules file are specified with the "#" character as the first character of the line and are ignored. Blank lines are also ignored.
The filtering rule parsing code is not particularly adept at handling incorrectly formed filtering rules, so care must be taken at this point in time to specify things properly.
A filtering rule is defined as a regular expression following normal regex rules and specifically what the J2SE (Java 2 Standard Edition) version 1.5 accepts (http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html). A match on the regular expression against the CER being evaluated will result in a "true" boolean value being pushed onto the results stack. In order to have the lack of a match evaluating to "true", preface the regular expression with the negation character "!". Filtering rules must be flanked by open "[" and close "]" brackets to delineate them from other configuration file commands.
The filtering rules support two operators that operate on the result stack. They are the logical "and" and the logical "or" operators. The logical "and" operator is specified using the character string "&&" at the beginning of a line and the logical "or" operator is specified with the "||" string. The logical "and" operator pops two results from the result stack and pushes "true" back onto the stack if the values of the operands are both "true". Otherwise "false" is pushed. The logical "or" operator also pops two results from the result stack and pushes "true" onto the stack if either or both of the operands are true. A "false" value is pushed onto the result stack if both operand values are false.
Following the evaluation of regular expressions and operators on the results of those expressions, the boolean value remaining on the results stack will determine whether or not the CER will be filtered or forwarded on within the EDDY framework.
The sections that follow provide sample filtering rule sets to illustrate specific filtering functionality utilizing the nomenclature described above.
Forwarding rule for Web site access. This rule translates to network events
where the IP protocol is TCP and the destination port is 80 (http) or 443 (https).
--
[<dstPort>80</dstPort>]
[<dstPort>443</dstPort>]
||
[<netProto>6</netProto>]
&&
Forwarding rule for all traffic except Web site access. This rule translates
to network events where the IP protocol is other than TCP and the destination
port is not 80 (http) nor 443 (https).
--
![<dstPort>80</dstPort>]
![<dstPort>443</dstPort>]
&&
![<netProto>6</netProto>]
||
Forwarding rule for all access to Google's network (typically www.google.com
Web access). This rule translates to network events where the destination
address is in the range of 64.233.161.<anything>.
--
[<dstAddr><ipv4Addr>64\.233\.161\..*</ipv4Addr></dstAddr>]
Forwarding rule for all GRE access between 17:00:00.000 and 17:59:00.00.000.
This rule translates to network events where the protocol is 47 (GRE) and the
start time of the event matches to the "17th" hour of the day.
--
[<netProto>47</netProto>]
[<startTime><utcTime>.*T17.*</utcTime></startTime>]
&&
EDDY Framework Routing

The EDDY Framework also provides routing capabilities to all agents derived from it. A routing decision is made on a CER in the final stage of the EDDY Framework pipeline. By default, if an agent derived from the EDDY Framework does not overload the “route()” method, the EDDY Framework will apply its default routing functionality to the CER. A CER may be routed to one or more destinations or not routed at all, depending on how the routing rules are defined.

The file that contains the routing rules is specified in the eddyconfig.xml file. A typical routing configuration section from the eddyconfig.xml file appears below:

