Compressive Sensing, Lecture 3

Yesterday

- Proof of RIP property for Gaussian matrices
- Proof of signal recovery for RIP and RIPless sensing
- Convex optimization

Today

- Matrix rank minimization and nuclear norm
- Low rank plus sparse decomposition
- Transform invariant low-rank textures

Applications

Matrix completion ("netflix" problem)

- Preference matrix M.
- We only observe a small portion of its entries M_{ij} .
- Fill in missing entries of M.

Sensor location

- n locations in \mathbb{R}^d .
- We only measure a subset of pairwise distances.
- Find the locations.

Linear system identification

- Dynamical linear system $\left\{ \begin{array}{l} x(t+1) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{array} \right.$
- Find A, B, C, D from observations of input u(t) and output y(t) for t = 0, 1..., N.

Linear matrix equations

Problem

Recover matrix $\bar{X} \in \mathbb{R}^{n \times n}$ from $m \ll n^2$ linear measurements

$$b_k = \langle A_k, \bar{X} \rangle, \ k = 1, \dots, m \rightsquigarrow b = \mathcal{A}(\bar{X}).$$

- In general this is impossible.
- Suppose we know $\mathrm{rank}(\bar{X}) = r \ll n.$ Could we get by with fewer than n^2 measurements?

Possible approach for low-rank \bar{X}

Take $m \ll n^2$ measurements $b = \mathcal{A}(\bar{X})$ and then solve

 $\begin{array}{ll} \min & \mathsf{rank}(X) \\ \mathcal{A}(X) = b. \end{array}$

2 / 22

Norms

In compressed sensing there are three key norms: $\ell_1, \ell_2, \ell_\infty$.

Matrix norms

- Operator norm: $\|M\| := \max_{\|x\|_2=1} \|Mx\|_2 = \|\sigma(M)\|_{\infty}$
- Frobenius norm: $\|M\|_F := \sqrt{\sum_{i=1}^n \sum_{j=1}^n |M_{ij}|^2} = \|\sigma(M)\|_2$
- Nuclear norm $\|M\|_* := \|\sigma(M)\|_1$

Endow $\mathbb{R}^{n \times n}$ with the inner product: $\langle M, N \rangle = \operatorname{trace}(M^{\mathsf{T}}N)$.

With this inner product:

- The Frobenius norm is the Hilbert space norm.
- The nuclear norm is the dual of the operator norm.

1/22

Rank minimization and convex relaxation

Nuclear norm heuristic for rank minimization problem (Fazel)

$$\begin{array}{cccc} \min & \mathsf{rank}(X) & & \min & \|X\|_* \\ & \mathcal{A}(X) = b & & \mathcal{A}(X) = b \end{array}$$

Nuclear norm

$$||X||_* := \sum_{i=1}^n \sigma_i(X).$$

Theorem (Fazel)

The nuclear norm is the convex envelope of the rank function on $\{M : ||M|| \le 1\}.$

Fact

Nuclear norm minimization can be cast as a semidefinite program.

5 / 22

Deterministic approach: restricted isometry

Restricted isometry property (RIP)

Given $\mathcal{A}: \mathbb{R}^{n \times n} \to \mathbb{R}^m$ and $k \in \{1, \ldots, m\}$, the k-isometry constant δ_k is the smallest $\delta \ge 0$ such that

 $(1-\delta) \|X\|_F^2 \le \|\mathcal{A}(X)\|_2^2 \le (1+\delta) \|X\|_F^2$

for all $X \in \mathbb{R}^{n \times n}$ with rank $(X) \leq k$.

If $\delta_k < 1$, we say that A satisfies the RIP with constant δ_k .

Dictionary vectors/matrices

Analogy between compressed sensing and low-rank recovery:

Parsimony concept	cardinality	rank
Hilbert space norm	Euclidean	Frobenius
Relaxed norm	ℓ_1	nuclear
Dual norm	ℓ_∞	operator
Convex relaxation	linear programming	semidefinite programming

The above can be seen in terms of the singular value map

$$X \mapsto \sigma(X).$$

6/22

Low-rank recovery and RIP property (Recht-Parrilo-Fazel)

Theorem

Assume $\bar{X} \in \mathbb{R}^{n \times n}$ satisfies $\operatorname{rank}(\bar{X}) \leq r$.

