Perturbed Fenchel Duality and First-Order Methods

Javier Peña, Carnegie Mellon University joint work with D. Gutman, Texas Tech

Rutgers University, March 2022

Preamble: some motivation

Convex optimization

Problem of the form

 $\min_{x \in C} f(x)$

where $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ and $C \subseteq \operatorname{dom}(f)$ are convex.

Many applications

- Classic:
 - linear programming models for production, logistics, etc.
 - quadratic programming models for portfolio construction
 - integer programming and combinatorial optimization
- Modern:
 - data science: support vector machines, regression, matrix completion
 - imaging science: compressive sensing
 - computational game theory: equilibria computation

Incomplete & biased history

- Late 20th century (1980s-2000)
 - interior-point (second-order) methods
 - strong theory, successful code, high accuracy
 - semidefinite & second-order programming
 - elaborate algorithms and implementations for generic problems
- Early 21st century (2000-now)
 - large-scale problems
 - modest accuracy is often acceptable
 - resurgence of first-order methods topic of this talk
 - simpler algorithms and implementations for specific problems

Popular formats

Simple constraints

 $\min_{x \in C} f(x)$

where C is a "simple" set.

Composite minimization

$$\min_{x \in \mathbb{R}^n} \{ f(x) + \psi(x) \}$$

where f,ψ are convex and ψ has some special structure.

Composite case subsumes the constrained case by taking $\psi := \delta_C$ where

$$\delta_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C. \end{cases}$$

Iconic algorithms for $\min_{x\in C}\,f(x)$

Let $\Pi_C : \mathbb{R}^n \to C$ denote the orthogonal projection onto C.

Projected subgradient method (SG)

pick
$$g_k \in \partial f(x_k)$$
 and $t_k > 0$
 $x_{k+1} = \prod_C (x_k - t_k g_k)$

Projected gradient descent (GD)
pick
$$t_k > 0$$

 $x_{k+1} = \Pi_C(x_k - t_k \nabla f(x_k))$

Conditional gradient (CG)

$$s_k = \underset{s \in C}{\operatorname{argmin}} \langle \nabla f(x_k), s \rangle$$

pick $\theta_k \in [0, 1]$
 $x_{k+1} = x_k + \theta_k (s_k - x_k)$

Iconic algorithms for $\min_{x \in \mathbb{R}^n} \left\{ f(x) + \psi(x) \right\}$

Suppose the following proximal mapping is computable for all t > 0

$$g \mapsto \mathsf{Prox}_t(g) := \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ \psi(y) + \frac{1}{2t} \|y - g\|^2 \right\}$$

Observe: if $\psi = \delta_C$ then $\operatorname{Prox}_t = \Pi_C$ for all t > 0.

Proximal gradient (PG)

pick
$$t_k > 0$$

 $x_{k+1} = \text{Prox}_{t_k}(x_k - t_k \nabla f(x_k))$

Fast proximal gradient (FPG)

pick
$$t_k > 0$$
 and β_k
 $y_k = x_k + \beta_k (x_k - x_{k-1})$
 $x_{k+1} = \operatorname{Prox}_{t_k} (y_k - t_k \nabla f(y_k))$

(Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013),...)

Bregman proximal gradient for $\min_{x \in \mathbb{R}^n} \{f(x) + \psi(x)\}$

Suppose h is a convex and differentiable reference function and the following proximal mapping is computable for all t > 0

$$(g,x)\mapsto \operatorname*{argmin}_{y\in\mathbb{R}^n}\left\{\psi(y)+\langle g,y\rangle+\frac{1}{t}D_h(y,x)\right\}$$

where $D_h(y,x) := h(y) - h(x) - \langle \nabla h(x), y - x \rangle$.

Bregman proximal gradient (BPG)

$$\begin{array}{l} \mbox{pick} \quad t_k > 0 \\ x_{k+1} = \mathop{\rm argmin}_{y \in \mathbb{R}^n} \left\{ \psi(y) + \langle \nabla f(x_k), y \rangle + \frac{1}{t_k} D_h(y, x_k) \right\} \end{array}$$

Special case

When $h(x) = ||x||_2^2/2$, the Bregman proximal gradient becomes the previous (Euclidean) proximal gradient.