<route>
 <boolOption name="status" value="true"/>
 <strOption name="keystore">
 <value>../eddycertificates/eddyhost.ks</value>
 </strOption>
 <strOption name="rules">
 <value>route.rules</value>
 </strOption>
</route>
The “status” option is used for debugging and instructs the routing code to display the status of CER routing decisions. Typically, this would be set to false. The “keystore” option is used to indicate the location of the Java keystore that contains the x.509 certificate presented by the routing code to each of the hosts it transports CERs to. The “rules” option specifies the location of the routing rules file.
Routing rules are specified by defining a list of hosts and corresponding routing expressions that map to those hosts. If a routing expression is satisfied by evaluating to "true", the CER evaluated against that expression is forwarded to each of the hosts in the routing rule's host list.
Comments in the routing rules file are specified with the "#" character as the first character of the line and are ignored. Blank lines are also ignored.
The routing expression parsing code as well as the general parsing code of this configuration file is not particularly adept at handling incorrectly formed configuration sections, so care must be taken at this point in time to specify things properly.
Hosts that map to the routing expressions are specified on a single line preceded by the "@" character at the first column position of the line. Only one host line per routing rule is permitted. A host is specified with its fully qualified domain name or its IP address along with the port number for the host it is connecting to. The host and port number are separated by a ":". Following the port number, a command string is used to specify whether or not the connection between the two hosts will be encrypted. To use encryption, specify "encrypt", otherwise specify "!encrypt". Multiple hosts are supported by separating them with the semi-colon character.
Following the routing hosts line, an optional routing operator may be specified that is used to signal that a match on the routing expression should stop the search through the remaining routing rules. By default, each of the routing rules are evaluated for matches between the routing expression and the CER. For each routing rule where there is a match, the CER is sent to the host(s) defined for that rule. If a match isn't found in either the default or the stop match operator case, the search through the remaining routing rules continues.
The stop match operator is specified with the "<>" string entered on a line by itself. The current routing rule under evaluation and its inclusion of the stop match operator defines its stop match behavior and the behavior doesn't extend beyond that routing rule. In other words, there is no notion that a previously defined stop match rule carries over to subsequent routing rules. The stop match operator does not affect the operation of the universal and exception operators described below. If either of those operators is defined, they will be evaluated as normal regardless of the inclusion of stop match operators.
Routing rules are specified using a series of regular expressions and logical operators. To simplify internal processing complexity, we are using RPN (Reverse Polish Notation) to determine the order of evaluated routing rule expressions. Using the RPN expression format supports generalized combinations of regular expressions and logical operators on those expressions to form the basis of complex routing functionality.
Similar to filtering rules, a routing rule is defined as a regular expression following normal regex rules and specifically what the J2SE (Java 2 Standard Edition) version 1.5 accepts (http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html). A match on the regular expression against the CER being evaluated will result in a "true" boolean value being pushed onto the results stack. In order to have the lack of a match evaluating to "true", preface the regular expression with the negation character "!". Routing rules must be flanked by open "[" and close "]" brackets to delineate them from other configuration file commands.
Like filtering rules, the routing rules support two operators that operate on the result stack. They are the logical "and" and the logical "or" operators. The logical "and" operator is specified using the character string "&&" at the beginning of a line and the logical "or" operator is specified with the "||" string. The logical "and" operator pops two results from the result stack and pushes "true" back onto the stack if the values of the operands are both "true". Otherwise "false" is pushed. The logical "or" operator also pops two results from the result stack and pushes "true" onto the stack if either or both of the operands are true. A "false" value is pushed onto the result stack if both operand values are false.
Following the evaluation of regular expressions and operators on the results of those expressions, the boolean value remaining on the results stack will determine whether or not the CER will be routed within the EDDY framework to the host or hosts associated with the routing rule.
In addition to routing expressions specified as a sequence of regular expressions and boolean operators, there are two additional routing operators that are supported. These two operators stand alone on their own lines and can't be combined together or with any regular expressions or boolean operators. They also may appear only once each in the routing rules file. The first operator is the "*" universal routing operator which is used to send each and every CER to the specified host(s) defined in the routing rule. The second is the "^" exception routing operator that is used as a routing destination for all CERs that do not match the non-universal routing rules.
The sections that follow provide sample routing rule sets to illustrate specific routing functionality utilizing the nomenclature described above.
Routing rule for Web site access. This rule translates to network events
where the IP protocol is TCP and the destination port is 80 (http) or 443
(https). If the rule matches, send the CER to the specified hosts and ports.
A stop match operator is defined; if a match is found, the remaining routing
rules are not evaluated.
--
@eddy1.andrew.cmu.edu:3561:encrypt;eddy2.andrew.cmu.edu:3561:!encrypt
<>
--
[<dstPort>80</dstPort>]
[<dstPort>443</dstPort>]
||
[<netProto>6</netProto>]
&&
Routing rule for all GRE access between 17:00:00.000 and 17:59:00.00.000.
This rule translates to network events where the protocol is 47 (GRE) and the
start time of the event matches to the "17th" hour of the day. If the rule
matches, send the CER to the specified host and port.
--
@eddy3.andrew.cmu.edu:3561:encrypt
--
[<netProto>47</netProto>]
[<startTime><utcTime>.*T17.*</utcTime></startTime>]
&&
Universal routing rule. Send all CERs to the specified host and port.
--
@eddy4.andrew.cmu.edu:3561:!encrypt
--
*
Exception routing rule. Send all CERs that don't match non-universal routing
rules to the specified hosts and ports.
--
@eddy1.andrew.cmu.edu:4561:encrypt;eddy2.andrew.cmu.edu:4561:encrypt
--
^
Summary

The previous sections of this document show how to get up and running with the EDDY Software Development Kit. The SDK includes the EDDY Framework as well as template agents for building EDDY agents in Java as well as Perl. It also includes several complete agents for normalizing, transforming and consuming network events that originate as Argus flow data.

The core EDDY Framework provides capabilities to filter incoming CERs and route them using a mutually authenticated and optionally secure TLS transport mechanism. EDDY agents derived from the EDDY Framework inherit all of the capabilities of the EDDY Framework and implement only the features that are unique to that agent, leveraging the shared functionality that all agents need.

If you have any questions, problems, gripes or issues with this document, feel free to contact the author, Jim Gargani at jgargani@cmu.edu.

3.February.2006
Page 19 of 19
Carnegie Mellon University

_1200309799.vsd
Acquire

Filter

Transform

Consume

Route

CER

CER

CER

CER

EDDY Backplane

EDDY Backplane