- If $\delta_{2r}(A) < 1$ then \overline{X} can be recovered (via, e.g., rank minimization) from $b = \mathcal{A}(\overline{X})$.
- If $\delta_{4r}(\mathcal{A}) < \sqrt{2} 1$ then the nuclear norm solution recovers \bar{X} .

RIP for randomly generated matrices:

Theorem

If \mathcal{A} is Gaussian, then \mathcal{A} satisfies $\delta_{4r} < \sqrt{2} - 1$ if $m \ge Crn$ for some suitable constant C.

The proofs of the above are extensions of the analogous proofs for RIP approach to compressed sensing.

A probabilistic approach

Probabilistic approach:

- Fix $\bar{X} \in \mathbb{R}^{n \times n}$ with $\operatorname{rank}(\bar{X}) = r \ll n$.
- Pick random Gaussian $\mathcal{A}: \mathbb{R}^{n \times n} \to \mathbb{R}^m$ and put $b = \mathcal{A}(\bar{X})$.
- Let $\hat{X} := \operatorname{argmin}_X \{ \|X\|_* : \mathcal{A}(X) = b \}.$

Theorem (Candès and Recht)

If $m \ge r(6n-5r)$ for $\beta > 1$, then recovery is exact with probability at least $1 - 2e^{(1-\beta)n/8}$.

Matrix completion

Problem

Assume M low rank and observe a subset of entries. Recover $M. \label{eq:massed}$

- This is certainly an undetermined system of matrix equations.
- Unfortunately RIP fails in most interesting cases.

Model

 Ω uniform random subset of $\{1, \ldots, n\} \times \{1, \ldots, n\}$.

9 / 22

When is matrix completion possible?

Bad cases

Observe that if

 $M = e_1 v^*$

then recovery is not possible from a random small set of entries.

Likewise if

 $M = uv^*$

where u, v are sparse vectors.

Coherence

- In the above cases the rows and/or columns of ${\cal M}$ are aligned with the basis vectors.
- Coherence is a measure of this kind of alignment.

Incoherence

Assume M has singular value decomposition

$$M = U\Sigma V^*,$$

and let $r = \operatorname{rank}(M)$.

Coherence parameter

Smallest $\mu > 0$ such that for $i = 1, \ldots, n$

$$||U^*e_i||_2^2 \le \frac{\mu r}{n}, ||V^*e_i||_2^2 \le \frac{\mu r}{n}$$

and

12/22

10/22

Incoherence and matrix completion

Consider the nuclear norm heuristic

$$\begin{array}{ll} \min & \|X\|_* \\ & X_{ij} = M_{ij}, \ (i,j) \in \Omega \end{array}$$

Theorem (Candès & Recht)

Assume rank(M) = r and Ω is a random set of size m. If

$$m \ge C\mu r(1+\beta)\log^2 n$$

then the solution to the nuclear norm heuristic is exact with probability at least

 $1 - n^{-\beta}$.

13 / 22

More general result

Assume $\{A_1, \ldots, A_{n^2}\}$ orthonormal basis of $\mathbb{R}^{n \times n}$ and $M = U\Sigma V^*$.

Coherence

M has coherence μ with respect to $\{A_1,\ldots,A_{n^2}\}$ if either

$$\max_k \|A_k\|^2 \le \frac{\mu}{n}$$

or

$$\max_{k} \|P_{U}A_{k}\|^{2} \leq \frac{\mu r}{n}, \ \max_{k} \|A_{k}P_{V}\|^{2} \leq \frac{\mu r}{n}, \ \max_{k} |\langle A_{k}, UV^{*} \rangle \leq \frac{\mu r}{n^{2}}.$$

Theorem (Gross)

Exact recovery with probability at least $1-n^{-\beta}$ if

$$m \ge C\mu r(1+\beta)\log^2 n.$$

Theoretical limits of matrix completion

The above result is nearly optimal:

Theorem (Candès & Tao) No method can ensure recovery with high probability if

 $m \lesssim \mu \cdot nr \cdot \log n.$

Neat connection with random graph theory

- For successful matrix recovery, the adjacency graph defined by entries in Ω must be connected.
- Given a bipartite graph, how many random edges should we pick to get a single component?

