Smoothing for non-smooth optimization, lecture 1

Instructor:

Javier Peña, Carnegie Mellon University

Goals:

- First-order (gradient-based) algorithms for huge convex optimization problems
- Two applications:
 - Game theory: $\max_{y \in Q_2} \min_{x \in Q_1} \langle Ax, y \rangle$
 - Sparse principal components analysis:

$\max_{X\in Q_1}\min_{Y\in Q_2}\left\{\langle C,X\rangle-\langle X,Y\rangle\right\}$

1

Course outline:

- Introduction & motivation
- Basics of convex analysis
- Gradient and subgradient schemes
- Smoothing techniques
- Applications

About algorithms for convex optimization

- Interior-point methods: based on Newton's method.
 O(log(1/ε)) expensive iterations to find ε-approximate solution
- Subgradient methods (non-smooth case) $O(1/\epsilon^2)$ cheap iterations to find ϵ -approximate solution
- Efficient gradient-based methods (smooth case) $O(1/\sqrt{\epsilon})$ cheap iterations to find ϵ -approximate solution
- Smoothing techniques (non-smooth case) $O(1/\epsilon)$ cheap iterations to find ϵ -approximate solution

2

Brief, incomplete, and biased history of convex optimization

- 19th century: optimization in physics, Gauss's least-squares method
- 1900-1970: math developments, convex optimization
- 1940s: simplex method for linear programming
- 1970s: ellipsoid method
- 1980s: interior-point methods
- 1990s: algorithms for semidefinite programming, and symmetric cone programming, new applications in stats, machine learning, combinatorial optimization, control, circuit design, etc.
- 2000s: methods with low computational cost for huge problems

Convex optimization

$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & x \in D \end{array}$

where

- *f*: convex function
- D: convex set

Examples of convex optimization

• Least squares

$$\min_{x} \|Ax - b\|^2$$

• Linear programming

$$\begin{array}{ll} \min & c^{\top}x\\ \text{s.t.} & Ax = b\\ & x \ge 0 \end{array}$$

6

• Semidefinite programming

$$\begin{array}{ll} \min & C \bullet X \\ \text{s.t.} & AX = b \\ & X \succ 0 \end{array}$$

Here the variable X is an $n \times n$ symmetric matrix and

$$X \succeq \mathbf{0} \Leftrightarrow u^{\mathsf{T}} X u \ge \mathbf{0} \ \forall u \in \mathbb{R}^n \Leftrightarrow \lambda(X) \ge \mathbf{0}$$

Convention: $\lambda(X) = (\lambda_1(X), \dots, \lambda_n(X))$ eigenvalues of X with

$$\lambda_1(X) \geq \cdots \geq \lambda_n(X).$$

Today:

- Convex sets
- Convex functions
- Smooth convex functions
- Non-smooth convex functions
- Fenchel duality

5

Convex sets

Throughout this course

E: finite-dimensional Euclidean space with inner product $\langle\cdot,\cdot\rangle.$

 $\|\cdot\|$: norm induced by $\langle\cdot,\cdot\rangle$.

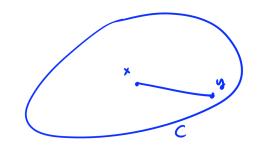
Two special cases:

- \mathbb{R}^n , with inner product $\langle x, s \rangle = x^{\mathsf{T}}s$
- Sⁿ: space of $n \times n$ real symmetric matrices with inner product $\langle X, S \rangle = \text{trace}(XS) =: X \bullet S$.

Recall: trace $(M) = \sum_{i} \lambda_i(M) = \sum_{i} M_{ii}$.

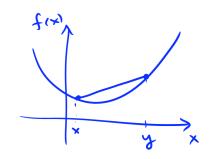
Example 2

- Polyhedron: $\{x \in \mathbb{R}^n : Ax \leq b\}$ for some given $A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m$.
- Non-negative orthant: $\mathbb{R}^n_+ := \{x \in \mathbb{R}^n : x \ge 0\}$
- Polytope: $\{My : y \ge 0, \sum_{j=1}^{n} y_j = 1\}$ for some given $M \in \mathbb{R}^{n \times m}$.
- Simplex: $\Delta_n := \{x \in \mathbb{R}^n : x \ge 0, \sum_{i=1}^n x_i = 1\}$
- Ball: $\left\{x \in E : \langle x, x \rangle \le r^2\right\}$ for some given r > 0.
- Positive semidefinite cone: $\mathbf{S}^n_+ := \{X \in \mathbf{S}^n : \lambda(X) \ge 0\}$
- Spectraplex: $\{X \in \mathbf{S}^n_+ : \sum_{i=1}^n \lambda_i(X) = 1\}.$