Convergence properties

Under suitable assumptions of smoothness and choice of stepsizes:

Algorithm	Convergence rate
SG	$\mathcal{O}(1/\sqrt{k})$
GD, CG, PG, BPG	$\mathcal{O}(1/k)$
FPG	$\mathcal{O}(1/k^2)$

Question

So many algorithms and so many convergence results. Could all of the above be "unified"?

Answer: YES, via perturbed Fenchel duality.

Theme

- A generic *first-order meta-algorithm* satisfies a *perturbed* Fenchel duality property.
- The first-order meta-algorithm includes as special cases: conditional gradient, proximal gradient, fast and universal proximal gradient, proximal subgradient.
- The perturbed Fenchel duality property yields concise derivations of the best-known convergence rates for each of these algorithms.

Perturbed Fenchel Duality

The Fenchel conjugate

Suppose $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. The *Fenchel conjugate* of f is:

$$f^*(u) = \sup_{x \in \mathbb{R}^n} \{ \langle u, x \rangle - f(x) \}.$$

Fenchel-Young inequality

For all $x, u \in \mathbb{R}^n$ $f^*(u) + f(x) \ge \langle u, x \rangle$, and the equality holds if and only if $u \in \partial f(x)$.

Recall

$$\partial f(x) = \{ u \in \mathbb{R}^n : f(y) \ge f(x) + \langle u, y - x \rangle \text{ for all } y \in \mathbb{R}^n \}.$$

Fenchel duality

Fenchel duality

The Fenchel dual of $\min_{x\in\mathbb{R}^n}\left\{f(x)+\psi(x)\right\}$ is

$$\max_{u\in\mathbb{R}^n}\left\{-f^*(u)-\psi^*(-u)\right\}$$

Weak duality

For all $x, u \in \mathbb{R}^n$

$$f(x) + \psi(x) + f^*(u) + \psi^*(-u) \ge 0.$$

Thus $\bar{x}, \bar{u} \in \mathbb{R}^n$ are ϵ -optimal if

$$f(\bar{x}) + \psi(\bar{x}) + f^*(\bar{u}) + \psi^*(-\bar{u}) \le \epsilon.$$

Perturbed Fenchel duality

Gist of my story

First-order meta-algorithm generates $x_k, u_k \in \mathbb{R}^n$ such that

$$f(x_k) + \psi(x_k) + f^*(u_k) + (\psi + d_k)^*(-u_k) \le \epsilon_k$$

for some $\epsilon_k \geq 0$ and $d_k : \mathbb{R}^n \to \mathbb{R}_+$ both converging to zero.

Observe

For all $x \in \mathbb{R}^n$ we have

$$f^*(u_k) + (\psi + d_k)^*(-u_k) \ge -f(x) - \psi(x) - d_k(x)$$

and thus perturbed Fenchel duality implies that

$$f(x_k) + \psi(x_k) - (f(x) + \psi(x)) \le d_k(x) + \epsilon_k.$$

First-Order Meta-Algorithm

First-order meta-algorithm

Want to solve
$$\min_{x} \{ f(x) + \psi(x) \}.$$

Key ingredient

Let $h: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex and differentiable *reference* function. Let D_h denote the *Bregman distance*

$$D_h(y,x) = h(y) - h(x) - \langle \nabla h(x), y - x \rangle.$$

Key assumption

The following proximal mapping is computable for all t > 0:

$$(g, s_{-}) \mapsto \underset{s}{\operatorname{argmin}} \left\{ \langle g, s \rangle + \psi(s) + \frac{1}{t} D_h(s, s_{-}) \right\}.$$

Example

$$h(x) = ||x||_2^2/2 \rightsquigarrow D_h(y, x) = ||y - x||_2^2/2.$$

First-order meta-algorithm

Want to solve $\min_{x} \{f(x) + \psi(x)\} \Leftrightarrow \min_{x} F(x)$ for $F := f + \psi$.

