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Abstract

We study the problem of computing the sharpest static-arbitrage upper bound on
the price of a European basket option, given the bid-ask prices of vanilla call options
in the underlying securities. We show that this semi-infinite problem can be recast
as a linear program whose size is linear in the input data size. These developments
advance previous related results, and enhance the practical value of static-arbitrage
bounds as a pricing technique by taking into account the presence of bid-ask spreads.
We illustrate our results by computing upper bounds on the price of a DJX bas-
ket option. The MATLAB code used to compute these bounds is available online at
www.andrew.cmu.edu/user/jfp/.

Keywords: Option pricing, European options, incomplete markets, arbitrage
bounds, linear programming

1. Introduction

Computing bounds for option prices under incomplete market conditions or un-
der incomplete knowledge of the distribution of the price of the underlying assets
is a widely studied pricing techniques, where in contrast to parametric pricing tech-
niques, such as Monte Carlo simulations, strong assumptions about the underlying
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asset price distribution are not required. These type of bounds provide a mecha-
nism for checking consistency of prices (see, e.g., De la Pena, Ibragimov, and Jordan
(2004); Hobson, Laurence, and Wang (2005b,a)), and provide robust estimates for
option prices in incomplete market conditions, or regardless of any model specifics.
Also, these bounds are useful when the number of underlying assets makes the com-
putation of parametric prices numerically challenging. Here, we study the problem
of computing arbitrage bounds; that is, computing bounds on the price of an option
given the only assumption of absence of arbitrage, and information about prices of
other options on the same underlying assets. More specifically, we study the problem
of computing the sharpest upper bound on the price of a European basket option,
given the only assumption of absence of arbitrage, and information on the bid-ask
prices of vanilla European call options on the same underlying assets and with the
same maturity. Bounds of this type are called static-arbitrage bounds.

The computation of sharp static-arbitrage upper bounds can be formulated as
the problem of finding the least expensive portfolio of cash and the options with
known prices whose combined payoff super-replicates the payoff of the new basket op-
tion of interest (see, e.g. d’Aspremont and El Ghaoui (2006), Hobson et al. (2005b)).
This problem has received a fair amount of attention in recent years. Of particu-
lar relevance to our work are the recent articles by Albrecher, Mayer, and Schoutens
(2008); d’Aspremont and El Ghaoui (2006); Davis and Hobson (2007); Hobson et al.
(2005b,a); Laurence and Wang (2005, 2008, 2009); and Peña, Vera, and Zuluaga
(2010). In these articles, it is always assumed that the options can be bought and
sold at the same price in the formulation of the static-arbitrage bound problem. In
practice, the price at which an investor buys the option, i.e., the ask price, is higher
than the price at which the investor can sell the option, i.e., the bid price. This gives
rise to the so-called bid-ask spread. Using bid and ask prices in the computation of
the super-replicating strategy gives a more practical value to the static-arbitrage pric-
ing approach. In particular, this resolves a major limitation in previous approaches
(see, e.g., d’Aspremont and El Ghaoui (2006), Hobson et al. (2005b)) that used mid-
market prices (e.g., the average of the bid and ask prices) as the “nominal” option
prices. Such approximation systematically underestimates the actual buying prices
and overestimates the actual selling prices. It is then not surprising that the market
data used in d’Aspremont and El Ghaoui (2006), Hobson et al. (2005b) requires a
fair amount of “cleaning” to rule out apparent arbitrage opportunities created by
these estimates (see Hobson et al. (2005b, Section 6.2)). By contrast, the arbitrage
bound formulations considered here take into account bid-ask spreads and do not
suffer from this limitation.

In this article we undertake a novel approach to the static-arbitrage upper bound
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problem based entirely on linear programming duality. The foundational block of
our work is the construction of an efficient (linear-size) polyhedral description for the
set of super-replicating portfolios, that is, the set of portfolios of cash and the given
options whose payoff super-replicates the basket option’s payoff. We show that the
set of super-replicating portfolios is a projection of a polyhedron whose description
only requires a number of variables and constraints that is linear in the number of
given options (see Lemma 1). Although it is intuitively clear that the set of super-
replicating portfolios admits a polyhedral description, straightforward attempts to
do so yield intractable descriptions that require a number of constraints and variables
that is exponentially large in the number of given option prices.

We note that the computation of static-arbitrage lower bounds poses a different
set of challenges as the nature of sub-replicating portfolios is fundamentally different
from that of the super-replicating portfolios. The different nature of the upper and
lower bound computation has been recognized previously, as it was apparent that the
computation of the upper bounds was more tractable (see d’Aspremont and El Ghaoui
(2006); Hobson et al. (2005a,b)). In Peña et al. (2010), we present some results for
the computation of static-arbitrage lower bounds that are similar in spirit to those
discussed herein.