Definition 1

- $C \subseteq E$ is convex if $\alpha x + (1 \alpha)y \in C$ whenever $x, y \in C$ and $\alpha \in [0, 1]$.
- $K \subseteq E$ is a cone if $\lambda x \in K$ whenever $x \in K$ and $\lambda \ge 0$.



Convex functions

Definition 3 Let $C \subseteq E$ be a convex set and $f : C \to \mathbb{R}$. The function f is convex on C if for all $x, y \in C$ and $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

9

Alternative definition of convex functions

- Consider extended-valued functions $f: E \to \mathbb{R} \cup \{+\infty\}$.
- Can always do this by declaring $f(x) = +\infty$ for $x \notin \text{dom}(f)$
- f is convex if and only its epigraph

$$epi(f) := \{(x, r) \in E \times \mathbb{R} : r \ge f(x)\},\$$

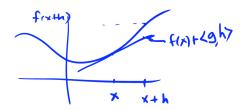
is a convex set.

• Define dom $(f) := \{x \in E : f(x) < \infty\}$ (projection of epi(f))

Example 4 Some convex functions

- $f: E \to \mathbb{R}$ defined by $x \mapsto \langle x, x \rangle = \mathbb{I} \times \mathbb{I}^2$
- $f: E \to \mathbb{R}$ defined by $x \mapsto \langle a, x \rangle$ for some $a \in E$
- $f: E \to \mathbb{R} \cup \{+\infty\}$ defined by $x \mapsto \sup_{i \in I} g_i(x)$ where each $g_i: E \to \mathbb{R} \cup \{+\infty\}, i \in I$ is convex
- $f: \mathbb{I\!R} \to \mathbb{I\!R}$ defined by $x \mapsto e^x$
- $f : \mathbb{R}_+ \to \mathbb{R}$ defined by $x \mapsto x \log x$
- $f: \mathbf{S}^n \to \mathbb{R}$ defined by $X \mapsto \lambda_1(X) + \cdots + \lambda_k(X)$, where $k \leq n$

14



13

Smooth convex functions

Definition 5 $f: E \to \mathbb{R} \cup \{+\infty\}$ is *differentiable* at $x \in \text{dom}(f)$ if there exists $g \in E$ such that

$$\lim_{h\to 0}\frac{f(x+h)-f(x)-\langle g,h\rangle}{\|h\|}=0,$$

In other words, if

$$f(x+h) = f(x) + \langle g, \not \rangle + o(||h||)$$

h

When such g exists, it is unique. In this case, g is the gradient of f at x, and is denoted $\nabla f(x)$.

Proposition 6 Assume f is differentiable on an open set $\Omega \subseteq E$ and $C \subseteq \Omega$ is convex. Then the following are equivalent

- f is convex on C
- $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$ for all $x, y \in C$
- $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0$ for all $x, y \in C$

Corollary 7 Assume $f : E \to \mathbb{R}$ is differentiable everywhere and convex. Then $\bar{x} = \operatorname{argmin}_x f(x)$ if and only if $\nabla f(\bar{x}) = 0$.

$$f(x) = f(x) + \langle \nabla f(x), y - x \rangle$$
To prove:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

$$Pf : Consider \quad Q(t) := f(x+t(y-x))$$

$$Q'(0) = \langle \nabla f(x), y - x \rangle$$

$$Q(t) = f(x+t(y-x)) = f(ty+(i-t)x) \le tf(y)+(i-t)f(x)$$

$$\leq f(x) + t(f(y) - f(x)) = Q(0) + t(f(y) - f(x))$$

$$[(y|t) - (y(0))]/t \quad \leq f(y) - f(x)$$

$\nabla f: \mathcal{N} \subseteq E \longrightarrow E$ $\nabla f \sqcup_{\text{psolvitz}} if || \Psi f(x) - \nabla f(y) || \le L || x - y ||$

Lipschitz continuity of the gradient

Theorem 8 Assume f is differentiable on an open set $\Omega \subseteq E$ and $C \subseteq \Omega$ is convex. Then the following are equivalent:

- f is convex and ∇f is Lipschitz with constant L on C
- $0 \le f(y) f(x) \langle \nabla f(x), y x \rangle \le \frac{L}{2} ||y x||^2$ for all $x, y \in C$

•
$$\frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$
 for all $x, y \in C$
• $\frac{1}{L} \|\nabla f(y) - \nabla f(x)\|^2 \le \langle \nabla f(y) - \nabla f(x), y - x \rangle$ for all $x, y \in C$

• $\frac{1}{L} \| \nabla f(y) - \nabla f(x) \|^2 \leq \langle \nabla f(y) - \nabla f(x), y - x \rangle$ for all $x, y \in C$ $\rightarrow \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|^2 \leq f(x) - f(y) - \langle \nabla f(y), y - y \rangle$

Strong convexity

Definition 9 Let $C \subseteq E$ be a convex set and $f : C \to \mathbb{R}$. The function f is strongly convex on C if there exists $\rho > 0$ such that for all $x, y \in C$ and $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{1}{2}\rho\alpha(1 - \alpha)||x - y||^2.$$

In this case say that f is strongly convex with modulus ρ .

Proposition 10 Let $C \subseteq E$ be a convex set and $f: C \to \mathbb{R}$. Then f is strongly convex with modulus $\rho > 0$ if and only if $f - \frac{1}{2}\rho \|\cdot\|^2$ is convex on C.

Theorem 11 Assume f is differentiable on an open set $\Omega \subseteq E$ and $C \subseteq \Omega$ is convex. Then the following are equivalent

- f is strongly convex on C with modulus ρ
- $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}\rho ||x y||^2$ for all $x, y \in C$
- $\langle \nabla f(y) \nabla f(x), y x \rangle \ge \rho ||x y||^2$ for all $x, y \in C$

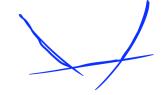
$$\frac{f}{f} \text{ strongly convex up modulus } g \ll g$$

$$\frac{f}{f} \frac{f}{f} \frac{f}{f} \frac{f}{f} \frac{f}{f} \frac{f}{f} \frac{f}{f} \frac{f}{f} \frac{f}{h} \frac{f}$$

Example 12 Some strongly convex functions

• $f: E \to \mathbb{R}$ defined by $x \mapsto \langle x, x \rangle$ • $f: \Delta_n \to \mathbb{R}$ defined by $x \mapsto \sum_{i=1}^n x_i \log x_i$ • $f: \{X \in \mathbf{S}^n : X \succeq 0, I \bullet X = 1\} \to \mathbb{R}$ defined by $X \mapsto \sum_{i=1}^n \lambda_i(X) \log \lambda_i(X)$

20



Non-smooth convex functions

Non-smoothness is pervasive in optimization.

Example 13

- $f(x) = \sup \{g_i(x) : i \in I\}$ where $g_i, i \in I$ are convex.
- $f(x) = \inf \{\phi(u) : c_i(u) \le x_i, i = 1, ..., n\}$ where $\phi, c_i, ..., c_n$ are convex.

Proposition 14 Assume $f : E \to \mathbb{R} \cup \{+\infty\}$ convex and $x \in int(dom(D))$. Then there exists $g \in E$ such that

 $f(y) - f(x) \ge \langle g, y - x \rangle \text{ for all } y \in E.$ $f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle$ (1)

Generalization of the gradient:

Definition 15 Assume $f : E \to \mathbb{R} \cup \{+\infty\}$ convex and $x \in \text{dom}(D)$. The *subdifferential* of f at x is

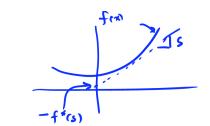
$$\partial f(x) := \{g \in E : (1) \text{ holds}\}$$

Corollary 16 Assume $f : E \to \mathbb{R} \cup \{+\infty\}$ is convex. Then $\overline{x} \in \operatorname{argmin}_x f(x)$ if and only if $0 \in \partial f(\overline{x})$.

Notice:

If f is convex and differentiable at x then $\partial f(x) = \{\nabla f(x)\}.$

Proposition 17 Assume $f: E \to \mathbb{R} \cup \{+\infty\}$ convex Then f is differentiable at x if and only if $\partial f(x)$ is a singleton.



