Compressive Sensing, Lecture 2

Yesterday

- Undetermined systems of equations and ℓ_{1} minimization
- Compressive sensing
- Probabilistic approach: isotropy \& incoherence
- Deterministic approach: restricted isometry property

Today

- Ideas of the main proofs
- Main computational tool: convex optimization

RIP and exact recovery

Recall
Given a sensing matrix A, δ_{k} is smallest δ such that

$$
(1-\delta)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

for all k-sparse vector x.
Observe
$\delta_{2 s}$ is the smallest δ such that

$$
(1-\delta)\left\|x_{1}-x_{2}\right\|_{2}^{2} \leq\left\|A\left(x_{1}-x_{2}\right)\right\|_{2}^{2} \leq(1+\delta)\left\|x_{1}-x_{2}\right\|_{2}^{2}
$$

for all s-sparse vectors x_{1}, x_{2}.

Therefore if $\delta_{2 s}<1$ in principle we can recover \bar{x} from $b=A \bar{x}$, e.g., via ℓ_{0} minimization.

Recap
Compressive sampling approach

- measure $b=A \bar{x}$
- obtain \hat{x} via ℓ_{1} minimization: $\hat{x}:=\operatorname{argmin}_{x}\left\{\|x\|_{1}: A x=b\right\}$.

Probabilistic approach

- fix $\bar{x} \in \mathbb{R}^{n}$ arbitrary
- randomize A
- with high probability \hat{x} recovers \bar{x} or \bar{x}_{s}

Deterministic approach: RIP

- find $m \times n$ matrix A satisfying RIP
- \hat{x} recovers \bar{x} or \bar{x}_{s} for all $\bar{x} \in \mathbb{R}^{n}$

RIP and signal recovery (special case)

Theorem
Assume $\bar{x} \in \mathbb{R}^{n}$ and A satisfies RIP with $\delta_{2 s} \leq \sqrt{2}-1$. Then the ℓ_{1} solution \hat{x} satisfies

$$
\|\hat{x}-\bar{x}\|_{2} \leq C \cdot \frac{\left\|\bar{x}-\bar{x}_{s}\right\|_{1}}{\sqrt{s}}
$$

for some constant C.
Proof
Let $h:=\hat{x}-\bar{x}$. Put $T_{0}:=$ indexes of s largest entries of $|h|$, $T_{1}:=$ indexes of s largest entries of $\left|h_{T_{0}^{c}}\right|$, etc.
Let $\Delta:=\frac{\left\|\bar{x}-\bar{x}_{s}\right\|_{1}}{\sqrt{s}}$.

By construction of the $T_{j} \mathrm{~s}$:

$$
\sum_{j \geq 2}\left\|h_{T_{j}}\right\|_{2} \leq \frac{\left\|h_{T_{0}^{c}}\right\|_{1}}{\sqrt{s}} .
$$

By optimality of \hat{x} :

$$
\left\|h_{T_{0}^{c}}\right\|_{1} \leq\left\|h_{T_{0}}\right\|_{1}+2 \cdot \sqrt{s} \cdot \Delta .
$$

By RIP:

$$
\left(1-\delta_{2 s}\right)\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq \sqrt{2} \cdot \delta_{2 s} \cdot \sum_{j \geq 2}\left\|h_{T_{j}}\right\|_{2} .
$$

Hence $\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq \frac{2 \rho \cdot \Delta}{1-\rho}$ for $\rho:=\frac{\sqrt{2} \cdot \delta_{2 s}}{1-\delta_{2 s}}$. Therefore

$$
\|h\|_{2} \leq \frac{2(1+\rho)}{1-\rho} \cdot \Delta
$$

Related property of random projections

Theorem (Johnson-Lindenstrauss Lemma)
Assume $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$. If $k \geq \frac{8 \delta \log n}{\epsilon^{2}(1-2 \epsilon / 3)}$ for some $\epsilon \in(0,1)$ and $\delta \geq 1$, then a random projection $\Pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ satisfies
$(1-\epsilon) \frac{k}{d}\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|\Pi x_{i}-\Pi x_{j}\right\|_{2}^{2} \leq(1+\epsilon) \frac{k}{d}\left\|x_{i}-x_{j}\right\|_{2}^{2}, \forall i \neq j$
with probability at least $1-\frac{n(n-1)}{n^{2 \delta}}$.

