The condition number of a function relative to a set

Javier Peña, Carnegie Mellon University (joint work with D. Gutman, Texas Tech)

Variational Analysis and Optimization Webinar March, 2021

Preamble: classical condition number

The condition number of a matrix

Suppose $A \in \mathbb{R}^{n \times n}$ is non-singular. The condition number of A is

$$||A|| \cdot ||A^{-1}|| = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}.$$

This quantity is related to properties of the problem

$$Ax = b$$
.

More generally, for $A \in \mathbb{R}^{m \times n}$ the condition number

$$\frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

is related to properties of the problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2.$$

The condition number of a function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function and consider

$$\min_{x \in \mathbb{R}^n} f(x).$$

Condition number of f

$$\mathsf{Cond}(f) := \frac{L_f}{\mu_f}.$$

Smoothness and strong convexity constants

$$L_f := \sup_{\substack{y,x \in \mathbb{R}^n \\ y \neq x}} \frac{D_f(y,x)}{\|y - x\|^2 / 2}, \quad \mu_f := \inf_{\substack{y,x \in \mathbb{R}^n \\ y \neq x}} \frac{D_f(y,x)}{\|y - x\|^2 / 2}$$

Bregman distance

$$D_f(y,x) := f(y) - f(x) - \langle \nabla f(x), y - x \rangle.$$

Geometric intuition

Example

Suppose $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $f(x) = \|Ax - b\|_2^2/2$. Then

$$L_f = \sigma_{\max}(A)^2 = \min\{r : A(\mathbb{B}^n) \subseteq r\mathbb{B}^m\}^2$$

and

$$\mu_f = \sigma_{\min}(A)^2 = \max\{r : r\mathbb{B}^m \subseteq A(\mathbb{B}^n)\}^2$$

for $\mathbb{B}^d = \{u \in \mathbb{R}^d : ||u||_2 \le 1\}.$

Thus $\operatorname{Cond}(f) = (\sigma_{\max}(A)/\sigma_{\min}(A))^2 = (\operatorname{aspect\ ratio\ of\ } A(\mathbb{B}^n))^2$.

Linear convergence of gradient descent

Consider the optimization problem

$$f^{\star} := \min_{x \in \mathbb{R}^n} f(x).$$

Gradient descent algorithm

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
 for some $\alpha_k > 0$

Theorem

If $\alpha_k=1/L_f,\;k=0,1,\ldots$ then gradient descent iterates satisfy

$$\operatorname{dist}(X^{\star}, x_k)^2 \le \left(1 - \frac{\mu_f}{L_f}\right)^k \operatorname{dist}(X^{\star}, x_0)^2$$

and

$$f(x_k) - f^* \le \frac{L_f}{2} \cdot \left(1 - \frac{\mu_f}{L_f}\right)^k \operatorname{dist}(X^*, x_0)^2.$$

Agenda

- Relative condition number
- Linear convergence of first-order methods: Mirror Descent and Frank-Wolfe
- Bounds and geometric intuition

Relative condition number

Our main goal

Suppose $f:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$ is a differentiable convex function and $X\subseteq \text{dom}(f)$ is a convex set.

Construct a condition number for

$$\min_{x \in X} f(x).$$

Incorporate reference set X and distance $D: X \times X \to \mathbb{R}_+$.

The reference distance allows us to give a *non-Euclidean* construction.

Reference set and reference distance

Blanket assumption

The triple (f, X, D) satisfies

- $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex and differentiable on the reference convex set $X \subseteq \text{dom}(f)$.
- $D: X \times X \to \mathbb{R}_+$ is a reference distance function such that D(y,x)=0 if and only if x=y.

Key object

Let $Z_{f,X}:X\rightrightarrows X$ be defined as

$$Z_{f,X}(y) := \{x \in X : f(z) = f(y) \text{ for all } z \in [x,y]\}.$$

Condition number relative to a reference set and distance

Smoothness constant relative to (X, D)

$$L_{f,X,D} := \sup_{\substack{y,x \in X \\ x \neq y}} \frac{D_f(y,x)}{D(y,x)}$$

Strong convexity constant relative to (X, D)

$$\mu_{f,X,D} := \inf_{\substack{y,x \in X \\ x \notin Z_{f,X}(y)}} \frac{D_f(Z_{f,X}(y), x)}{D(Z_{f,X}(y), x)}$$

Observation

If $X = \mathbb{R}^n$, $D(y, x) = ||y - x||^2/2$, and f is strictly convex then

$$L_{f,X,D} = L_f$$
 and $\mu_{f,X,D} = \mu_f$.