Definition 18 Assume $f : E \to \mathbb{R} \cup \{+\infty\}$, with dom $(f) \neq \emptyset$. The *conjugate* of f is $f^*: E \to \mathbb{R} \cup \{+\infty\}$ defined by

$$s \mapsto f^*(s) := \sup \{ \langle s, x \rangle - f(x) : x \in \operatorname{dom}(f) \}.$$

Notice:

Fenchel conjugate

- $f^*(s) + f(x) > \langle s, x \rangle$ for all $x, s \in E$
- $f^*(s) + f(x) = \langle s, x \rangle$ if and only if $s \in \partial f(x)$

23

24

Example 19

$$\begin{array}{c|c|c} f(x) & f^{*}(s) \\ \hline e^{x} & s \log s - s \\ \hline \frac{|x|^{p}}{p}, p > 1 & \frac{|s|^{q}}{q}, \frac{1}{q} = 1 - \frac{1}{p} \\ \hline \sqrt{1 + x^{2}} & -\sqrt{1 - s^{2}} \\ -\log x & -1 - \log(-s) \end{array}$$

Definition 20 $f: E \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Proposition 21 Assume $f : E \to \mathbb{R} \cup \{+\infty\}$. f*(s)= sup{<s,x>-f(x)}

- f^* is closed and convex
- $f^{**} \leq f$
- $f^{**} = f$ if and only if f is closed and convex.

Fenchel duality

Assume $f: E \to \mathbb{R} \cup \{+\infty\}, g: Y \to \mathbb{R} \cup \{+\infty\}$ and $A \in L(E, Y)$.

Consider the pair

$$p := \inf_{x \in E} \{f(x) + g(Ax)\}$$
(P)

and

$$d := \sup_{y \in Y} \{-f^*(A^*y) - g^*(-y)\}$$
(D)
$$f(x) + g(Ax) + f^*(Ay) + f^*(-y)$$

Theorem 22

- (Weak duality): $p \ge dk$ > $\langle x, K_y \rangle + \langle Ax, -y \rangle$:0
- (Strong duality): If $0 \in \text{relint}(\text{dom}(g) A\text{dom}(f))$ then p = d and d is attained.

27

Special case

Consider

$$\min_{x \in Q_1} \max_{y \in Q_2} \left\{ \widehat{f}(x) - \widehat{\phi}(y) + \langle Ax, y \rangle \right\}.$$
 (2)

where

- *E*₁, *E*₂ are finite dimensional Euclidean spaces,
 A ∈ *L*(*E*₁, *E*₂)
- $Q_i \subseteq E_i$ are simple compact convex sets
- \widehat{f} and $\widehat{\phi}$ are convex and differentiable everywhere

28

Can write (2) as

$$\min_{x\in E} \left\{ f(x) + \phi^*(Ax) \right\}$$

for

- $f(x) = \hat{f}(x), \text{ dom}(f) := Q_1$
- $\phi(y) = \hat{\phi}(y), \operatorname{dom}(\phi) := Q_2$

Fenchel dual:

$$\max_{y \in E_2} \left\{ -f^*(A^*y) - \phi^{**}(-y) \right\}$$

which can be written as

$$\max_{y \in Q_2} \min_{x \in Q_1} \left\{ \widehat{f}(x) - \widehat{\phi}(y) + \langle Ax, y \rangle \right\}.$$

Fenchel duality yields

$$\min_{x \in Q_1} \max_{y \in Q_2} \left\{ \widehat{f}(x) - \widehat{\phi}(y) + \langle Ax, y \rangle \right\} = \max_{y \in Q_2} \min_{x \in Q_1} \left\{ \widehat{f}(x) - \widehat{\phi}(y) + \langle Ax, y \rangle \right\}$$

References for today's material

- J. Borwein and A. Lewis, "Convex Analysis and Nonlinear Optimization," Springer Verlag, 2005.
- S. Boyd and L. Vanderberghe, "Convex Optimization," Cambridge Academic Press, 2004. Available from http://www.stanford.edu/~boyd/cvxbook/
- Y. Nesterov, "Introductory Lectures on Convex Optimization," Kluwer Academic Publishers, 2004.
- A. Ben-Tal and A. Nemirovski, "Lectures on Modern Convex Optimization," MPS-SIAM Series on Optimization, 2001. Related material available from http://www2.isye.gatech.edu/~nemirovs/

31