The paper is organized as follows. Section 2 formally presents the problem of
computing sharp static-arbitrage upper bounds on a basket option, given the bid-
ask prices of vanilla call options on the underlying assets. Also, we present the
main building block of our approach; namely, an efficient polyhedral description
of the super-replicating portfolios. The latter yields the first efficient linear pro-
gramming formulation for the computation of static-arbitrage upper bounds that
incorporates bid-ask spreads. In Section 3, we provide numerical experiments to
illustrate some of our results; namely, we compute bounds of the price of a DJX
basket option. The MATLAB code used to compute these bounds is available online
at www.andrew.cmu.edu/user/jfp/. Finally, Section 4 presents the proofs of the
results in the article.

2. Static-arbitrage upper bounds with bid-ask spreads

In this section we present an efficient linear programming formulation for the
static-arbitrage bound problem that takes into account bid-ask spreads in the prices
of the known options. Previous approaches to the computation of arbitrage bounds
(see, e.g., d’Aspremont and El Ghaoui (2006); Hobson et al. (2005a,b)) ignore this
important feature and simply assume that the known options can be bought and sold
at a mid-market price. This constitutes a major practical limitation as these mid-
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market prices are rarely arbitrage-free. One of our numerical examples in Section 3
illustrates this phenomenon.

Consider the problem of computing a sharp upper static-arbitrage bound on the
price of a European basket option, given information on the bid-ask prices of Eu-
ropean vanilla options, without making any assumptions other than the absence of
arbitrage. This problem can be formulated as the following optimization problem:

inf
z,y,y,y

z +

n
∑

i=1

m
∑

j=0

pijyij −
n
∑

i=1

m
∑

j=0

p
ij
y

ij

s.t. z +
n
∑

i=1

m
∑

j=0

yij(si − Kij)
+ ≥

(

n
∑

i=1

ωisi − κ

)+

for all s ∈ R
n
+

y = y − y

y ∈ R
n×(m+1)

y, y ∈ R
n×(m+1)
+

z ∈ R.

(1)

Above, the multidimensional variable s represents the possible prices of the n

underlying assets (at maturity) in the basket. The constants Kij ∈ R, i = 1, . . . , n,
j = 0, . . . , m, represent the strike price of the call options with payoff (si − Kij)

+

whose given ask (buying) and bid (selling) prices are p+
ij ≥ p−ij respectively. The

vector ω ∈ R
n and constant κ ∈ R represent the weights and strike of the basket

option with payoff (
∑n

i=1 ωisi − κ)
+

whose price we want to bound. Notice that the
assumption on the same number of options m per asset can be made without loss of
generality: If one of the assets has fewer than m options, we can artificially increase
the number of known options to m by repeating one of the options.

Problem (1) has a natural financial interpretation: It finds the cheapest port-
folio of positions in cash (z) and in call options (yij) with payoff (si − Kij)

+, i =
1, . . . , n, j = 0, . . . , m that super-replicates the payoff of the basket option with
payoff (

∑n

i=1 ωisi − κ)
+
.

Following d’Aspremont and El Ghaoui (2006), we implicitly assume that all the
options have the same maturity, and that the risk-free interest rate is zero; or equiv-
alently, we compare the prices in the forward market (at maturity).

2.1. Super-replication of a linear payoff

Now we present the main building block of our approach; namely, an efficient
polyhedral description of the super-replicating constraint (first constraint) in prob-
lem (1). The latter yields the first efficient linear programming formulation for the
computation of static-arbitrage upper bounds that incorporates bid-ask spreads.
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For ease of notation, let us first rewrite problem (1) in “vector form”. That is,

inf
z,y,y,y

z +
m
∑

j=0

pj · yj −
m
∑

j=0

pj · yj

s.t. z +

m
∑

j=0

yj · (s − Kj)+ ≥ (ω · s − κ)+ for all s ∈ R
n
+

y = y − y

y ∈ R
n×(m+1)

y, y ∈ R
n×(m+1)
+ ,

z ∈ R.

(2)

where aj denotes the vector [aij ]i=1,...,n, and (·) denotes the dot (inner) product
of vectors.

