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Semidefinite programming (SDP)

SDP: generalization of linear programming (LP).

min C • X
s.t. Aj • X = bj , j = 1, . . . ,m

X � 0.

Here C ,Aj ,X ∈ Sn := symmetric n × n matrices.

M � 0 ⇔ M ∈ Sn
+ := {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn}

X • S := trace(XS) =
∑

ij XijSij .

Nesterov & Nemirovskii, Alizadeh 1980s & 1990s:
Interior-point methods (ipm) for SDP.

Applications: control, combinatorial optimization,...



Natural connection SDP/sums of squares (SOS):

M � 0 ⇔ M = LLT for some L ∈ Rn×n (Cholesky factorization)
Can rephrase M = LLT as

xTMx =
∑

(lTi x)2,

where L =
[
l1 · · · ln

]
.

In other words, M � 0 ⇔ xTMx is a sum of squares of linear forms.



Positive polynomials and sums of squares (SOS)

Suppose p, qi are polynomials in n variables.
Observe: If p =

∑
i q

2
i then p(x) ≥ 0 for all x ∈ Rn.

Theorem (Hilbert 1800s)

Converse is true if and only if

deg(p) = 2,

or n = 1,

or n = 2 & deg(p) = 4.

Say that p is a sum of squares (SOS) if p =
∑

i q
2
i for some

polynomials qi .



SOS can be naturally phrased in SDP terms.

Given a polynomial q can write q(x) = c(q)Tv(x)
where c(q): vector of coefficients of q(x)
v(x): vector of monomials in x of degree ≤ deg(q).

Observe

p(x) = q(x)2 ⇔ p(x) = v(x)T
(
c(q)c(q)T

)
v(x)

Notice: c(q)c(q)T � 0.

In general, p is SOS if and only if there exists M � 0 such that

p(x) = v(x)TMv(x)



SDP/SOS/Positive polynomials

Suppose we are interested in

p∗ = min p(x)

Observe that

p∗ = max{λ : p(x)− λ ≥ 0 ∀x ∈ Rn}

Shor’s method: approximate p∗ with

pSOS := max{λ : p(x)− λ is SOS}

Latter can be formulated as an SDP:

max
λ,M

λ

s.t. p(x)− λ = v(x)TMv(x)
M � 0



The cone of copositive matrices

Cn := {M ∈ Sn : xTMx ≥ 0 for all x ≥ 0}

Copositive matrices appear in:

complementarity problems

moment problems

combinatorial problems

Example: (Motzkin & Strauss, de Klerk & Pasechnik)
Assume G = (V ,E ) loopless undirected graph and let A(G ) be its
incidence matrix. Then

α(G ) = min{λ : λ(I + A(G ))− eeT ∈ Cn}

Murty & Kabadi: Checking membership in Cn is NP-hard.



Approximating the copositive cone via SOS

Theorem (Pólya 1928)

If M ∈ int(Cn) then for r ∈ N sufficiently large(
n∑

i=1

xi

)r

xTMx =
∑

|β|=r+2

cβxβ

where all cβ are positive.

Parrilo 2001: Based on Pólya’s Theorem, construct (via SOS)
cones Kr

n ⊆ Cn with Kr
n ↑ Cn.



Theorem (Zuluaga, Vera, P. 2003)

M ∈ Kr
n if and only if(

n∑
i=1

xi

)r

xTMx =
∑

|β|≤r+2

qβ(x)xβ

where each qβ is SOS.

Zuluaga, Vera, P. 2003: General version of the above for
approximating

{p : p(x) ≥ 0 for all x ∈ {x : gi (x) ≥ 0}}

given g1, . . . , gk .
Unifies a number of related results by Lasserre, Kojima, Parrilo,...



SDP descriptions of Kr
n

M ∈ Kr
n ⇔ L(~P) ≤ B(M) for some ~P � 0.

r = 0: ~P = P ∈ Sn

r = 1: need n matrices in Sn.

r = 2: need
(n
2

)
matrices in Sn and one in S(n

2).

...



Structured SDPs

Matrix L for r = 1, n = 20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

nz = 8880

Both L and B have very special structure.
Exploit such structure to simplify the SDPs.



Example: Recall

α(G ) := min{λ : λ(I + A(G ))− eeT ∈ Cn}

De Klerk & Pasechnik: Approximate α(G ) by

ϑ(r)(G ) := min{λ : λ(I + A(G ))− eeT ∈ Kr
n}

Since Kr
n ↑ Cn, we have ϑ(r)(G ) ↓ α(G ).