Theorem
Let M be an $m \times n$ Gaussian matrix and $A:=\frac{1}{\sqrt{m}} M$. If $m \geq \frac{k \log (e n / k)}{\delta^{2}}$ for $\delta \in(0,1 / 3)$ and $1 \leq k \leq n$, then with probability at least $1-2 e^{-\delta^{2} m}$

$$
1-3 \delta \leq \sigma_{\min }\left(A_{T}\right) \leq \sigma_{\max }\left(A_{T}\right) \leq 1+3 \delta \text { for all }|T|=k
$$

In particular, A satisfies RIP with high probability.

Key lemmas (for both Johnson-Lindenstrauss and Gaussian RIP):
Lemma (Borell, Tsirelson-Ibragimov-Sudakov)
Let $X \sim N\left(0, I_{d}\right)$ and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-Lipschitz. Then for $t \geq 0$

$$
\mathbb{P}(f(X)-\mathbb{E}[f(X)]>t) \leq e^{-t^{2} / 2 L^{2}} .
$$

Lemma (Sudakov-Fernique)
Let $\left(X_{t}\right)_{t \in I}$ and $\left(Y_{t}\right)_{t \in I}$ be Gaussian processes. If $\mathbb{E} X_{t}=\mathbb{E} Y_{t}$ and $\mathbb{E}\left(X_{s}-X_{t}\right)^{2} \leq \mathbb{E}\left(Y_{s}-Y_{t}\right)^{2}$ for all $s, t \in I$ then

$$
\mathbb{E} \sup _{t \in I} X_{t} \leq \mathbb{E} \sup _{t \in I} Y_{t}
$$

Proof of Gaussian RIP Theorem

Assume $|T|=k$ and $t \geq 0$.
By Sudakov-Fernique:

$$
\begin{aligned}
& \mathbb{E}\left(\sigma_{\max }\left(M_{T}\right)\right) \leq \sqrt{m}+\sqrt{k} \\
& \mathbb{E}\left(\sigma_{\min }\left(M_{T}\right)\right) \geq \sqrt{m}-\sqrt{k} .
\end{aligned}
$$

By Borell, Tsirelson-lbragimov-Sudakov:

$$
\begin{aligned}
& \mathbb{P}\left(\sigma_{\max }\left(M_{T}\right) \geq \sqrt{m}+\sqrt{k}+t\right) \leq e^{-t^{2} / 2} \\
& \mathbb{P}\left(\sigma_{\min }\left(M_{T}\right) \leq \sqrt{m}-\sqrt{k}-t\right) \leq e^{-t^{2} / 2}
\end{aligned}
$$

Hence

$\mathbb{P}\left(\max _{|T|=k} \sigma_{\max }\left(A_{T}\right) \geq 1+\frac{\sqrt{k}+t}{\sqrt{m}}\right) \leq\binom{ n}{k} e^{-t^{2} / 2} \leq(e n / k)^{k} e^{-t^{2} / 2}$

$$
=\exp \left(k \log (e n / k)-t^{2} / 2\right)
$$

To finish, take $t=2 \sqrt{m} \cdot \delta$. (Similar for $\sigma_{\text {min. }}$.)

Optimality conditions for ℓ_{1} minimization

$$
\begin{aligned}
\min & \|x\|_{1} \\
& A x=b
\end{aligned}
$$

Optimality conditions
A feasible $x \in \mathbb{R}^{n}$ is optimal iff there exists $v=A^{*} \lambda$ such that

- $v_{i}=\operatorname{sgn}\left(x_{i}\right)$ for $i \in T:=\left\{i: x_{i} \neq 0\right\}$.
- $\left|v_{i}\right| \leq 1$ for $i \in T^{c}:=\left\{i: x_{i}=0\right\}$.

Sufficient condition for uniqueness
If, in addition, $\left|v_{i}\right|<1$ for all $i \in T^{c}$ and A_{T} is full column rank then x is the unique solution.

Signal recovery for probabilistic ("RIPless") approach

Probabilistic approach

- Suppose $\bar{x} \in \mathbb{R}^{n}$ is s-sparse.
- Pick $A \in \mathbb{R}^{m \times n}$ and measure $b=A \bar{x}$.