Now, assume K =
[

K0 K1 · · · Km
]

∈ R
n×(m+1), b ∈ R

n and c ∈ R are given.
Define the set of super-replicating strategies SR(K, b, c) as follows

SR(K, b, c) := {(y, z) = (y0, y1, . . . , ym, z) ∈ R
n×(m+1) × R :

z +

m
∑

j=0

yj · (s − Kj)+ ≥ b · s − c for all s ∈ R
n
+}. (3)

The set SR(K, b, c) is the set of combinations of the call options (si−Kij)
+ and cash

that super-replicate the linear payoff b · s − c.
Using the set SR(K, b, c), the optimal super-replication problem (2) can be writ-

ten as:

inf
z,y,y,y

z +

m
∑

j=0

pj · yj −
m
∑

j=0

pj · yj

s.t. (y, z) ∈ SR(K, ω, κ)
(y, z) ∈ SR(K, 0, 0)
y = y − y

y, y ∈ R
n×(m+1)
+

(4)

The key in showing that the super-replication problem (4) can be rewritten us-
ing a number of variables and constraints that is linear in the number of given
options is Lemma 1 below, which states that the set SR(K, b, c) is a projection of
the lifted polyhedron LSR(K, b, c). The latter is a set in a higher dimensional space
with an efficient polyhedral description. Define LSR(K, b, c) as the set of points

5



(y, z, γ, β, ξ) ∈ R
n×(m+1) × R × R

n×(m+1)
+ × R

n×m
+ × R

n that satisfy

i
∑

j=0

yj − b = γi − βi, i = 0, . . . , m − 1

m
∑

j=0

yj − b = γm

i
∑

j=0

Kj ◦ yj ≤ ξ + Ki ◦ γi − Ki+1 ◦ βi, i = 0, . . . , m − 1

m
∑

j=0

Kj ◦ yj ≤ ξ + Km ◦ γm

−z − c ≤ −e · ξ.

(5)

Here u ◦ v ∈ R
n denotes the Hadamard product of u, v ∈ R

n, i.e., (u ◦ v)i = uivi, i =
1, . . . , n, and e ∈ R

n is the vector of all ones. Note that the number of variables
and constraints in the description of LSR(K, b, c) is proportional to mn, i.e., to the
number of known option prices.

Lemma 1. Assume ~0 = K0 ≤ K1 ≤ · · · ≤ Km ∈ R
m and b ∈ R

n, c ∈ R are given.
Then (y, z) ∈ SR(K, b, c) if and only if there exist γ ∈ R

n×(m+1)
+ , β ∈ R

n×m
+ , and

ξ ∈ R
n such that (y, z, γ, β, ξ) ∈ LSR(K, b, c).

Lemma 1 enables us to recast (4) as a linear program whose number of variables
and constraints is proportional to mn, i.e., to the number of known option prices.

Theorem 2. The optimal super-replication problem (4) can be rewritten as

min
z,y,y,y,γ,β,ξ,γ̃,β̃,ξ̃

z +
m
∑

j=0

(

pj · yj − pj · yj
)

s.t. (y, z, γ, β, ξ) ∈ LSR(K, ω, κ)

(y, z, γ̃, β̃, ξ̃) ∈ LSR(K, 0, 0)
y = y − y

y, y ∈ R
n×(m+1)
+ .

(6)

Remark 1. The polyhedral description given by Lemma 1 allows the efficient mod-
eling of other features in the optimal super-replication problem such as other types of
transaction costs as well as restrictions on the positions of the super-replication strat-
egy. Some of these features are illustrated in our numerical experiments in Section 3.
In particular, proportional transaction costs (see, e.g., Cornuejols and T ut unc u
(2007, Section 8.1.2)) can be taken into account in (6) by including the relevant
transaction cost term in the objective function in (6).
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3. Some numerical results

We present a numerical example that takes into account the presence of bid-ask
spreads in option prices. We also discuss the possibility of adding diversification
constraints to the super-replication strategy problem. Although these features are
prevalent in real pricing problems, they were beyond the scope of previous approaches
to static-arbitrage bounds.

Related numerical results are presented in d’Aspremont and El Ghaoui (2006);
Hobson et al. (2005b), where the authors provide extensive numerical experiments
comparing static-arbitrage pricing techniques and parametric pricing techniques (such
as Monte Carlo simulations) for basket options.