Recover the classical condition number costruction.

Examples of relative condition numbers

Suppose $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $f(x) = \|Ax - b\|_2^2/2$.

Example 1

If $X \subseteq \mathbb{R}^n$ linear subspace and $D(y,x) = \|y-x\|_2^2/2$ then

$$L_{f,X,D} = \sigma_{\max}(A|X)^2$$
 and $\mu_{f,X,D} = \sigma_{\min}^+(A|X)^2$.

Here A|L= restriction of A to L and $\sigma_{\min}^+(A|X)=$ its smallest positive singular value.

It is evident that

$$L_{f,X,D} \le L_f$$
 and $\mu_{f,X,D} \ge \mu_f$.

Furthermore, $L_{f,X,D}/\mu_{f,X,D}$ can be arbitrarily smaller than L_f/μ_f .

Examples of relative condition numbers (continued)

Example 2

If $X\subseteq \mathbb{R}^n$ is a convex cone, $D(y,x)=\|y-x\|^2/2$, and L:=A(X) is a linear subspace of \mathbb{R}^m then

$$L_{f,X,D} = (\max\{r : A(\mathbb{B}^n \cap \operatorname{span}(X)) \subseteq r\mathbb{B}^m \cap L\})^2$$

and

$$\mu_{f,X,D} = \left(\min\{r : r\mathbb{B}^m \cap L \subseteq A(\mathbb{B}^n \cap X)\}\right)^2,$$

where $\mathbb{B}^d := \{ u \in \mathbb{R}^d : ||u|| \le 1 \}.$

Examples of reference distance functions

Squared norm

$$D(y,x) = \frac{\|y - x\|^2}{2}.$$

Bregman distance

$$D_h(y,x) = h(y) - h(x) - \langle \nabla h(x), y - x \rangle$$

for some reference differentiable convex function $h: X \to \mathbb{R}$.

Radial distance

Suppose X is bounded. Let $\mathfrak{R} = \mathfrak{r}^2/2$ where

$$\mathfrak{r}(y,x):=\inf\{\rho>0: y-x=\rho(u-x) \text{ for some } u\in X\}.$$

Geometric intuition of radial distance

Level sets of $\mathfrak{r}(\cdot,x)$ for $X=\{x\in\mathbb{R}^2:\|x\|_2\leq 1\}$

Convergence of first-order methods

Constrained convex minimization

Suppose (f,X,D) satisfies the blanket assumption and consider the optimization problem

$$f^{\star} := \min_{x \in X} \ f(x).$$

Let
$$X^* := \{x \in X : f(x) = f^*\}.$$

Recall:

$$L_{f,X,D} = \sup_{y,x \in X \atop x \neq y} \frac{D_f(y,x)}{D(y,x)} \ \ \text{and} \ \ \mu_{f,X,D} = \inf_{y,x \in X \atop x \not\in Z_{f,X}(y)} \frac{D_f(Z_{f,X}(y),x)}{D(Z_{f,X}(y),x)}$$

where $Z_{f,X}(y) := \{x \in X : f(z) = f(y) \text{ for all } z \in [x,y]\}.$

Mirror descent

Suppose $h: X \to \mathbb{R}$ is reference differentiable convex function.

