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Condition

From Oxford English Dictionary:

condition: the state of something, esp. with regard to
its appearance, quality, or working order

From Webster’s Dictionary:

condition: state of fitness
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Preamble: condition numbers of square matrices

Condition number of A ∈ Rn×n:

κ(A) = ‖A‖ · ‖A−1‖.
Key parameter for problem

Ax = b.

Regularity of the solution:

A(x + δx) = b + δb ⇒ ‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

.

Problem geometry:

κ(A) = aspect ratio of {Ax : ‖x‖ ≤ 1}.
Radius of well-posedness (radius of regularity):

κ(A) =
‖A‖

dist(A,Sing)
.
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Radius Theorem 1

Theorem (Eckart & Young, 1936)

Assume A ∈ Rn×n \ Sing. Then

dist(A,Sing) =
1

‖A−1‖
= max{δ : δBRn ⊆ ABRn}.

Sing : set of n × n singular matrices.
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Connection with algorithms

Assume A is symmetric and positive definite and let x̄ be the
solution to Ax = b, i.e., the solution to

min
x

(
1

2
xTAx − bTx

)
⇔ min

x

(
1

2
‖x‖2

A − bTx

)

After k iterations, steepest-descent method yields xk such that

‖xk − x̄‖A
‖x0 − x̄‖A

≤
(
κ(A)− 1

κ(A) + 1

)k

.

After k iterations, conjugate gradient yields xk such that

‖xk − x̄‖A
‖x0 − x̄‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

.
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Theme

Extend the concept of condition number to linear
optimization, conic optimization, and beyond.

We will emphasize the interplay between condition, problem
geometry, radius of regularity, and algorithms.
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Condition numbers in optimization

Condition number of an optimization problem of the form

min cTx
Ax = b
x ≥ 0,

or more generally
min cTx

Ax = b
x ∈ K ,

for some closed convex cone K (e.g., second-order, semidefinite).

Data defining a problem instance

The triple d := (A, b, c).
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Condition numbers in optimization

Definition (Renegar)

Assume the instance d := (A, b, c) is given. Define

C (d) :=
‖d‖

inf{‖∆d‖ : d + ∆d is infeasible or unbounded}
.

Remarks

Condition number in terms of a radius of well-posedness.

This concept can be better understood by concentrating on
the primal and dual constraints.
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Condition numbers in optimization

Concentrate on the feasibility problems

Ax = b, x ∈ K

and
c − ATy ∈ K ∗.

For convenience, consider the problems in homogenized form

Ax = 0, x ∈ K

and
ATy ∈ K ∗.

For these homogeneous problems the data space is Rm×n.
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From equations to constraints

Notice:

Given A ∈ Rn×n, we have A 6∈ Sing⇔ ARn = Rn.

Equivalently, A 6∈ Sing⇔ Ax = b has a solution for all b ∈ Rn.

How do we extend this to constraint systems?

Assume K ⊆ Rn is a closed convex cone (e.g., K = Rn
+) and

m ≤ n.

Define

P := {A ∈ Rm×n : AK = Rm},

D := {A ∈ Rm×n : ATRm + K ∗ = Rn}.
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Well-posed and ill-posed matrices

Notice

A ∈ P ⇔ Ax = b, x ∈ K has a solution for all b ∈ Rm.

A ∈ D ⇔ c − ATy ∈ K ∗ has a solution for all c ∈ Rn.

Furthermore,

If m = n and K = Rn then

P = D = set of n × n non-singular matrices.

If m < n then both P,D are open and P ∩ D = ∅.
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Well-posed and ill-posed matrices

Definition

Ill-posed instances Σ := Rm×n \ (P ∪ D).

Definition (Renegar)

Condition number of A ∈ Rm×n \ Σ

C (A) :=
‖A‖

dist(A,Σ)
.

————————————————

Recover former C (A, b, c) = max

{
C
([

A −b
])
,C

([
A
−cT

])}
.
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Radius Theorem 2

Theorem (Renegar, 1995)

(a) If A ∈ P then

dist(A,Σ) = max{δ : δBRm ⊆ A(BRn ∩ K )}.