3.1. Bid-ask prices

In the literature related to the computation of static-arbitrage bounds (see,
e.g., d’Aspremont and El Ghaoui (2006); Davis and Hobson (2007); Hobson et al.
(2005a,b); Laurence and Wang (2005, 2008, 2009); and Peña et al. (2010)), it is as-
sumed that the options can be bought and sold at the same price. In practice, the
price at which an investor buys the option, i.e., the ask price, is higher than the price
at which the investor can sell the option, i.e., the bid price. This gives rise to the
so-called bid-ask spread as can be observed in Table 1 and Table 2, which lists the
prices of vanilla options on stocks in the DJX index as traded on May 17th, 2004
on the June contracts with maturity on June 18th, 2004. This dataset is similar to
that of Hobson et al. (2005b, Section 6.2, Table 2). However, we have only included
traded contracts (with volume greater than zero), for liquidity considerations. With
the data in Table 1 and Table 2, we can use the linear programming formulation (6) in
Section 2 to compute the cheapest super-replicating strategy for the DJX basket call
option with strike price 80.00 taking into account the bid-ask spread. We obtain the
super-replication strategy given in Table 3, which yields an upper bound of 19.8872.
From market data, the best bid price for this option was 18.7, and the best ask price
was 19.5. Table 3 provides the long (buy) positions on the call options with position
different from zero in the super-replicating portfolio. In this particular experiment,
the super-replicating portfolio does not contain any short (sell) positions.

As we mentioned in the Introduction, using bid and ask prices in the computation
of the super-replicating strategy gives a more practical value to the static-arbitrage
pricing approach. In particular, this resolves a major limitation in previous ap-
proaches d’Aspremont and El Ghaoui (2006); Hobson et al. (2005b) that used mid-
market prices (e.g., the average of the bid and ask prices) as the “nominal” option
prices. Such approximation systematically underestimates the actual buying prices
and overestimates the actual selling prices. It is then not surprising that the market
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data used in d’Aspremont and El Ghaoui (2006); Hobson et al. (2005b) requires a
fair amount of “cleaning” to rule out apparent arbitrage opportunities created by
these estimates (see Hobson et al. (2005b, Section 6.2)). By contrast, the model
herein that takes into account bid-ask spreads does not suffer from this limitation.

We note that although the super-replicating strategy in Table 3 contains only
long positions, this does not mean that the bid-ask DJX option price upper bound
of 19.8872 could be found by only using the ask (buy) prices as the option prices
in the linear programming formulation of the problem (1) (i.e., by assuming that
options can be both bought and sold at the ask prices). If this naive approach were
attempted, the linear program would be unbounded, since the ask prices alone do
not satisfy the arbitrage-free condition (see, e.g., Bertsimas and Popescu (2002)).

Figure 1 shows the resulting upper arbitrage bounds on the DJX basket option
(taking into account the bid-ask spread) for other strike values, and compares the
bounds with the best ask price for the options.

3.2. Diversifying the super-replicating strategy

Consider an investor looking at the strategy in Table 3, who wishes to create a
super-replicating strategy that contains more positions in possible options, that is,
a more diversified strategy. To obtain such a super-replicating strategy we add the
following diversifying linear constraints to the LP formulation (6), which ensure that
the portfolio will have a position in each tier of options:

e · yj ≥ 0.05, j = 0, . . . , m. (7)

Above e represents the vector of all-ones. The solution to this diversified super-
replicating strategy gives a portfolio whose cost is 19.9022, just 0.08% more expensive
than the cheapest super-replicating strategy computed in Table 3. As Table 4 shows,
such a strategy has the desired investor’s diversification preference.

4. Proofs

4.1. Proof of Lemma 1.

The high level idea of the proof is to divide R
n
+ in regions where each of the

payoffs of the options in the problem is linear. Using Farkas’ Lemma the set of
super-replicating strategies in each region is a polyhedron. Thus the set of super-
replicating strategies SR(K, b, c) is just the intersection of all these polyhedra, again
a polyhedron. Since the number of regions is exponential, the number of variables
and constraints needed in a naive description of SR(K, b, c) is exponential. The
main point of the proof is that we can “collapse” first the variables and then the
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Figure 1: The figure gives ask DJX index option prices trading on May 17th with maturity on June
18th, 2004, together with the corresponding upper bound option price computed using the data
provided in Table 1.
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constrains to obtain an efficient description, using only a linear number of variables
and constraints.

Throughout this section we rely on the following convenient notation: Given a
vector v ∈ R

n and a set of indices I ⊆ {1, . . . , n}, we let vI denote the subvector of
v obtained by selecting the components of v indexed by I.

9



Proof of Lemma 1. Define the set of partitions P(n, m) of {1, . . . , n} as follows:

P(n, m) :=

{

(

J0, J1, . . . , Jm
)

:
m
⋃

i=0

J i = {1, . . . , n} , J i ∩ J j = ∅ for i 6= j

}

.

