Smoothing for non-smooth optimization, lecture 1

Instructor:

Javier Peña, Carnegie Mellon University

Goals:

- First-order (gradient-based) algorithms for huge convex optimization problems
- Two applications:
- Game theory: $\max _{y \in Q_{2}} \min _{x \in Q_{1}}\langle A x, y\rangle$
- Sparse principal components analysis:

$$
\max _{X \in Q_{1}} \min _{Y \in Q_{2}}\{\langle C, X\rangle-\langle X, Y\rangle\}
$$

About algorithms for convex optimization

- Interior-point methods: based on Newton's method. $O(\log (1 / \epsilon))$ expensive iterations to find ϵ-approximate solution
- Subgradient methods (non-smooth case) $O\left(1 / \epsilon^{2}\right)$ cheap iterations to find ϵ-approximate solution
- Efficient gradient-based methods (smooth case) $O(1 / \sqrt{\epsilon})$ cheap iterations to find ϵ-approximate solution
- Smoothing techniques (non-smooth case)
$O(1 / \epsilon)$ cheap iterations to find ϵ-approximate solution

Course outline:

- Introduction \& motivation
- Basics of convex analysis
- Gradient and subgradient schemes
- Smoothing techniques
- Applications

Brief, incomplete, and biased history of convex

 optimization- 19th century: optimization in physics, Gauss's least-squares method
- 1900-1970: math developments, convex optimization
- 1940s: simplex method for linear programming
- 1970s: ellipsoid method
- 1980s: interior-point methods
- 1990s: algorithms for semidefinite programming, and symmetric cone programming, new applications in stats, machine learning, combinatorial optimization, control, circuit design, etc.
- 2000s: methods with low computational cost for huge problems

Convex optimization

$$
\begin{array}{cl}
\min & f(x) \\
\mathrm{s.t.} & x \in D
\end{array}
$$

where

- f : convex function
- D : convex set
- Semidefinite programming

$$
\begin{array}{cl}
\min & C \bullet X \\
\text { s.t. } & A X=b \\
& X \succeq 0
\end{array}
$$

Here the variable X is an $n \times n$ symmetric matrix and

$$
X \succeq 0 \Leftrightarrow u^{\top} X u \geq 0 \forall u \in \mathbb{R}^{n} \Leftrightarrow \lambda(X) \geq 0 .
$$

Convention: $\lambda(X)=\left(\lambda_{1}(X), \ldots, \lambda_{n}(X)\right)$ eigenvalues of X with

$$
\lambda_{1}(X) \geq \cdots \geq \lambda_{n}(X)
$$

Examples of convex optimization

- Least squares

$$
\min _{x}\|A x-b\|^{2}
$$

- Linear programming

$$
\begin{array}{cl}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

Today:

- Convex sets
- Convex functions
- Smooth convex functions
- Non-smooth convex functions
- Fenchel duality

Convex sets

Throughout this course
E : finite-dimensional Euclidean space with inner product $\langle\cdot, \cdot\rangle$.
$\|\cdot\|$: norm induced by $\langle\cdot, \cdot\rangle$.
Two special cases:

- \mathbb{R}^{n}, with inner product $\langle x, s\rangle=x^{\top}{ }_{s}$
- \mathbf{S}^{n} : space of $n \times n$ real symmetric matrices with inner product $\langle X, S\rangle=\operatorname{trace}(X S)=: X \bullet S$.

Recall: $\operatorname{trace}(M)=\sum_{i} \lambda_{i}(M)=\sum_{i} M_{i i}$

Example 2

- Polyhedron: $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ for some given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$.
- Non-negative orthant: $\mathbb{R}_{+}^{n}:=\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$
- Polytope: $\left\{M y: y \geq 0, \sum_{j=1}^{n} y_{j}=1\right\}$ for some given $M \in \mathbb{R}^{n \times m}$.
- Simplex: $\Delta_{n}:=\left\{x \in \mathbb{R}^{n}: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}$
- Ball: $\left\{x \in E:\langle x, x\rangle \leq r^{2}\right\}$ for some given $r>0$.
- Positive semidefinite cone: $\mathrm{S}_{+}^{n}:=\left\{X \in \mathrm{~S}^{n}: \lambda(X) \geq 0\right\}$
- Spectraplex: $\left\{X \in \mathbf{S}_{+}^{n}: \sum_{i=1}^{n} \lambda_{i}(X)=1\right\}$.