(b) If A ∈ D then

dist(A,Σ) = max{δ : δBRn ⊆ ATBRm + K ∗}.

————————————————
Recall Eckart & Young Radius Theorem:

dist(A,Sing) =
1

‖A−1‖
= max{δ : δBRn ⊆ ABRn}.

13 / 40



Radius Theorem 2

Theorem (Renegar, 1995)

(a) If A ∈ P then

dist(A,Σ) = max{δ : δBRm ⊆ A(BRn ∩ K )}.

(b) If A ∈ D then

dist(A,Σ) = max{δ : δBRn ⊆ ATBRm + K ∗}.

————————————————
Recall Eckart & Young Radius Theorem:

dist(A,Sing) =
1

‖A−1‖
= max{δ : δBRn ⊆ ABRn}.

13 / 40



Radius Theorem 3

Suppose we are only allowed to perturb a block of A: Assume
k ≤ m, ` ≤ n and put

∆ :=

{[
B 0
0 0

]
: B ∈ Rk×`

}
.

Theorem (P. 1998)

Assume A ∈ P. Then

dist∆(A,Σ) = max {δ : δBRk × {0} ⊆ {Ax : x ∈ K , x1:` ∈ BR`}}

Renegar’s Radius Theorem (a,b) can be recovered.
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Good condition implies good geometry

Assume A ∈ D. Consider the cone F := {y : ATy ∈ K ∗}.

Consequence of Renegar’s Theorem: If C (A) small then F is thick.

Theorem (Freund & Vera 1999)

If A ∈ D then

τF := max
‖y‖=1

{r : B(y , r) ⊆ F} ≥ cK∗

C (A)

cK∗ : positive constant that depends on the cone K ∗ only.

(Similar geometric condition when A ∈ P.)

Natural question

Does good geometry imply good condition? Not always.
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Best-conditioned solutions

Consider special case K = Rn
+. Given A ∈ Rm×n, write

A =
[
a1 a2 · · · an

]
.

Goffin 1980, Cheung & Cucker 2001

Assume ai 6= 0, i = 1, . . . , n. Consider

ρ(A) := max
‖y‖=1

min
j=1,...,n

aT
j y

‖aj‖
.

Notice

A ∈ D ⇔ ρ(A) > 0.

A ∈ P ⇔ ρ(A) < 0.
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Radius Theorem 4

Geometric interpretation

Assume A ∈ D and let F := {y : ATy ≥ 0}. In this case

ρ(A) = τF = max
‖y‖=1

{r : B(y , r) ⊆ F} .

The point ȳ where ρ(A) is attained is the “best-conditioned”
solution to

ATy ≥ 0.

Theorem (Cheung & Cucker, 2001)

Assume ai 6= 0, i = 1, . . . , n. Then

|ρ(A)| = inf

{
max

i=1,...,n

‖ai − ãi‖
‖ai‖

: Ã ∈ Σ

}
.
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Good geometry implies good (tweaked) condition

Goffin-Cheung-Cucker condition number

C (A) :=
1

|ρ(A)|
.

Renegar’s C (A) versus Goffin-Cheung-Cucker’s C (A):

|ρ(A)| : kind of a column-wise scaled distance to Σ.

C (A) = C (A) if columns of A have all norm one.

C (A) ≤ nC (A) but C (A) could be arbitrarily smaller.

C (A) filters out poor conditioning due to bad scaling of the
columns of A.
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Good condition implies good behavior of algorithms
Assume K ⊆ Rn is a regular cone, A ∈ Rm×n, and consider the
pair of homogeneous problems

Ax = 0, x ∈ int(K ) (1)

and
ATy ∈ int(K ∗). (2)

Homogeneous feasibility problem

Determine which of (1) and (2) is feasible and find a solution.