Given J ∈ P(n, m), define

PJ :=
{

s : Ki
Ji ≤ sJi ≤ Ki+1

Ji for i = 0, 1, . . . , m − 1, and sJm ≥ Km
Jm

}

.

Since {PJ : J ∈ P(n, m)} is a partition of R
n
+, it follows that (y, z) ∈ SR(K, b, c) if

and only if

z +
m
∑

j=0

yj · (s − Kj)+ ≥ b · s − c for all s ∈ PJ for all J ∈ P(n, m). (8)

From the construction of {PJ : J ∈ P(n, m)}, it follows that each (si−K
j
i )

+ is linear
on each PJ . Indeed, for s ∈ PJ we have

m
∑

j=0

yj · (s − Kj)+ =
m
∑

i=0

i
∑

j=0

y
j

Ji · (sJi − K
j

Ji).

Therefore, (8) is equivalent to

m
∑

i=0

(

−bJi +

i
∑

j=0

y
j

Ji

)

·sJi ≥
m
∑

i=0

i
∑

j=0

y
j

Ji ·K
j

Ji−z−c for all s ∈ PJ for all J ∈ P(n, m).

By Farkas Lemma (see, e.g. Ziegler (1998, Proposition 1.9(i))), the latter holds if and
only if for each J ∈ P(n, m) there exist γi,J , βi,J ∈ R

Ji

+ , i = 0, . . . , m−1, γm,J ∈ R
Jm

+

such that

−bJi +

i
∑

j=0

y
j

Ji = γi,J − βi,J , i = 0, . . . , m − 1

−bJm +

m
∑

j=0

y
j
Jm = γm,J

m
∑

i=0

(

i
∑

j=0

y
j

Ji · K
j

Ji

)

− z − c ≤
m−1
∑

i=0

(

Ki
Ji · γi,J − Ki+1

Ji · βi,J
)

+ Km
Jm · γm,J , J ∈ P(n, m).

(9)
We will first reduce the number of variables used in this description of SR(K, b, c):

10



Claim 1. Assume (y0, . . . , ym, z) ∈ R
n × · · · × R

n × R is given. Then there exist
γi,J , βi,J ∈ R

Ji

+ , i = 0, . . . , m − 1, γm,J ∈ R
Jm

+ for each J ∈ P(n, m) such that (9)
holds if and only if there exist γi, βi ∈ R

n
+, i = 0, . . . , m − 1 and γm ∈ R

n
+ such that

−b +
i
∑

j=0

yj = γi − βi, i = 0, . . . , m − 1

−b +

m
∑

j=0

yj = γm

m
∑

i=0

(

i
∑

j=0

y
j

Ji · K
j

Ji

)

− z − c ≤
m−1
∑

i=0

(

Ki
Ji · γi

Ji − Ki+1
Ji · βi

Ji

)

+ Km
Jm · γm

Jm , J ∈ P(n, m).

(10)

Then, we will reduce the number of constrains used in (10):

Claim 2. Assume (y, z, γ, β) ∈ R
n×(m+1)×R×R

n×(m+1)
+ ×R

n×m
+ is given. Then (10)

holds if and only if there exists ξ ∈ R
n such that (5) holds.

Claim 1 and Claim 2 show that (y, z) ∈ SR(K, b, c) if and only if there exist

γ ∈ R
n×(m+1)
+ , β ∈ R

n×m
+ , and ξ ∈ R

n such that (y, z, γ, β, ξ) ∈ LSR(K, b, c).

Now we present the proofs of Claim 1 and Claim 2.

Proof of Claim 1. It is straightforward to check (10) implies (9). Assume (9) holds.
Define γm ∈ R

n
+ and γi, βi ∈ R

n
+, i = 0, . . . , m−1 as follows. Let J̄ = (∅, . . . , ∅, {1, . . . , n})

and put
γm := γm,J̄ .

Then the second equation in (10) holds. Consequently, for any J ∈ P(n, m) we have

γm
Jm = −bJm +

m
∑

j=0

y
j
Jm = γm,J . (11)

Next, fix i ∈ {0, . . . , m − 1}. For each ℓ ∈ {1, . . . , n} define the partition J [i, ℓ] by

J [i, ℓ] := arg max
{J∈P(n,r):l∈Ji}

(

Ki
ℓγ

i,J
ℓ − Ki+1

ℓ β
i,J
ℓ

)

.