First-order meta-algorithm

• pick
$$s_{-1} \in \operatorname{dom}(\psi)$$

• for $k = 0, 1, \dots$
pick $y_k \in \operatorname{dom}(\partial f)$ and $g_k \in \partial f(y_k)$
pick $t_k > 0$
pick $s_k \in \operatorname{argmin}_s \left\{ \langle g_k, s \rangle + \psi(s) + \frac{1}{t_k} D_h(s, s_{k-1}) \right\}$
end for

Key component

Flexibly-selected sequence $y_k \in dom(f)$.

Specific choices of y_k : conditional gradient, Bregman proximal (sub)gradient, fast and universal Bregman proximal gradient.

Main Theorem

Let

$$x_k := \frac{\sum_{i=0}^{k-1} t_i s_i}{\sum_{i=0}^{k-1} t_i}, u_k := \frac{\sum_{i=0}^{k-1} t_i g_i}{\sum_{i=0}^{k-1} t_i}, d_k(s) := \frac{D_h(s, s_{-1})}{\sum_{i=0}^{k-1} t_i}, \theta_k := \frac{t_k}{\sum_{i=0}^{k} t_i}.$$

Theorem

The iterates generated by the above meta-algorithm satisfy

$$f(x_k) + \psi(x_k) + f^*(u_k) + (\psi + d_k)^*(-u_k) \\ \leq \frac{\sum_{i=0}^{k-1} (t_i(\mathbb{D}_F(x_i, s_i, \theta_i) + D_f(s_i, y_i)) - D_h(s_i, s_{i-1}))}{\sum_{i=0}^{k-1} t_i}$$

for (recall $F = f + \psi$)

$$\mathbb{D}_F(x,s,\theta) := \frac{F(x+\theta(s-x)) - (1-\theta)F(x) - \theta F(s)}{\theta}.$$

Convergence of Iconic First-Order Algorithms

Conditional gradient

Want to solve $\min_{x} \{f(x) + \psi(x)\}$. Suppose f is differentiable and

$$g\mapsto \partial\psi^*(-g) = \mathrm{argmin}\{\langle g,x\rangle + \psi(x)\}$$

is computable.

Conditional gradient

• pick $x_0 \in \operatorname{dom}(f)$

• for
$$k = 0, 1, ...$$

pick $s_k \in \operatorname{argmin}_s \{ \langle \nabla f(x_k), s \rangle + \psi(s) \}$
pick $\theta_k \in [0, 1]$
let $x_{k+1} := (1 - \theta_k) x_k + \theta_k s_k$
end for

This is the first-order meta-algorithm for

$$s_{-1} = x_0, \ y_k = x_k, \ g_k = \nabla f(x_k), \ h \equiv 0,$$

and $t_k > 0$ such that $\theta_k = \frac{t_k}{\sum_{i=1}^k t_i}$.
(Mild assumption: $\theta_0 = 1$, and $\theta_k \in (0, 1)$ for $k \ge 1$.)

Conditional gradient

Main Theorem yields

$$f(x_k) + \psi(x_k) + f^*(u_k) + \psi^*(-u_k) \le \frac{\sum_{i=0}^{k-1} t_i D(x_i, s_i, \theta_i)}{\sum_{i=0}^{k-1} t_i}$$

for

$$D(x, s, \theta) = \mathbb{D}_F(x, s, \theta) + D_f(x, s)$$

= $\frac{D_f(x + \theta(s - x), x)}{\theta} + \mathbb{D}_{\psi}(x, s, \theta).$

Curvature condition (cf. Jaggi's curvature)

For some M>0 and $\nu>0$ and all $x,s\in \mathrm{dom}(\psi)$ and $\theta\in[0,1]$

$$D(x,s,\theta) \le \frac{M\theta^{\nu}}{1+\nu}.$$

This holds in particular when $\operatorname{dom}(\psi)$ bounded and ∇f is ν -Hölder continuous.