—————————————
To find ε-solution to conic optimization problem, consider

τε − cTx + bTy ≥ 0
τc − ATy ∈ K∗

− τb + Ax = 0
τ ≥ 0
x ∈ K

Condition: C (d)/ε.
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Condition-based analyses of various algorithms

Interior-point methods (Renegar, Filipowski, Vera, P)

Ellipsoid method (Freund & Vera)

Perceptron method (Belloni, Dunagan, Freund, Vempala,...)

Von Neumann method (Epelman & Freund)

. . .

The above analyses show that a solution to (1) or (2) is found after

O(nd log(C (A))),

or
O(ndC (A))

iterations, provided A 6∈ Σ.
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The Perceptron Algorithm
Find a solution to

ATy > 0.

(Assume A ∈ D and K = Rn
+.)

Perceptron Algorithm (Rosenblatt, 1957)

y := 0

while ATy 6> 0
y := y +

aj

‖aj‖ , where aT
j y ≤ 0

end while

Theorem (Block-Novikoff 1962)

If A ∈ D, then the Perceptron Algorithm terminates after at most

C (A)2 =
1

ρ(A)2

iterations.
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Some Extensions of the Perceptron Algorithm

Theorem (Dunagan & Vempala 2004)

If A ∈ D then a randomized re-scaled version of the Perceptron
Algorithm terminates in O (n · log (C (A))) iterations with high
probability.

Theorem (Soheili & P 2011)

If A ∈ D then a smooth version of the Perceptron Algorithm

terminates in O
(√

log(n) · C (A)
)

iterations while retaining the

algorithm’s original simplicity.
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Other condition-based analyses

Theorem (Renegar 1995, P & Renegar 2000)

If A is well-posed and K ,K ∗ have barrier functions, then an
interior-point algorithm determines which of (1), (2) is feasible and
finds such a solution in at most O(

√
ϑ log(ϑ · C (A))) iterations.

Here ϑ : parameter of barrier functions for K ,K ∗.

Theorem (Freund & Vera 1999)

If A ∈ D and K ∗ has a separation oracle, then the ellipsoid method
finds a solution to (2) in at most

O(n2 log(1/τ)) = O(n2 log(C (A)/cK∗))

iterations.
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Does good algorithmic behavior imply good geometry?

Consider the feasibility problem

x ∈ F (3)

where F is a cone with a separation oracle.

Theorem (Freund & Vera 2009)

Let τ ∈ (0, 1) be given. For any separation-based algorithm there
exists a cone F with width τ such that the algorithm needs at least

blog2(1/τ)c

iterations to solve (3).
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What about ill-posed instances?

Limitation of previous results

They all assume A 6∈ Σ. However, in some interesting cases the
feasibility problem is canonically ill-posed.

Example

Homogenization of optimality conditions for linear optimization:

− cTx + bTy ≥ 0
τc − ATy ≥ 0

− τb + Ax = 0

τ ≥ 0
x ≥ 0
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Stratified condition numbers

Can we refine or define condition for instances in Σ?

Motivation

When K = Rn, Σ = rank-deficient matrices.

The set of ill-posed instances Σ can be written as

Σ = Σm−1 ∪ Σm−2 ∪ · · · ∪ Σ1 ∪ Σ0

Σr = matrices with rank at most r .

Given A ∈ Σi \ Σi−1,

distΣi
(A,Σi−1) = σi (A).

σi (A): i-th (smallest positive) singular value of A.
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Stratified condition numbers

Consider again the special case K = Rn
+, and the two associated

homogeneous feasibility problems

Ax = 0, x ≥ 0 and ATy ≥ 0.

How can we stratify Σ?

Answer: Use a “canonical” partition P(A) = {B,N} of {1, . . . , n}.
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Canonical partition

Proposition (Goldman-Tucker)

Assume A ∈ Rm×n. Then there exists a unique partition
B ∪ N = {1, . . . , n} such that for some x ∈ Rn, y ∈ Rm

ABxB = 0, xB > 0, AT
By = 0, AT

Ny > 0.

Observe

A ∈ D ⇔ B = ∅
A ∈ P ⇔ N = ∅ and rank(A) = m.
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Stratified distance to ill-posedness

Assume A ∈ Rm×n and P(A) = {B,N}. Define

L = ker(AT
B) ⊆ Rm, and L⊥ = range(AB) ⊆ Rm.