Definition 1

- $C \subseteq E$ is convex if $\alpha x+(1-\alpha) y \in C$ whenever $x, y \in C$ and $\alpha \in[0,1]$.
- $K \subseteq E$ is a cone if $\lambda x \in K$ whenever $x \in K$ and $\lambda \geq 0$.

10

Convex functions

Definition 3 Let $C \subseteq E$ be a convex set and $f: C \rightarrow \mathbb{R}$. The function f is convex on C if for all $x, y \in C$ and $\alpha \in[0,1]$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) .
$$

Alternative definition of convex functions

- Consider extended-valued functions $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$.
- Can always do this by declaring $f(x)=+\infty$ for $x \notin \operatorname{dom}(f)$
- f is convex if and only its epigraph

$$
\operatorname{epi}(f):=\{(x, r) \in E \times \mathbb{R}: r \geq f(x)\}
$$

is a convex set.

- Define $\operatorname{dom}(f):=\{x \in E: f(x)<\infty\}$ (projection of epi (f))

Smooth convex functions

Definition $5 f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ is differentiable at $x \in \operatorname{dom}(f)$ if there exists $g \in E$ such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)-\langle g, h\rangle}{\|h\|}=0
$$

In other words, if

$$
f(x+h)=f(x)+\langle g \cdot / \nmid\rangle+o(\|h\|) .
$$

When such g exists, it is unique. In this case, g is the gradient of f at x, and is denoted $\nabla f(x)$.

Example 4 Some convex functions

- $f: E \rightarrow \mathbb{R}$ defined by $x \mapsto\langle x, x\rangle=\|\mathbf{x}\|^{2}$
- $f: E \rightarrow \mathbb{R}$ defined by $x \mapsto\langle a, x\rangle$ for some $a \in E$
- $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by $x \mapsto \sup _{i \in I} g_{i}(x)$ where each $g_{i}: E \rightarrow \mathbb{R} \cup\{+\infty\}, i \in I$ is convex
- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto e^{x}$
- $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by $x \mapsto x \log x$
- $f: \mathbf{S}^{n} \rightarrow \mathbb{R}$ defined by $X \mapsto \lambda_{1}(X)+\cdots+\lambda_{k}(X)$, where $k \leq n$

Proposition 6 Assume f is differentiable on an open set $\Omega \subseteq E$ and $C \subseteq \Omega$ is convex. Then the following are equivalent

- f is convex on C
- $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$ for all $x, y \in C$
- $\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq 0$ for all $x, y \in C$

Corollary 7 Assume $f: E \rightarrow \mathbb{R}$ is differentiable everywhere and convex. Then $\bar{x}=\operatorname{argmin}_{x} f(x)$ if and only if $\nabla f(\bar{x})=0$.

$$
\begin{aligned}
& \text { To prove: } \\
& f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle \\
& \text { Pf. Consider } \varphi(t):=f(x+t(y-x)) \\
& \varphi^{\prime}(0)=\langle\nabla f(x), y-x\rangle \\
& \varphi(t)=f(x+t(y-x))=f(t y+(1-t) x) \leq t f(y)+(1-t) f(x) \\
& \leqslant f(x)+t(f(y)-f(x))=\varphi(0)+t(f(y)-f(x)) \\
& {[\varphi(t)-\varphi(0)] / t \leqslant f(y)-f(x)}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla f: \Omega \subseteq E \rightarrow E \\
& \nabla f \text { Lipschit2 if }\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
\end{aligned}
$$

Lipschitz continuity of the gradient

Theorem 8 Assume f is differentiable on an open set $\Omega \subseteq E$ and $C \subseteq \Omega$ is convex. Then the following are equivalent:

- f is convex and ∇f is Lipschitz with constant L on C
- $0 \leq f(y)-f(x)-\langle\nabla f(x), y-x\rangle \leq \frac{L}{2}\|y-x\|^{2}$ for all $x, y \in C$
$\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|^{2} \leq f(y)-f(x)-\langle\nabla f(x), y-x\rangle$ for all $x, y \in C$
- $\frac{1}{L}\|\nabla f(y)-\nabla f(x)\|^{2} \leq\langle\nabla f(y)-\nabla f(x), y-x\rangle$ for all $x, y \in C$ $\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \leq f(x)-f(y)-\langle\nabla f(y), x-y\rangle$

Proposition 10 Let $C \subseteq E$ be a convex set and $f: C \rightarrow \mathbb{R}$.
Then f is strongly convex with modulus $\rho>0$ if and only if $f-\frac{1}{2} \rho\|\cdot\|^{2}$ is convex on C.

Theorem 11 Assume f is differentiable on an open set $\Omega \subseteq E$ and $C \subseteq \Omega$ is convex. Then the following are equivalent

- f is strongly convex on C with modulus ρ
- $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} \rho\|x-y\|^{2}$ for all $x, y \in C$
- $\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \rho\|x-y\|^{2}$ for all $x, y \in C$

$$
\begin{aligned}
& f \text { strongh convex wi modulus } \rho \leftrightarrow \\
& \longrightarrow-\frac{1}{2} \rho 11 \cdot 11^{2} \text { convex }
\end{aligned}
$$

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y)- & \frac{1}{2} \rho\|\alpha x+(1-\alpha) y\|^{2} \\
& \leqslant \alpha\left[f(x)-\frac{1}{2} \rho\|x\|^{2}\right]+(1-\alpha)\left[f(y)-\frac{1}{2} \rho\|y\|^{2}\right]
\end{aligned}
$$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

$$
-\frac{1}{2} \rho[\underbrace{\alpha\| \|^{2}+(1-\alpha)\|y\|^{2}-\|\alpha x+(1-\alpha) y\|^{2}}_{\alpha(1-\alpha)\|y-x\|^{2}}]
$$

-

Non-smooth convex functions

Non-smoothness is pervasive in optimization.

Example 13

- $f(x)=\sup \left\{g_{i}(x): i \in I\right\}$ where $g_{i}, i \in I$ are convex.
- $f(x)=\inf \left\{\phi(u): c_{i}(u) \leq x_{i}, i=1, \ldots, n\right\}$ where $\phi, c_{i}, \ldots, c_{n}$ are convex.

Example 12 Some strongly convex functions

- $f: E \rightarrow \mathbb{R}$ defined by $x \mapsto\langle x, x\rangle$
- $f: \Delta_{n} \rightarrow \mathbb{R}$ defined by $x \mapsto \sum_{i=1}^{n} x_{i} \log x_{i}$
- $f:\left\{X \in \mathbf{S}^{n}: X \succeq 0, I \bullet X=1\right\} \rightarrow \mathbb{R}$ defined by $X \mapsto \sum_{i=1}^{n} \lambda_{i}(X) \log \lambda_{i}(X)$

Proposition 14 Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ convex and $x \in \operatorname{int}(\operatorname{dom}(D))$. Then there exists $g \in E$ such that

$$
\begin{aligned}
& f(y)-f(x) \geq\langle g, y-x\rangle \text { for all } y \in E . \\
& \text { n of the gradient: } \quad f(y)-f(x) \geqslant\langle\nabla f(x), y-x\rangle
\end{aligned}
$$

Definition 15 Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ convex and $x \in \operatorname{dom}(D)$. The subdifferential of f at x is

$$
\partial f(x):=\{g \in E:(1) \text { holds }\}
$$

Corollary 16 Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex. Then $\bar{x} \in \operatorname{argmin}_{x} f(x)$ if and only if $0 \in \partial f(\bar{x})$.

Notice:

If f is convex and differentiable at x then $\partial f(x)=\{\nabla f(x)\}$.
Proposition 17 Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ convex Then f is differentiable at x if and only if $\partial f(x)$ is a singleton.