Theorem

If the above curvature condition holds and $heta_k = rac{1+
u}{k+1+
u}$ then

$$f(x_k) + \psi(x_k) + f^*(u_k) + \psi^*(-u_k) \le M\left(\frac{1+\nu}{k+1+\nu}\right)^{\nu}$$

Proof: Let gap $(x_k, u_k) := f(x_k) + \psi(x_k) + f^*(u_k) + \psi^*(-u_k)$. Main Theorem implies that gap $(x_0, u_0) \le D(x_0, s_0, 1)$ and

$$gap(x_{k+1}, u_{k+1}) \leq (1 - \theta_k)gap(x_k, u_k) + \theta_k D(x_k, s_k, \theta_k)$$

Curvature condition and induction show that

$$\operatorname{gap}(x_k, u_k) \le M\left(\frac{1+\nu}{k+1+\nu}\right)^{\nu}.$$

The above generalizes the $\mathcal{O}(1/k)$ convergence of conditional gradient.

Bregman proximal gradient

Want to solve $\min_{x} \{f(x) + \psi(x)\}$. Suppose f is differentiable.

Bregman proximal gradient

• pick $s_{-1} \in \operatorname{dom}(\psi)$

• for
$$k = 0, 1, ...$$

pick $t_k > 0$
pick $s_k \in \operatorname{argmin}_s \left\{ \langle \nabla f(s_{k-1}), s \rangle + \psi(s) + \frac{1}{t_k} D_h(s, s_{k-1}) \right\}$
end for

This is the first-order meta-algorithm for

$$y_k = s_{k-1}, \ g_k = \nabla f(s_{k-1}).$$

Recall Main Theorem

Let

$$x_k := \frac{\sum_{i=0}^{k-1} t_i s_i}{\sum_{i=0}^{k-1} t_i}, u_k := \frac{\sum_{i=0}^{k-1} t_i g_i}{\sum_{i=0}^{k-1} t_i}, d_k(s) := \frac{D_h(s, s_{-1})}{\sum_{i=0}^{k-1} t_i}, \theta_k := \frac{t_k}{\sum_{i=0}^{k} t_i}$$

The iterates generated by the meta-algorithm satisfy

$$f(x_k) + \psi(x_k) + f^*(u_k) + (\psi + d_k)^*(-u_k) \\ \leq \frac{\sum_{i=0}^{k-1} (t_i(\mathbb{D}_F(x_i, s_i, \theta_i) + D_f(s_i, y_i)) - D_h(s_i, s_{i-1}))}{\sum_{i=0}^{k-1} t_i}$$

for (recall $F = f + \psi$)

$$\mathbb{D}_F(x,s,\theta) := \frac{F(x+\theta(s-x)) - (1-\theta)F(x) - \theta F(s)}{\theta} \le 0.$$

For notational convenience let $x_0 := s_{-1}$ so that $d_k(x) := \frac{D_h(x,x_0)}{\sum_{i=0}^{k-1} t_i}$.

Theorem

Suppose the stepsizes satisfy $t_i \cdot D_f(s_i, s_{i-1}) \leq D_h(s_i, s_{i-1})$. Then for all $x \in \mathbb{R}^n$

$$f(x_k) + \psi(x_k) - (f(x) + \psi(x)) \le \frac{D_h(x, x_0)}{\sum_{i=0}^{k-1} t_i}$$

Proof: Above condition on stepsizes and Main Theorem imply that

$$f(x_k) + \psi(x_k) + f^*(u_k) + (\psi + d_k)^*(-u_k) \le 0.$$

Thus for all $x \in \mathbb{R}^n$

$$f(x_k) + \psi(x_k) - (f(x) + \psi(x)) \le d_k(x) = \frac{D_h(x, x_0)}{\sum_{i=0}^{k-1} t_i}.$$

Smoothness and $\mathcal{O}(1/k)$ convergence of proximal gradient

Suppose
$$\bar{X} := \operatorname{argmin}_x \{ f(x) + \psi(x) \} \neq \emptyset$$
.