Mirror descent algorithm

$$x_{k+1} = \operatorname*{argmin}_{y \in X} \{ \langle \nabla f(x_k), y - x_k \rangle + L_k D_h(y, x_k) \}$$

Theorem (Gutman & P 2019, following Teboulle 2018)

Suppose $L_k := L_{f,X,D_h} < \infty$ and $\mu_{f,X,D_h} > 0$. Then the mirror descent iterates satisfy

$$D_h(X^*, x_k) \le \left(1 - \frac{\mu_{f, X, D_h}}{L_{f, X, D_h}}\right)^k D_h(X^*, x_0)$$

and

$$f(x_k) - f^* \le L_{f,X,D_h} \left(1 - \frac{\mu_{f,X,D_h}}{L_{f,X,D_h}} \right)^k D_h(X^*, x_0).$$

Frank-Wolfe (aka conditional gradient)

Frank-Wolfe algorithm

$$\begin{split} s_k &= \underset{y \in X}{\operatorname{argmin}} \langle \nabla f(x_k), y \rangle \\ x_{k+1} &= x_k + \alpha_k (s_k - x_k), \ \alpha_k \in [0, 1] \end{split}$$

Theorem (Gutman & P 2019)

Suppose $L_{f,X,\Re} < \infty$ and $\mu_{f,X,\Re} > 0$. For judiciously chosen $\alpha_k \in [0,1]$ the Frank-Wolfe iterates satisfy

$$f(x_k) - f^* \le \left(1 - \frac{\mu_{f,X,\Re}}{L_{f,X,\Re}}\right)^k (f(x_0) - f^*).$$

Jaggi's curvature constant of f on X is precisely $L_{f,X,\mathfrak{R}}$.

Bounds and geometric intuition

Bounds on $L_{f,X,D}$ and $\mu_{f,X,D}$ when $f = g \circ A$

To ease exposition, consider special case $D(y,x) := ||y-x||^2/2$.

Suppose $A \in \mathbb{R}^{m \times n}$. For $X \subseteq \mathbb{R}^n$ nonempty let

$$Z_{A,X}(y) := \{x \in X : Ax = Ay\}.$$

For a convex cone $C\subseteq\mathbb{R}^n$ let $A|C:\mathbb{R}^n\rightrightarrows\mathbb{R}^m$ be defined via

$$x \mapsto (A|C)(x) := \left\{ \begin{array}{ll} \{Ax\} & \text{if } x \in C \\ \emptyset & \text{otherwise} \end{array} \right.$$

and let $(A|C)^{-1}: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ be its inverse. Let

$$||A|C|| := \sup_{\substack{x \in C \\ ||x|| \le 1}} ||Ax||, ||(A|C)^{-1}|| := \sup_{\substack{v \in A(C) \\ ||v|| \le 1}} \inf_{\substack{x \in C \\ Ax = v}} ||x||.$$

Upper bound on $L_{f,X,D}$ (easy)

Suppose $f = g \circ A$ for $A \in \mathbb{R}^{m \times n}$ and $g : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$.

Proposition

Let $X \subseteq dom(f)$ be convex. If g is L_q -smooth then

$$L_{f,X,D} \leq L_g \cdot ||A|\operatorname{span}(X-X)||^2.$$

This bound is tight: if $g(v) = ||v||_2^2/2$ then

$$L_{f,X,D} = ||A|\operatorname{span}(X - X)||^2.$$

Recall:

$$L_{f,X,D} = \sup_{\substack{y,x \in X \\ x \neq y}} \frac{D_f(y,x)}{D(y,x)} \quad \text{and} \quad \mu_{f,X,D} = \inf_{\substack{y,x \in X \\ x \not\in Z_{f,X}(y)}} \frac{D_f(Z_{f,X}(y),x)}{D(Z_{f,X}(y),x)}$$

where $Z_{f,X}(y) := \{x \in X : f(z) = f(y) \text{ for all } z \in [x,y]\}.$

Lower bound on $\mu_{f,X,D}$ (more interesting)

Suppose $f = g \circ A$ for $A \in \mathbb{R}^{m \times n}$ and $g : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$.

Theorem (Gutman & P. 2019)

Let $X \subseteq dom(f)$ be a convex cone such that A(X) is a linear subspace.