14/22

Low rank + sparse decomposition

Separation problem

Suppose $M = L_0 + S_0$ where L_0 low rank and S_0 sparse. If we observe M, could we recover L_0 and S_0 ?

Applications

- Robust PCA
- Latent variable detection
- Video surveillance

Nuclear & ℓ_1 heuristic (PCP)

$$\min \quad \|L\|_* + \lambda \cdot \|S\|_1 \\ L + S = M.$$

Recovery theorems

Low rank plus sparse separation:

- It is not possible in certain cases, e.g, if a matrix is both low rank and sparse.
- Recovery statements depend on matrix coherence.

Theorem

Suppose $M = L_0 + S_0 \in \mathbb{R}^{n \times n}$ where

$$\mathsf{rank}(L_0) \leq rac{
ho_r n}{\mu}, \ \|S_0\|_0 \leq
ho_s n^2.$$

Then PCP succeeds with probability $1 - \frac{C}{n^{10}}$ for $\lambda = 1/\sqrt{n}$.

Matrix completion with corrupted data

Suppose entries of ${\cal M}$ may be both missing and corrupted. Can we recover ${\cal M}?$

Extended PCP

min
$$||L||_* + \lambda \cdot ||S||_1$$

 $L_{ij} + S_{ij} = M_{ij}, (i, j) \in \Omega.$

Theorem

- $L_0 \in \mathbb{R}^{n \times n}$, $\operatorname{rank}(L_0) \le \frac{\rho_r n}{\mu \log^2 n}$
- Ω random set of size cn^2 , where $c \in (0, 1)$.
- Each observed entry is corrupted with probability $\tau \leq \tau_s$.

Then PCP succeeds with probability
$$1 - \frac{C}{n^{10}}$$
 for $\lambda = \frac{1}{\sqrt{cn}}$.

17 / 22

Relationship with matrix completion

Suppose we have no corruption.

MC: recovery via

$$\begin{array}{ll} \min & \|L\|_* \\ & L_{ij} = M_{ij}, \ (i,j) \in \Omega \end{array}$$

PCP: recovery via

min
$$||L||_* + \lambda \cdot ||S||_1$$

 $L_{ij} + S_{ij} = M_{ij}, \ (i, j) \in \Omega.$

Under suitable conditions both yield the same answer.

The second one is a robust version of the first one.

Transform invariant low-rank textures (TILT)

Zhang-Ganesh-Liang-Ma

Suppose a low rank matrix is both corrupted and misaligned. Can we recover it?

Model

$$M \circ \tau = L_0 + S_0$$

 L_0 : low rank, S_0 : sparse, τ : parametric deformation.

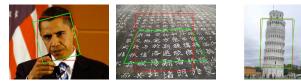
Problem Given M, can we find the above decomposition?

Approach Find L, S, τ that solves

 $\min \quad \|L\|_* + \lambda \cdot \|S\|_1 \\ L + S = M \circ \tau.$

Examples

red windows indicate the original input



green windows indicate texture found

Main references for today's material

- Slides for this minicourse: http://andrew.cmu.edu/user/jfp/UNencuentro
- B. Recht, M. Fazel, P. Parrilo, "Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization," *SIAM Review*, vol 52, no 3, pp. 471–501, 2010.
- V. Chandrasekaran, S. Sanghavi, P.A. Parrilo and A. Willsky, "Rank-Sparsity Incoherence for Matrix Decomposition," SIAM Journal on Optimization, vol. 21, issue 2, pp. 572–596, 2011
- E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust Principal Component Analysis?," *Journal of ACM*, vol 58, no 3, article no 11, 2011.
- Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, "TILT: Transform Invariant Low-rank Textures," To Appear in International Journal of Computer Vision.

21/22