11



Let γi, βi ∈ R
n
+ be defined by γi

ℓ = γ
i,J [i,ℓ]
ℓ and βi

ℓ = β
i,J [i,ℓ]
ℓ , ℓ ∈ {1, . . . , n}. From the

first identity in (9), applied to J = J [i, ℓ], we get

−bJ [i,ℓ]i +
i
∑

j=0

y
j

J [i,l]i
= γi,J [i,l] − βi,J [i,l].

In particular,

−bℓ +

i
∑

j=0

y
j
ℓ = γ

i,J [i,ℓ]
ℓ − β

i,J [i,ℓ]
ℓ = γi

ℓ − βi
ℓ.

This holds for i ∈ {0, . . . , m − 1} and ℓ ∈ {1, . . . , n} thus the first equation in
(10) follows. It only remains to prove the last inequality in (10). To that end, fix
J ∈ P(n, m). For i = 0, . . . , m− 1 and ℓ ∈ J i, the construction of J [i, ℓ] implies that

Ki
ℓγ

i,J
ℓ − Ki+1

ℓ β
i,J
ℓ ≤ Ki

ℓγ
i,J [i,ℓ]
ℓ − Ki+1

ℓ β
i,J [i,ℓ]
ℓ = Ki

ℓγ
i
ℓ − Ki+1

ℓ βi
ℓ.

Thus
Ki

Ji · γi,J − Ki+1
Ji · βi,J ≤ Ki

Ji · γi
Ji − Ki+1

Ji · βi
Ji.

Hence from the last inequality in (9) and (11) we get

m
∑

i=0

(

i
∑

j=0

y
j

Ji · K
j

Ji

)

− z − c ≤
m−1
∑

i=0

(

Ki
Ji · γi,J − Ki+1

Ji · βi,J
)

+ Km
Jm · γm,J

≤
m−1
∑

i=0

(

Ki
Ji · γi

Ji
− Ki+1

Ji · βi
Ji

)

+ Km
Jm · γm

Jm,

completing the proof of the claim.

Proof of Claim 2. Assume (5) holds. Let J ∈ P(n, m) be given. From the third
inequality in (5) we have

i
∑

j=0

K
j

Ji · y
j

Ji ≤ eJi · ξJi + Ki
Ji · γi

Ji − Ki+1
Ji · βi

Ji , i = 0, . . . , m − 1.

Likewise, form the fourth inequality in (5) we have

m
∑

j=0

K
j
Jm · yj

Jm ≤ eJm · ξJm + Km
Jm · γm

Jm.

12



Adding all of these inequalities and rearranging terms, we get

m
∑

i=0

(

i
∑

j=0

y
j

Ji · K
j

Ji

)

− e · ξ ≤
m−1
∑

i=0

(

Ki
Ji · γi

Ji − Ki+1
Ji · βi

Ji

)

+ Km
Jm · γm

Jm.

From (5) −z − c ≤ −e · ξ, and we get (10).

Now assume that (10) holds. For ℓ = 1, . . . , n let

ξℓ := max

{

m
∑

j=0

K
j
ℓ y

j
ℓ − Km

ℓ γm
ℓ ,

i
∑

j=0

K
j
ℓ y

j
ℓ − Ki

ℓγ
i
ℓ + Ki+1

ℓ βi
ℓ : i = 0, . . . , m − 1

}

.

This choice of ξ ensures that the first four constraints in (5) hold. Let J̄ ∈ P(n, m)
be such that

ξJ̄m =

m
∑

j=0

K
j

J̄m
◦ y

j

J̄m
− Km

J̄m ◦ γm
J̄m ,

and

ξJ̄i =
i
∑

j=0

K
j

J̄i
◦ y

j

J̄i
− Ki

J̄iγ
i
J̄i + Ki+1

J̄i
βi

J̄i for i = 0, . . . , m − 1.

Then, from (10) (applied to the partition J̄) we have

−z − c ≤ −
m
∑

i=0

(

i
∑

j=0

y
j

J̄i
· Kj

J̄i

)

+
m−1
∑

i=0

(

Ki
J̄i · γ

i
J̄i − Ki+1

J̄i
· βi

J̄i

)

+ Km
J̄m · γm

J̄m

= −
m−1
∑

i=0

(

i
∑

j=0

y
j

J̄i
· Kj

J̄i
− Ki

J̄i · γ
i
J̄i + Ki+1

J̄i
· βi

J̄i

)

−
m
∑

j=0

y
j

J̄m
· Kj

J̄m
+ Km

J̄m · γm
J̄m

= −
m
∑

i=0

∑

ℓ∈J̄i

ξℓ

= −e · ξ.