Question
How likely it is that the solution \hat{x} to the ℓ_{1} minimization problem

$$
\begin{aligned}
\min & \|x\|_{1} \\
& A x=b
\end{aligned}
$$

recovers $\bar{x} ?$

Strategy to prove exact recovery via ℓ_{1} minimization

Suppose \bar{x} has support T, i.e., $T:=\left\{i: x_{i} \neq 0\right\}$.
Take

$$
v:=A^{*} A_{T}\left(A_{T}^{*} A_{T}\right)^{-1} \operatorname{sgn}\left(x_{T}\right) .
$$

By construction $v=A^{*} \lambda$ and $v_{i}=\operatorname{sgn}\left(x_{i}\right)$ for $i \in T$.
We would be done if we can show that $\left|v_{i}\right|<1$ for $i \in T^{c}$.
An easy probabilistic result:
Theorem
For A Gaussian, achieve exact recovery with probability at least $1-3 / \sqrt{n}$ provided $m \geq 4 s \log n$.

Proof of Theorem

Put $w:=A_{T}\left(A_{T}^{*} A_{T}\right)^{-1} \operatorname{sgn}\left(x_{T}\right)$.
Observe: w, A_{i} are independent for $i \in T^{c}$.
Thus $v_{i} \mid w \sim \mathcal{N}\left(0,\|w\|_{2}^{2}\right)$. Hence

$$
\mathbb{P}\left(\left|v_{i}\right| \geq 1 \mid w\right) \leq 2 e^{-1 / 2\|w\|_{2}^{2}}
$$

On the other hand, as in the RIP Theorem,

$$
\mathbb{P}\left(\sigma_{\min }\left(A_{T}\right) \leq \sqrt{m}-\sqrt{s}-t\right) \leq e^{-t^{2} / 2}
$$

Therefore with probability at least $1-e^{-t^{2} / 2}$

$$
\|w\| \leq \frac{\sqrt{s}}{\sqrt{m}-\sqrt{s}-t}:=B
$$

Consequently

$$
\mathbb{P}\left(\max _{i \in T^{c}}\left|v_{i}\right| \geq 1\right) \leq 2 n e^{-1 / 2 B^{2}}+e^{-m t^{2} / 2}
$$

To finish, take $t:=\sqrt{\log n}$.

Signals with power law

image

sorted wavelet coefficients

Power law decay: $|x|_{(1)} \geq|x|_{(2)} \geq \cdots \geq|x|_{(n)}$

$$
|x|_{(k)} \leq \frac{C}{k^{p}}
$$

Model
ℓ_{p} ball $\mathcal{B}_{p}:=\left\{x:\|x\|_{p} \leq 1\right\}$.
Discuss case $p=1$ but same discussion applies to $0 \leq p \leq 1$.

Optimality of Compressive Sensing

Back to Gaussian sensing
m Gaussian measurements and ℓ_{1} decoding:

$$
\|\hat{x}-x\|_{2} \lesssim \frac{\left\|x-x_{s}\right\|_{1}}{\sqrt{s}}, s \approx \frac{m}{\log (n / m)}
$$

Question
Can we do better with other measurements or other algorithms?

Recovery of ℓ_{1} ball \mathcal{B}

Gaussian sensing

- Suppose unknown vector is in \mathcal{B}
- Take m Gaussian measurements

$$
\|\hat{x}-x\|_{2} \lesssim \sqrt{\frac{\log (n / m)+1}{m}}
$$

Ideal sensing
Best we can hope from m linear measurements:

$$
E_{m}(\mathcal{B})=\inf _{D, F} \sup _{x \in \mathcal{B}}\|x-D(F(x))\|
$$

Gelfand widths

Theorem (Donoho)

$$
d_{m}(\mathcal{B}) \leq E_{m}(\mathcal{B}) \leq C \cdot d_{m}(\mathcal{B})
$$

where $d_{m}(\mathcal{B})$ is the m-width of \mathcal{B} :

$$
d_{m}(\mathcal{B}):=\inf _{V}\left\{\sup _{x \in \mathcal{B}}\left\|P_{V} x\right\|_{2}: \operatorname{codim}(V)<m\right\}
$$

Theorem (Kashin, Garnaev-Gluskin)
For ℓ_{1} ball

$$
C_{1} \cdot \sqrt{\frac{\log (n / m)+1}{m}} \leq d_{m}(\mathcal{B}) \leq C_{2} \cdot \sqrt{\frac{\log (n / m)+1}{m}}
$$

Compressive sensing achieves the limits of performance.

Convex optimization

Problem of the form

$$
\begin{array}{ll}
\min & f(x) \\
& x \in S
\end{array}
$$

where f and S are convex.