Relative smoothness

We say that f is L-smooth relative to h on C if for all $x, y \in C$

$$D_f(y,x) \le L \cdot D_h(y,x).$$

It is easy to see that f is L-smooth relative to h if ∇f is L-Lipschitz continuous and $h(x)=\|x\|_2^2/2$

When f is L-smooth relative to h on dom(ψ), we can guarantee $D_f(s_i, s_{i-1}) \leq \frac{1}{t_i} D_h(s_i, s_{i-1})$ with $t_i \geq 1/L$ and recover the iconic $\mathcal{O}(1/k)$ convergence rate for proximal gradient:

$$f(x_k) + \psi(x_k) - \min_{x} \{ f(x) + \psi(x) \} \le \frac{L \cdot D_h(\bar{X}, x_0)}{k}$$

Fast and universal Bregman proximal gradient

Fast and universal Bregman proximal gradient

• pick
$$x_0 := s_{-1} \in \operatorname{dom}(\psi)$$

• for
$$k = 0, 1, \dots$$

let $y_k := (1 - \theta_k)x_k + \theta_k s_{k-1}$
pick $t_k > 0$
pick $s_k \in \operatorname{argmin}_s \left\{ \langle \nabla f(y_k), s \rangle + \psi(s) + \frac{1}{t_k} D_h(s, s_{k-1}) \right\}$
let $x_{k+1} := (1 - \theta_k)x_k + \theta_k s_k$
end for

This is the first-order meta-algorithm for

$$y_k = (1 - \theta_k)x_k + \theta_k s_{k-1}, \ g_k = \nabla f(y_k).$$

Convergence of fast Bregman proximal gradient

Theorem

Suppose the stepsizes satisfy

$$t_i \cdot (\mathbb{D}(x_i, s_i, \theta_i) + D_f(s_i, y_i)) \le D_h(s_i, s_{i-1}).$$

Then for all $x \in \mathbb{R}^n$

$$f(x_k) + \psi(x_k) - f(x) - \psi(x) \le \frac{D_h(x, x_0)}{\sum_{i=0}^{k-1} t_i}.$$

Proof: Again condition on stepsizes and Main Theorem imply that

$$f(x_k) + \psi(x_k) + f^*(u_k) + (\psi + d_k)^*(-u_k) \le 0.$$

Thus for all $x \in \mathbb{R}^n$

$$f(x_k) + \psi(x_k) - (f(x) + \psi(x)) \le d_k(x) = \frac{D_h(x, x_0)}{\sum_{i=0}^{k-1} t_i}.$$

Triangle scaling and $\mathcal{O}(1/k^2)$ convergence Triangle scaling (cf. Hanzely et al (2018)) Suppose for some L > 0 and all $x, s, s_- \in C$ and $\theta \in [0, 1]$

$$D_f((1-\theta)x + \theta s, (1-\theta)x + \theta s_-) \le L \cdot \theta^2 \cdot D_h(s, s_-)$$

Observe

Triangle scaling \Rightarrow Relative smoothness (take $\theta = 1$). The converse holds when $h(x) = ||x||_2^2/2$.

When triangle scaling condition holds, we can guarantee $t_i \cdot (\mathbb{D}(x_i, s_i, \theta_i) + D_f(s_i, y_i)) \leq D_h(s_i, s_{i-1})$ with $t_i \geq (i+1)/L$ and thus

$$f(x_k) + \psi(x_k) - \min_{x} \{ f(x) + \psi(x) \} \le \frac{2L \cdot D_h(\bar{X}, x_0)}{k(k+1)}$$

Recover iconic $O(1/k^2)$ convergence: Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013), ...

Convergence of universal Bregman proximal gradient

Smoothness-plus condition

Suppose $\nu \in [0,1]$ and M>0 are such that for all $x,s,s_- \in C$ and $\theta \in [0,1]$

$$D_f((1-\theta)x + \theta s, (1-\theta)x + \theta s_-) \le \frac{2M\theta^{1+\nu}D_h(s, s_-)^{\frac{1+\nu}{2}}}{1+\nu}.$$

Observe

Smothness-plus holds if $h(x) = \|x\|_2^2/2$ and ∇f is $\nu\text{-H\"older}$ continuous.