Hence the last constraint in (5) holds as well. This completes the equivalence between
(5) and (10).

13



4.2. Proof of Theorem 2.

The optimal super-replication problem (2) can be written as:

min
z,y,y,y

z +

m
∑

j=0

(pj · yj − pj · yj)

s.t. (y, z) ∈ SR(K, ω, κ)
(y, z) ∈ SR(K, 0, 0)
y = y − y

y, y ∈ R
n×(m+1)
+ .

(12)

From Lemma 1 it follows that (12) is equivalent to the following linear program

min
z,y,y,y,γ,β,ξ,γ̃,β̃,ξ̃

z +

m
∑

j=0

(pj · yj − pj · yj)

s.t. (y, z, γ, β, ξ) ∈ LSR(K, ω, κ)

(y, z, γ̃, β̃, ξ̃) ∈ LSR(K, 0, 0)
y = y − y

y, y ∈ R
n×(m+1)
+ .
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Table 1: CBOE data from May 17th, 2004 on June 2004 contracts expiring June 18. The table gives
prices of call options traded (volume greater than zero) on May 17th for the 30 stocks underlying
the DJX index basket option. For every stock, the first row corresponds to the different strike
prices, and the second and third rows correspond to the respective ask and bid prices. The entry of
0.00 for each stock gives the close price of the stock, which can be considered as the forward option
(call option with strike price zero) price.

0.00 20.00 22.50 25.00 27.50

MSFT 25.79 5.70 3.20 1.15 0.20
25.42 5.50 3.10 1.05 0.15

0.00 25.00 27.50 30.00 32.50 35.00

AA 29.70 4.10 2.20 0.95 0.30 0.15
28.60 3.90 2.05 0.85 0.20 0.05

0.00 65.00 70.00 75.00

AIG 70.15 5.40 2.10 0.45
69.22 5.30 2.00 0.40

0.00 47.50 50.00

AXP 49.30 2.20 0.80
48.20 2.05 0.70

0.00 40.00 42.50 45.00

BA 43.61 3.10 1.35 0.40
42.49 2.90 1.25 0.30

0.00 35.00 37.50

VZ 36.74 1.50 0.40
35.68 1.40 0.30

0.00 60.00 70.00 75.00 80.00 85.00

CAT 74.45 13.80 4.90 1.95 0.60 0.20
72.70 13.60 4.80 1.90 0.50 0.10

0.00 40.00 42.50 45.00

DD 41.48 2.00 0.70 0.15
41.01 1.80 0.55 0.10

0.00 20.00 22.50 25.00 27.50

DIS 22.99 3.00 1.05 0.20 0.10
22.69 2.95 0.90 0.15 0.00

0.00 25.00 27.50 30.00 32.50 35.00 37.50

GE 30.06 5.10 2.70 0.85 0.15 0.05 0.05
29.68 4.90 2.60 0.75 0.10 0.00 0.00

0.00 47.50 50.00 55.00 60.00 65.00 70.00

WMT 55.25 7.40 5.10 1.45 0.15 0.05 0.05
54.14 7.20 4.90 1.30 0.10 0.00 0.00

0.00 35.00 40.00 42.50 45.00 47.50 50.00 55.00

GM 43.90 8.70 4.20 2.30 1.05 0.40 0.15 0.05
42.88 8.60 4.00 2.20 0.95 0.30 0.10 0.00

0.00 30.00 32.50 35.00 37.50 40.00

HD 33.75 3.80 1.85 0.60 0.15 0.05
33.07 3.60 1.70 0.55 0.10 0.00

0.00 30.00 32.50 35.00 37.50 40.00

HON 33.43 2.85 1.15 0.30 0.10 0.05
32.44 2.70 1.00 0.20 0.00 0.00

0.00 15.00 17.50 20.00 22.50

HPQ 19.70 4.60 2.30 0.70 0.15
19.21 4.50 2.20 0.65 0.10
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Table 2: Continuation of Table 1.