Fenchel conjugate

Definition 18 Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$, with $\operatorname{dom}(f) \neq \emptyset$. The conjugate of f is $f^{*}: E \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
s \mapsto f^{*}(s):=\sup \{\langle s, x\rangle-f(x): x \in \operatorname{dom}(f)\} .
$$

Notice:

- $f^{*}(s)+f(x) \geq\langle s, x\rangle$ for all $x, s \in E$
- $f^{*}(s)+f(x)=\langle s, x\rangle$ if and only if $s \in \partial f(x)$

Example 19

$f(x)$	$f^{*}(s)$
e^{x}	$s \log s-s$
$\frac{\|x\|^{p}}{p}, p>1$	$\frac{\|s\|^{q}}{q}, \frac{1}{q}=1-\frac{1}{p}$
$\sqrt{1+x^{2}}$	$-\sqrt{1-s^{2}}$
$-\log x$	$-1-\log (-s)$

Definition $20 f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed if epi (f) is closed.

Proposition 21 Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$

- f^{*} is closed and convex

$$
f^{*}(s)=\sup _{x}\{\langle s, x\rangle-f(x)\}
$$

- $f^{* *} \leq f$
- $f^{* *}=f$ if and only if f is closed and convex.

Fenchel duality

Assume $f: E \rightarrow \mathbb{R} \cup\{+\infty\}, g: Y \rightarrow \mathbb{R} \cup\{+\infty\}$ and $A \in L(E, Y)$.
Consider the pair

$$
\begin{equation*}
p:=\inf _{x \in E}\{f(x)+g(A x)\} \tag{P}
\end{equation*}
$$

and

$$
\begin{equation*}
d:=\sup _{y \in Y}\left\{-f^{*}\left(A^{*} y\right)-g^{*}(-y)\right\} \tag{D}
\end{equation*}
$$

Theorem 22

- (Weak duality): $p \geq d<\left\langle x, A^{*} y\right\rangle+\langle A x,-y\rangle=0$
- (Strong duality): If $0 \in \operatorname{relint}(\operatorname{dom}(g)-A \operatorname{dom}(f))$ then $p=d$ and d is attained.

Special case

Consider

$$
\begin{equation*}
\min _{x \in Q_{1}} \max _{y \in Q_{2}}\{\widehat{f}(x)-\widehat{\phi}(y)+\langle A x, y\rangle\} . \tag{2}
\end{equation*}
$$

where

- E_{1}, E_{2} are finite dimensional Euclidean spaces, $A \in L\left(E_{1}, E_{2}\right)$
- $Q_{i} \subseteq E_{i}$ are simple compact convex sets
- \hat{f} and $\hat{\phi}$ are convex and differentiable everywhere

Can write (2) as

$$
\min _{x \in E}\left\{f(x)+\phi^{*}(A x)\right\}
$$

for

- $f(x)=\widehat{f}(x), \operatorname{dom}(f):=Q_{1}$
- $\phi(y)=\widehat{\phi}(y), \operatorname{dom}(\phi):=Q_{2}$

Fenchel dual:

$$
\max _{y \in E_{2}}\left\{-f^{*}\left(A^{*} y\right)-\phi^{* *}(-y)\right\}
$$

which can be written as

$$
\max _{y \in Q_{2}} \min _{x \in Q_{1}}\{\widehat{f}(x)-\widehat{\phi}(y)+\langle A x, y\rangle\} .
$$

References for today's material

- J. Borwein and A. Lewis, "Convex Analysis and Nonlinear Optimization," Springer Verlag, 2005.
- S. Boyd and L. Vanderberghe, "Convex Optimization," Cambridge Academic Press, 2004. Available from http://www.stanford.edu/~boyd/cvxbook/
- Y. Nesterov, "Introductory Lectures on Convex Optimization," Kluwer Academic Publishers, 2004.
- A. Ben-Tal and A. Nemirovski, "Lectures on Modern Convex Optimization," MPS-SIAM Series on Optimization, 2001. Related material available from
http://www2.isye.gatech.edu/~nemirovs/