Sufficient optimality conditions
A point $\bar{x} \in S$ is a solution to the above problem if

$$
-\partial f(\bar{x}) \cap N_{S}(\bar{x}) \neq \emptyset
$$

Convex functions and sets

Subdifferential
Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex and $x \in \mathbb{R}^{n}$. A vector $g \in \mathbb{R}^{n}$ is a subgradient of f at x if

$$
f(y) \geq f(x)+\langle g, y-x\rangle, \quad \text { for all } y \in \mathbb{R}^{n}
$$

Subdifferential $\partial f(x):=\{g: g$ subgradient of f at $x\}$.

Normal cone
Assume $S \subseteq \mathbb{R}^{n}$ is convex and $x \in S$.
Normal cone to S at x :

$$
N_{S}(x):=\{d:\langle d, y-x\rangle \leq 0 \text { for all } y \in S\}
$$

Special convex optimization problems

Linear programming
Objective function is linear: $f(x)=\langle c, x\rangle$
Constraint set is polyhedral: $S=\{x: A x=b, B x \geq d\}$.

Optimality conditions for linear programming

$$
c=A^{*} y+B^{*} z, z \geq 0,\langle z, B x-d\rangle=0
$$

Special convex optimization problems

Consider the vector space $\mathbb{S}^{n}: n \times n$ symmetric matrices with inner product

$$
\langle X, Z\rangle=\operatorname{trace}(X Z)
$$

Cone of positive semidefinite matrices

$$
\mathbb{S}_{+}^{n}:=\left\{X \in \mathbb{S}^{n}: \lambda(X) \geq 0\right\}=\left\{X: u^{\top} X u \geq 0 \forall u \in \mathbb{R}^{n}\right\}
$$

Write $X \succeq Z$ for $X-Z \in \mathbb{S}_{+}^{n}$.
Semidefinite programming
Objective function: $f(X)=\langle C, X\rangle$
Constraint set: $S=\left\{X \in \mathbb{S}^{n}: \mathcal{A}(X)=b, \mathcal{B}(X) \succeq D\right\}$ for some linear maps \mathcal{A}, \mathcal{B}.
Sufficient optimality conditions for semidefinite programming

$$
C=\mathcal{A}^{*}(y)+\mathcal{B}^{*}(Z), Z \succeq 0,\langle Z, \mathcal{B}(X)-D\rangle=0
$$

What is so special about linear and semidefinite programming?

- They have powerful duality properties
- They can be solved efficiently (via interior-point methods)
- Popular matlab-based solvers: SeDuMi, SDPT3
- Matlab toolbox CVX serves as a wrapper for these solvers

CVX examples

To solve

$$
\min _{x}\|x\|_{1} \rightsquigarrow \min _{x, t} \sum_{i=1}^{n} t_{i} . \begin{aligned}
& x \leq t \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& A x=b=b
\end{aligned}
$$

Use CVX code

```
cvx_begin
    variable x(n);
    variable t(n);
    minimize(sum(t));
    subject to
        x <= t;
        -x <= t;
        A*x == b;
    cvx_end
```

CVX does some standard transformations.
To solve

$$
\begin{aligned}
\min & \|x\|_{1} \\
& A x=b
\end{aligned}
$$

Use CVX code

```
cvx_begin
        variable x(n);
        minimize(norm(x,1));
        subject to
        A*x == b;
cvx_end
```

More CVX examples
To solve

$$
\min \begin{array}{ll}
& \langle I, X\rangle \\
& \langle A, X\rangle=b \\
& X \succeq 0
\end{array}
$$

use CVX code

```
cvx_begin
    variable X(n,n) symmetric;
    minimize( trace( I * X ) );
    subject to
        trace( A * X ) == b;
        X == semidefinite(n);
cvx_end
```

- Slides for this minicourse
http://andrew.cmu.edu/user/jfp/UNencuentro
- E. Candès, "The restricted isometry property and its implications for compressed sensing," C. R. Acad. Sci. Paris, Ser. I 346, pp. 589-592, 2008.
- R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, "A Simple Proof of the Restricted Isometry Property for Random Matrices,"
Constructive Approximation, 2008.
- D. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol 52, no. 4, pp. 1289-1306, April 2006.
- M. Grant and S. Boyd, cvx: Matlab Software for Disciplined Convex Programming, http://cvxr.com/cvx/