0.00 80.00 85.00 90.00 95.00 100.00

IBM 86.03 6.30 2.65 0.70 0.20 0.05
85.15 6.10 2.50 0.65 0.15 0.00

0.00 27.50 30.00 32.50 35.00 37.50 40.00 42.50 45.00

JPM 35.47 8.00 5.60 3.30 1.45 0.45 0.10 0.10 0.05
34.75 7.80 5.40 3.10 1.35 0.35 0.05 0.00 0.00

0.00 47.50 50.00 55.00

KO 50.12 2.70 1.00 0.05
49.51 2.55 0.85 0.00

0.00 40.00 42.50 45.00

XOM 43.54 3.40 1.45 0.40
43.01 3.20 1.35 0.30

0.00 20.00 22.50 25.00 27.50 30.00

INTC 27.30 6.90 4.50 2.30 0.80 0.20
26.44 6.80 4.30 2.25 0.70 0.10

0.00 50.00 55.00

JNJ 55.10 5.00 1.10
54.13 4.80 1.05

0.00 80.00 85.00 90.00

UTX 82.80 3.60 1.20 0.30
81.50 3.40 1.10 0.20

0.00 80.00 85.00 90.00

MMM 83.89 4.20 1.30 0.25
82.75 4.00 1.15 0.15

0.00 45.00 47.50 50.00 55.00 60.00

MO 50.00 4.90 2.80 1.20 0.15 0.10
48.50 4.70 2.65 1.15 0.10 0.00

0.00 45.00 47.50 50.00

MRK 46.89 2.15 0.70 0.15
46.00 1.95 0.60 0.10

0.00 30.00 35.00 37.50 40.00 42.50

PFE 35.91 5.70 1.30 0.30 0.10 0.05
35.00 5.50 1.20 0.25 0.05 0.00

0.00 90.00 95.00 100.00 105.00 110.00 115.00

PG 107.15 16.50 11.70 7.10 3.30 1.00 0.25
105.81 16.30 11.40 6.90 3.10 0.90 0.20

0.00 25.00

SBC 24.49 0.40
24.11 0.35

0.00 20.00 25.00 27.50 30.00

MCD 26.05 5.90 1.40 0.35 0.05
25.50 5.80 1.30 0.25 0.05

0.00 30.00 35.00 40.00 42.50 45.00 47.50 50.00 55.00

C 45.30 15.00 10.00 5.20 3.00 1.30 0.40 0.15 0.05
44.83 14.80 9.80 5.10 2.90 1.25 0.35 0.05 0.00
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Table 3: Strike 80.00 DJX basket super-replicating strategy from LP formulation (eq. (6)). Option
price upper bound = 19.8872. A positive value in the “Position” represents a long position in the
corresponding asset’s call option with that “Strike”.

Ticker Strike Position

DD 0.00 0.071
UTX 0.00 0.054
SBC 0.00 0.071
AA 25.00 0.071
AIG 65.00 0.071
AXP 47.50 0.071
BA 40.00 0.071
VZ 35.00 0.071
CAT 60.00 0.071
DIS 20.00 0.071
GE 25.00 0.071

Ticker Strike Position

WMT 47.50 0.071
GM 35.00 0.071
HD 30.00 0.071
HON 30.00 0.071
HPQ 15.00 0.071
IBM 80.00 0.071
JPM 27.50 0.071
KO 47.50 0.071
XOM 40.00 0.071
INTC 20.00 0.071
JNJ 50.00 0.071

Ticker Strike Position

UTX 80.00 0.017
MMM 80.00 0.071
MO 45.00 0.071
MRK 45.00 0.071
PFE 30.00 0.071
PG 90.00 0.071
MCD 20.00 0.071
MSFT 22.50 0.071
C 35.00 0.071

Table 4: Strike 80.00 DJX basket super-replicating strategy from LP formulation (eq. (6)) plus
diversification constraints (eq. (7)). Option price upper bound = 19.9022. A positive value in the
“Position” represents a long position in the corresponding asset’s call option with that “Strike”.

Ticker Strike Position

DD 0.00 0.071
UTX 0.00 0.054
SBC 0.00 0.071
AA 25.00 0.071
AIG 65.00 0.071
AXP 47.50 0.071
BA 40.00 0.071
VZ 35.00 0.071
CAT 60.00 0.071
DIS 20.00 0.071
GE 25.00 0.071
WMT 47.50 0.071
GM 35.00 0.071

Ticker Strike Position

HD 30.00 0.071
HON 30.00 0.071
HPQ 15.00 0.071
IBM 80.00 0.071
JPM 27.50 0.071
KO 47.50 0.071
XOM 40.00 0.071
INTC 20.00 0.071
JNJ 50.00 0.071
UTX 80.00 0.017
MMM 80.00 0.071
MO 45.00 0.071
MRK 45.00 0.071

Ticker Strike Position

PFE 30.00 0.071
PG 90.00 0.071
MCD 20.00 0.071
MSFT 22.50 0.071
C 35.00 0.071
KO 55.00 0.050
MCD 30.00 0.050
GE 35.00 0.050
WMT 70.00 0.050
GM 55.00 0.050
JPM 45.00 0.050
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