Convergence of universal Bregman proximal gradient Theorem

Let $\epsilon > 0$ be fixed. Suppose the Smoothness-plus condition holds on dom(ψ) and t_i is the largest such that

 $t_i \cdot (\mathbb{D}(x_i, s_i, \theta_i) + D_f(s_i, y_i)) \le D_h(s_i, s_{i-1}) + t_i \epsilon.$

Then for all $x \in \mathbb{R}^n$

$$f(x_k) + \psi(x_k) - (f(x) + \psi(x)) \le \frac{2M^{\frac{2}{1+\nu}} D_h(x, x_0)}{\epsilon^{\frac{1-\nu}{1+\nu}} k^{\frac{1+3\nu}{1+\nu}}} + \epsilon.$$

Proof: Main Theorem implies that

$$f(x_k) + \psi(x_k) - f(x) - \psi(x) \le d_k(x) + \epsilon = \frac{D_h(x, x_0)}{\sum_{i=0}^{k-1} t_i} + \epsilon.$$

To finish: the Smoothness-plus condition yields

$$\frac{1}{\sum_{i=0}^{k-1} t_i} = \frac{\theta_{k-1}}{t_{k-1}} \le \frac{2M^{\frac{1}{1+\nu}}}{\epsilon^{\frac{1-\nu}{1+\nu}}k^{\frac{1+3\nu}{1+\nu}}}.$$

Recover $\mathcal{O}(1/k^{\frac{1+3\nu}{2}})$ universal convergence by Nesterov (2015).

31 / 40

Stronger Convergence Results for Conditional Gradient

Conditional gradient revisited

Want to solve $\min_x\{f(x)+\psi(x)\}.$ Suppose f is differentiable and the mapping

$$g\mapsto \partial\psi^*(-g) = \mathrm{argmin}\{\langle g,x\rangle + \psi(x)\}$$

is computable.

Conditional gradient

• pick $x_0 \in \operatorname{dom}(f)$

• for
$$k = 0, 1, \ldots$$

pick $s_k \in \operatorname{argmin}_s \{ \langle \nabla f(x_k), s \rangle + \psi(s) \}$ and $\theta_k \in [0, 1]$
let $x_{k+1} := (1 - \theta_k) x_k + \theta_k s_k$
end for

Growth property

Recall

$$gap(x, u) := f(x) + \psi(x) + f^*(u) + \psi^*(-u)$$
$$D(x, s, \theta) := \frac{D_f(x + \theta(s - x), x)}{\theta} + \mathbb{D}_{\psi}(x, s, \theta).$$

Observe: for $x\in \operatorname{dom}(\psi),\,g:=\nabla f(x),$ and $s\in \partial\psi^*(-g)$

$$gap(x,g) = \langle g, x - s \rangle + \psi(x) - \psi(s).$$

Growth property

Suppose $\nu > 0$ and $r \in [0, 1]$. Say that (D, gap) satisfies the (ν, r) -growth property if there exists M > 0 such that for all $x \in \operatorname{dom}(\psi), g := \nabla f(x)$, and $s \in \partial \psi^*(-g)$

$$D(x,s,\theta) \leq \frac{M\theta^{\nu}}{1+\nu} \cdot \operatorname{gap}(x,g)^r \text{ for all } \theta \in [0,1].$$

Growth property: special cases

Case r = 0

In this case the growth property is

$$D(x,s,\theta) \leq rac{M \theta^{
u}}{1+
u}$$
 for all $\theta \in [0,1]$.

This is the same as the *curvature condition* discussed earlier. It holds if ∇f is ν -Hölder continuous and dom(ψ) is bounded.

 $\mathsf{Case}\ \nu=1 \text{ and } r=1$

In this case the growth property is

$$D(x,s,\theta) \leq \frac{M\theta}{2} \cdot \operatorname{gap}(x,g) \text{ for all } \theta \in [0,1].$$

It holds if ∇f is Lipchitz continuous and ψ is strongly convex.

Other cases with $\nu > 0, r \in (0,1)$ when f is uniformly smooth and ψ is uniformly convex.

