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Stable Set Problem

G = (V , E) loopless undirected graph.
S ⊆ V is stable if {i , j} 6∈ E for all i , j ∈ S.

Stability number

α(G) := max{|S| : S ⊆ V stable in G}.

Computing α(G) is NP-hard, even NP-hard to approximate.
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Stable set via copositive programming

Copositive cone:

Cn = {M ∈ Sn : xTMx ≥ 0, for all x ∈ Rn
+}.

Theorem (De Klerk & Pasechnik)

Let n = |V |. Then

α(G) = min{λ : λ(I + A(G))− 1I ∈ Cn}.

Related to Motzkin & Straus’ Theorem:

1
α(G)

= min{xT(I + A(G))x : x ∈ ∆},

where ∆ = {x ≥ 0 :
∑n

i=1 xi = 1}.
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Theme

The cone Cn is difficult to handle.

Approximate Cn, and consequently α(G), via positive
polynomials.
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Polyhedral approximations to Cn

By Pólya’s Theorem, if M ∈ int(Cn) then for some r ∈ N(
n∑

i=1

xi

)r

xTMx has non-negative coefficients.

De Klerk & Pasechnik:

Cr
n :=

{
M ∈ Sn :

(
n∑

i=1

xi

)r

xTMx has non-negative coefficients

}
,

and
ζ(r)(G) := min{λ : λ(I + A(G))− 1I ∈ Cr

n}.
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Polyhedral approximations to Cn

Observe

Cr
n is polyhedral, so ζ(r)(G) can be computed via LP.

By Pólya’s Thm Cr
n ↑ Cn, so ζ(r)(G) ↓ α(G).

How fast does it converge?
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Closed-form for ζ(r)(G)

Theorem (Vera & P)

Assume r + 2 = uα(G) + v where 0 ≤ v < α(G). Then

ζ(r)(G) =

(r+2
2

)(u
2

)
α(G) + vu

.

Corollary

If α(G) > 1 then ζ(r)(G) > α(G).

Corollary (De Klerk & Pasechnik)

ζ(r)(G) < ∞ if and only if r ≥ α(G)− 1.

bζ(r)(G)c = α(G) if and only if r ≥ α(G)2 − 1.
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SOS approximations to Cn

Parrilo, 2000:

Put x ◦x :=
[
x2

1 · · · x2
n

]T
.

Observe:

M ∈ Cr
n ⇔

(∑n
i=1 xi

)r xTMx =
∑

|β|=r+2 cβxβ , cβ ≥ 0

⇒
(∑n

i=1 x2
i

)r
(x ◦x)TM(x ◦x) is sos

⇒ M ∈ Cn.

Define

Kr
n :=

{
M ∈ Sn :

(
n∑

i=1

x2
i

)r

(x ◦x)TM(x ◦x) is sos

}
.
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SDP approximations to α(G)

De Klerk & Pasechnik, 2002:

ϑ(r)(G) := min{λ : λ(I + A(G))− 1I ∈ Kr
n}

Kr
n ↑ Cn also, and consequently ϑ(r)(G) ↓ α(G).

Each ϑ(r)(G) can be computed via SDP.

How much better than ζ(r)(G) is each ϑ(r)(G)?
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SDP approximations to α(G)

For v ∈ V define
v⊥ = {v} ∪ Γ(v),

where Γ(v) = {u ∈ V : {u, v} ∈ E}.
Observe

α(G) = 1 + max
v∈V

α(G \ v⊥).

Theorem (De Klerk & Pasechnik)

ϑ(1)(G) ≤ 1 + max
v∈V

ϑ(0)(G \ v⊥).

Thus ϑ(1)(G) = α(G) for certain graphs.
In particular, ϑ(1)(G) = α(G) if α(G) ≤ 2.
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SDP approximations to α(G)

Conjecture (De Klerk & Pasechnik)

If r ≥ α(G)− 1,
ϑ(r)(G) = α(G).

Gvozdenovi ć & Laurent 2004/2005, Vera & P 2004/2005:
Partial solutions to the conjecture.

Advertisement: M. Laurent’s talk tomorrow.
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A weaker SOS approximation to Cn

Proposition (Zuluaga, Vera, P., 2003)

M ∈ Kr
n if and only if(

n∑
i=1

xi

)r

xTMx =
∑

|β|≤r+2

gβ(x)xβ

where each gβ is sos.

Define

Qr
n :=

M ∈ Sn :

(
n∑

i=1

xi

)r

xTMx =
∑
|β|=r

qβ(x)xβ

 ,

Each qβ(x) of the form xT(P + N)x with P � 0, N ≥ 0.
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A weaker SOS approximation to Cn

By construction, Cr
n ⊆ Qr

n ⊆ Kr
n.

Proposition

Q0
n = K0

n, Q1
n = K1

n.

In general, Qr
n ( Kr

n, for r ≥ 2.

Define

ν(r)(G) := min{λ : λ(I + A(G))− 1I ∈ Qr
n}.
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A weaker SOS approximation to Cn

Observe:

ν(r)(G) ↓ α(G) because Cr
n ⊆ Qr

n

ν(r)(G) ≥ ϑ(r)(G) because Qr
n ⊆ Kr

n.

ν(r)(G) can be computed via SDP.

The SDP for ν(r)(G) is simpler than that for ϑ(r)(G).
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Theorem (Vera & P)

For r = 1, 2, 3

ν(r)(G) ≤ r + max
S⊆V stable, |S|=r

ν(0)(G \ S⊥).

Corollary

For α(G) ≤ 5
ν(α(G)−1)(G) = α(G).

Partial result for a stronger version of the conjecture.

Gvozdenović & Laurent 2004/2005: show a stronger version of
the above.
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Examples

If α(G) = χ(Ḡ) then ϑ(0)(G) = α(G)

Direct verification.
Let V1, . . . , Vχ be a vertex coloring of Ḡ. Then

xT (χ · (I + A(G))− 1I) x =

1
2

∑
1≤j<k≤χ

∑
i∈Vj

xi −
∑
i∈Vk

xi

2

+ χ · q(x),

where q(x) has non-negative coefficients.
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Smallest graph G with ν(0)(G) = ϑ(0)(G) > α(G) = 2
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Examples

Smallest graph G with ν(1)(G) = ϑ(1)(G) > α(G) = 3
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Examples

Smallest graph G with ν(2)(G) > α(G) = 4
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Examples

Smallest graph G with ν(3)(G) > α(G) = 5
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Examples

Smallest graph G with ν(4)(G) > α(G) = 6?

At least ϑ(2)(G) > α(G).
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Concluding Remarks

Formulation of α(G) in terms of Cn

Approximations for α(G) via approximations for Cn

Results on the speed of convergence of these
approximations

Conjecture on the rank of the SDP approximations still
open.

Javier Peña Stability number of a graph via LP & SDP


	Stable set problem
	Stable set via copositive programming
	Approximating the copositive cone
	Polyhedral approximations
	SOS approximations
	Examples