Structured SDPs: ϑ(1)(G ) for vertex-transitive graphs

Theorem (Vera & P. 2006)

If G is vertex-transitive under an abelian automorphism group,
then ϑ(1)(G ) can be formulated as a reduced SDP in one matrix
variable P (instead of n matrix variables).

E.g., for n = 20 can reduce from an SDP with constraint matrix

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

nz = 8880

to one with constraint matrix

0 50 100 150 200 250 300 350 400

0
10
20

nz = 412



ϑ(1)(G ) for vertex-transitive G

Want smallest λ such that

n∑
i=1

xix
T
(
λ(I + A(G ))− eeT

)
x =

n∑
i=1

xipi (x)

for pi (x) = xT(Pi + Ni )x , Pi � 0, Ni ≥ 0

If G vertex transitive can take pi (x) = p(Πix).
Πi : permutation that sends 1 7→ i .
For one single p(x).



Some examples

G α(G ) ϑ(1)(G ) ϑ(0)(G )

C2m+1 m m m + 1/2− O(1/m)

C 3
5 10 10.935 11.180

C 2
7 10 10.269 11.006

C 3
7 33 35.341 36.517

C 2
9 17 18.000 19.010

C5 × C7 7 7.000 7.4185

C5 × C 2
7 22 23.853 24.612

Work in progress (Vera & P):
Use these types of reductions to estimate α(C 4

7 ), . . .



Structured SDPs

SOS approaches often yield SDPs with invariant properties.
Get

min C • X
s.t. Ai • X = bi , i = 1, . . . ,m

X � 0.

Such that for a large multiplicative group G of permutation
matrices

C = PTCP, Ai = PTAiP, for all P ∈ G and all i

In this case the SDP has a solution in the “centralizer” of G :

C (G ) := {X : PTXP = X}.



Theorem (De Klerk, Pasechnik, Schrijver 2005)

Construct Dj ∈ Sn, Lj ∈ Sd , j = 1, . . . , d with d ≤ n such that

X ∈ C (G ), X � 0 ⇔ X =
d∑

j=1

xjDj and
d∑

j=1

xjLj � 0

Here d : number of G -orbits in Sn.
If G is large then d << n.

Limitation:
G has to be large (relative to n).
In particular, it does not apply to ϑ(1)(G )



Structured SDPs

Consider
min C • X
s.t. AX = b

X � 0.

Here AX :=
[
A1 • X · · · Am • X

]T
.

Assume (A, b,C ) has the following invariant property:

A = MgAN−1
g , b = Mgb, C = NT

g C

for some linear representations {Mg : g ∈ G} and {Ng : g ∈ G} of
a finite group G .



Theorem (Vera & P. 2005)

Under the above assumptions can reduce the SDP to a smaller
conic program

min 〈c̄ , x〉
s.t. Āx = b̄

x ∈ K .

Reduction is constructive (via numerical linear algebra) and can be
incorporated within ipm algorithms.



Example: a b b
b a b
b b a

 � 0 ⇔ a ≥ b and a ≥ −2b.

Can reduce SDP constrainta b b
b a b
b b a

 � 0

to an LP constraint [
a− b
a + 2b

]
≥ 0

De Klerk-Pasechnik-Schrijver’s approach does not identify this
reduction.



Interior-point methods beyond SDP

Heart of ipm: “barrier function”.

(LP) Barrier function for Rn
++: −

∑n
i=1 log xi = − log x1 · · · xn

(SDP) Barrier function for Sn
++: − log detX

Consider
min 〈c , x〉
s.t. Ax = b

x ∈ K

where K is a convex cone.

Can solve via ipm as long as a barrier for int(K ) is available.

Amount of work depends on how complicated the barrier function
is.



Symmetric cones

Definition: Assume K ⊆ Rn is a convex cone.

Aut(K ) := {g ∈ GL(Rn) : gK = K}.

Definition: Assume K is a convex cone. K is homogeneous if for
all x , y ∈ K there exists g ∈ Aut(K ) such that y = gx .

Definition: Assume K is a convex cone. K is symmetric if it is
homogeneous and K = K ∗.

Nesterov & Todd 1997: Generalized ipm from SDP to conic
programming over symmetric cones. (Currently implemented in
SeDuMi, SDPT3.)



Symmetric cones

Examples of symmetric cones:

(i) Psd n × n symmetric matrices.