Best duality gaps and line-search

Let x_0, x_1, \ldots denote the iterates generated by the conditional gradient algorithm. For $k=0,1,\ldots$ let

$$\mathsf{bestgap}_k := \min_{i=0,1,\dots,k} \mathsf{gap}(x_k,g_i)$$

where $g_i = \nabla f(x_i)$ for $i = 0, 1, \ldots$

Line-search procedure

Choose $\theta_k \in [0,1]$ via

$$\theta_k := \underset{\theta \in [0,1]}{\operatorname{argmin}} \{ (1-\theta) \cdot \operatorname{gap}(x_k, g_k) + \theta \cdot D(x_k, s_k, \theta) \}.$$

Growth property and convergence rates

Theorem

Suppose (D, gap) satisfy the (ν, r) -growth and θ_k is as above. For r = 1 we have linear convergence

$$\mathsf{bestgap}_k \leq \mathsf{bestgap}_0 \left(1 - rac{
u}{
u+1} \cdot rac{1}{M^{rac{1}{
u}}}
ight)^k.$$

For $r \in [0,1)$ we have an initial linear convergence regime

$$\mathsf{bestgap}_k \le \mathsf{bestgap}_0 \left(1 - \frac{\nu}{\nu+1}\right)^k, \ k = 0, 1, 2, \dots, k_0$$

where k_0 is the smallest k such that $\text{bestgap}_k^{1-r} \leq M$. Then for $k \geq k_0$ we have a sublinear convergence regime

$$\mathsf{bestgap}_k \le \left(\mathsf{bestgap}_{k_0}^{\frac{r-1}{\nu}} + \frac{1-r}{\nu+1} \cdot \frac{1}{M^{\frac{1}{\nu}}} \cdot (k-k_0)\right)^{\frac{\nu}{r-1}}$$

Conclusions

Consider the problem $\min_{x\in \mathbb{R}^n}\left\{f(x)+\psi(x)\right\}$ where f,ψ convex.

• Perturbed Fenchel duality: first-order meta-algorithm generates iterates that satisfy

 $f(x_k) + \psi(x_k) + f^*(u_k) + (\psi + d_k)^*(-u_k) \le \delta_k$

- Convergence of popular first-order methods readily follow:
 - $\mathcal{O}(1/k^{\nu})$ for conditional gradient if $\mathit{curvature\ condition}\ holds$
 - $\mathcal{O}(1/k)$ for proximal gradient if relative smoothness holds
 - $\mathcal{O}(1/k^2)$ for fast proximal gradient if *triangle scaling* holds
 - $\mathcal{O}(1/\sqrt{k})$ for subgradient if *relative continuity* holds (skipped)
- Stronger convergence rates for conditional gradient if some suitable *growth property* holds.
- Above holds for more general problem $\min_{x \in \mathbb{R}^n} \left\{ f(Ax) + \psi(x) \right\}$ and its dual $\max_{u \in \mathbb{R}^n} \left\{ -f^*(u) - \psi^*(-A^*u) \right\}.$

Main references

- Gutman and P. "Perturbed Fenchel duality and first-order methods," *Mathematical Programming.*
- P. "Affine invariant convergence rates of the conditional gradient method," https://arxiv.org/abs/2112.06727

Uniform smoothness and uniform convexity

Let $q \in (1,2]$. Say that $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is *q*-uniformly smooth if there exist L > 0 such that for all $x, y \in \mathbb{R}^n$ and $\theta \in [0,1]$

$$f(x+\theta(y-x)) \ge (1-\theta)f(x) + \theta f(y) - \frac{L}{q}\theta(1-\theta)\|y-x\|^q.$$

Let $p \geq 2$. Say that $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is *p*-uniformly convex if there exist $\mu > 0$ such that for all $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$

$$\psi(x+\theta(y-x)) \le (1-\theta)\psi(x) + \theta\psi(y) - \frac{\mu}{p}\theta(1-\theta)\|y-x\|^p.$$

Facts

- If f is q-unif smooth and ψ is p-unif convex then (D, gap)satisfies the (ν, r) -growth property for $\nu = q - 1$ and r = q/p.
- f is $(\nu+1)\text{-uniformly smooth if }\nabla f$ is $\nu\text{-H\"older}$ continuous.
- f is q-unif smooth iff f^* is p-unif convex for 1/p + 1/q = 1.