If g is μ_q -strongly convex on A(X) then

$$\mu_{f,X,D} \ge \frac{\mu_g}{\|(A|X)^{-1}\|^2}.$$

This bound is tight: if $g(v) = ||v||_2^2/2$ then

$$\mu_{f,X,D} = \frac{1}{\|(A|X)^{-1}\|^2}.$$

Observe: when X is a convex cone A(X) is a linear subspace iff $Ax=0, \ x\in {\rm ri}(X) \ {\rm is \ feasible}.$

Geometric intuition

Suppose X is a convex cone and $A(X) = \mathbb{R}^m$. Then

$$||A|X|| = \min\{r : A(X \cap \mathbb{B}^n) \subseteq r\mathbb{B}^m\}$$

and

$$||(A|X)^{-1}|| = \max\{r : r\mathbb{B}^m \subseteq A(X \cap \mathbb{B}^n)\}$$

Example

Let
$$A:=\begin{bmatrix} 1 & -1 & 0 \\ -\epsilon & -\epsilon & 1 \end{bmatrix}$$
 for $0<\epsilon<1$ and $X=\mathbb{R}^3_+$.

Let \mathbb{R}^2 and \mathbb{R}^3 be endowed with the ℓ_2 and ℓ_1 norms respectively.

Sets of tangent cones $\mathcal{T}(X)$ and $\mathcal{T}(A|X)$

Suppose $X \subseteq \mathbb{R}^n$ is a nonempty polyhedron.

Let
$$\mathcal{T}(X) := \{T_X(x) : x \in X\}$$
, where

$$T_X(x):=\{d\in\mathbb{R}^n: x+td\in X \ \text{ for some } \ t>0\}.$$

For $A \in \mathbb{R}^{m \times n}$ let

$$\mathcal{T}(A|X) := \{C \in \mathcal{T}(X) : A(C) \text{ is a subspace and } C \text{ is minimal}\}.$$

Example

If $X=\mathbb{R}^n_+$ then $C\in\mathcal{T}(X)$ iff there exists $I\subseteq[n]$ such that

$$C = \{x \in \mathbb{R}^n : x_I \ge 0\}.$$

In this case $C \in \mathcal{T}(A|R)$ iff $Ax = 0, x_I > 0$ is feasible and I is maximal.

Lower bound on $\mu_{f,X,D}$ for f of the form $g \circ A$ (again)

Suppose $f = g \circ A$ for $A \in \mathbb{R}^{m \times n}$ and $g : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$.

Theorem (Gutman & P. 2019)

Let $X \subseteq dom(f)$ be a nonempty polyhedron.

If g is μ_q -strongly convex on A(X) then

$$\mu_{f,X,D} \ge \min_{C \in \mathcal{T}(A|X)} \frac{\mu_g}{\|(A|C)^{-1}\|^2}.$$

This bound is tight: if $g(v) = ||v||_2^2/2$ then

$$\mu_{f,X,D} = \min_{C \in \mathcal{T}(A|X)} \frac{1}{\|(A|C)^{-1}\|^2}.$$

Geometric intuition

Let $X=\Delta_{n-1}:=\{x\in\mathbb{R}^n_+:\|x\|_1=1\}$ and endow \mathbb{R}^n with ℓ_1 norm. Then

$$\min_{C \in \mathcal{T}(A|X)} \frac{1}{\|(A|C)^{-1}\|} = \frac{\Phi(A)}{2}$$

 $\text{for "facial distance"} \ \Phi(A) = \min_{F \in \text{faces}(\text{conv}(A)) \atop \emptyset \neq F \neq \text{conv}(A)} \text{dist}(F, \text{conv}(A \setminus F))$

Conclusions

- Condition number of f relative to a reference set and distance pair (X,D) via relative constants $L_{f,X,D}$ and $\mu_{f,X,D}$.
- Convergence of first-order methods in terms of relative condition number.
- Bound when $f = g \circ A$ and X is a polyhedron:

$$\frac{L_{f,X,D}}{\mu_{f,X,D}} \le \frac{L_g}{\mu_g} \cdot \left(\max_{C \in \mathcal{T}(X)} \|A|C\| \cdot \min_{C \in \mathcal{T}(A|X)} \|(A|C)^{-1}\| \right)^2$$

- Other related developments:
 - Frank-Wolfe algorithm with away steps
 - Refinements of relative strong convexity:
 relative quasi-strong convexity and relative functional growth

Main reference

Gutman and P. "The condition number of a function relative to a set," Mathematical Programming, 2020.