(ii) Lorentz cone: {x ∈ Rn : x1 ≥ ‖(x2, . . . , xn)‖}.
(iii) Psd n × n Hermitian matrices with entries in C.

(iv) Psd n × n Hermitian matrices with entries in H.

(v) Psd 3× 3 Hermitian matrices with entries in O.

Theorem
Every symmetric cone is a product of cones of types (i)–(v).



Symmetric cones are slices of Sn
+

Theorem (Hauser & P, 2004)

I Cones of types (ii) – (v) can be written as {x : Lx ∈ Sd
+} for

some explicit L. (Thus have barrier x 7→ − log det Lx.)

I In each case get det(Lx) = p(x)q(x) where factor q(x) is
“reduntant”
Hence barrier x 7→ − log det Lx can be simplified to
x 7→ − log p(x).



Example

{x ∈ Rn : x1 ≥ ‖(x2, . . . , xn)‖} =


x :


x1 x2 x3 · · · xn

x2 x1 0 · · · 0
x3 0 x1 · · · 0
...

...
...

. . .
...

xn 0 0 · · · x1

 � 0


.

det


x1 x2 x3 · · · xn

x2 x1 0 · · · 0
x3 0 x1 · · · 0
...

...
...

. . .
...

xn 0 0 · · · x1

 = xn−1
1 (x2

1 − x2
2 − · · · − x2

n )



Work in progress...

Hauser, Vera, P: Consider {x : Lx ∈ Sd
+} for a given L.

When can we factor det(Lx) = p(x)q(x) so that q(x) is
redundant?

Special cases:

I Symmetric cones

I Subsets of Sd
+ with a large symmetry group

I More...?

Redundant factor q(x) has to do with some invariant property of
the cone {x : Lx ∈ Sd

+}

The polynomial det(Lx) as well as its factors p(x), q(x) are
“hyperbolic” polynomials.



Hyperbolic polynomials

Definition: A polynomial p(x) of degree d is hyperbolic if

p(tx) = tdp(x), i.e., p is homogeneous

there exists e such that for every x the roots of

t 7→ p(x + te)

are real.

Examples:

x1 · · · xn, e =
[
1 · · · 1

]T
det X , e = I ,

x2
1 − (x2

2 + · · ·+ x2
n ), e =

[
1 0 · · · 0

]T
.



SDP/Hyperbolic polynomials

Theorem (Gårding, 1959)

Assume p is hyperbolic. Then each connected component of
{x : p(x) > 0} is an open convex cone.

Hyperbolicity cone: a component of {x : p(x) > 0} for hyperbolic
polynomial p.

Theorem (Güler, 1996)

Assume p is hyperbolic. Then − log p(x) is a barrier function for
each component of {x : p(x) > 0}

LP, SOCP and SDP are special cases of hyperbolicity cones:

Rn
++: component of {x : x1 · · · xn > 0} that contains[
1 · · · 1

]
.

Sn
++: component of {X : detX > 0} that contains I .

int(Qn) : component of {x : x2
1 − (x2

2 + · · ·+ x2
n ) > 0} that

contains
[
1 0 · · · 0

]T
.



Lax conjecture, 1958

Original version:

A polynomial p(x , y , z) is hyperbolic if and only if there
exist A,B,C ∈ Sd such that

p(x , y , z) = det(xA + yB + zC )

Theorem (Helton & Vinnikov, 2002)

Lax conjecture is true.

Lewis, Parrilo, Ramana 2003: Observed that Helton & Vinnikov
proved Lax conjecture.

General version (still open):

Any hyperbolicity cone is a slice of Sn
+.



Homogeneous cones

Recall: A convex cone K is homogeneous if for all x , y ∈ K there
exists g ∈ Aut(K ) such that y = gx .

Theorem (Güler 1996)

If K homogeneous then K is a hyperbolicity cone.

Theorem (Chua, Faybusovich 2003)

Every homogeneous cone is a slice of Sn
+.



Conjecture (Hauser, P.): Given a hyperbolic polynomial p(x) can
construct q(x) and L such that

p(x)q(x) = det Lx

for some appropriate L.



Concluding remarks

I SDP approach to problems involving polynomials via SOS.
Resulting SDPs are large but highly structured

I Conversely, polynomials suggest extensions of SDP.

I Slices of Sn
+ play a special role: homogeneous & symmetric

cones are slices of Sn
+.

I Nice interaction of ideas from optimization/algebra/analysis
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