If N 6= ∅, define

ρN(A) := max
y∈L
‖y‖=1

min
j∈N

aT
j y

‖aj‖
.

If B 6= ∅, define

ρB(A) = max
y∈L⊥

‖y‖=1

min
j∈B

aT
j y

‖aj‖
.

Observe

N 6= ∅ ⇒ ρN(A) > 0.

B 6= ∅ ⇒ ρB(A) < 0.
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Radius Theorem 5

Theorem (Cheung, Cucker & P., 2008)

For A ∈ Rm×n

ρN(A) = min
P(Ã)6=P(A)

ÃB=AB

max
j∈N

‖ãj − aj‖
‖aj‖

and

|ρB(A)| = min
P(Ã) 6=P(A)

ÃN=AN

ker(ÃT
B)⊇L

max
j∈B

‖ãj − aj‖
‖aj‖

.
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Extended condition number

Definition

C̄ (A) := max

{
1

ρN(A)
,

1

|ρB(A)|

}
Observations

A 6∈ Σ⇒ C (A) = C̄ (A).

C̄ (A) <∞ for all A ∈ Rm×n.

ρN(A) relative thickness of {y : AT
By = 0, AT

Ny > 0}.

|ρB(A)| similar for {x : ABxB = 0, xB > 0}.
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Condition-based complexity for ill-posed problems

Given A ∈ Rm×n, consider the pair of homogeneous feasibility
problems

Ax = 0, x ≥ 0 and ATy ≥ 0.

Theorem (Soheili & P., 2010)

Interior-point algorithm that finds P(A) = {B,N} as well as xB

and y such that

ABxB = 0, xB > 0 and AT
By = 0, AT

Ny > 0

in at most O(
√

n · log(n · C̄ (A))) iterations.
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Related central open problem in optimization

Smale’s 9th problem

Is there a polynomial-time algorithm over the real
numbers which decides the feasibility of the linear sys-
tem of inequalities Ax ≥ b?

33 / 40



Nice Theory. Practical Relevance?

Freund, Ordoñez & Toh, 2007

Empirical study of SDP problems in the SDPLIB suite.

Approach

Estimate condition number C (A, b, c) of each instance
(A, b, c)

Estimate also a certain geometric measure G (A, b, c) (in the
spirit of τF )

Run SDPT3 with default settings.

Determine if there is an empirical relationship between number
of iterations and the measures C (A, b, c) and G (A, b, c).
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Number of IPM versus log(C (A, b, c))
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IPM iterations versus log (C(d)).

CORR(log (C(d)) , IPM Iterations) = 0.630 (48 problems)

47

correlation = 0.63

35 / 40



Number of IPM versus log(G (A, b, c))
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CORR(log(gm), IPM Iterations) = 0.901 (53 problems)

55
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Condition of more general problems

Assume m ≤ n and let Σ = rank-deficient matrices (i.e., K = Rn).

Regularity of full-rank matrices

Given A ∈ Rm×n, we have A 6∈ Σ⇔ δBRm ⊆ ABRm for some δ > 0.

Equivalently, A 6∈ Σ⇔ there exists δ > 0 such that for all ȳ ∈ Rm

and all x̄ ∈ Rn

dist(x̄ ,A−1(ȳ)) ≤ 1

δ
· dist(ȳ ,Ax̄).
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Metric regularity

Assume F : Rn ⇒ Rm, i.e., x 7→ F (x) ⊆ Rm for each x ∈ Rn.

A generalized equation is a problem of the form

Find x such that b ∈ F (x).

Definition

Assume F : Rn ⇒ Rm and ȳ ∈ F (x̄). F is metrically regular at x̄
for ȳ if there exists κ > 0 such that

d(x ,F−1(y)) ≤ κ · d(y ,F (x)) (4)

for all (x , y) in a neighborhood of (x̄ , ȳ). In this case define

reg F (x̄ | ȳ) := inf{κ : (4) holds}.
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Radius Theorem 6

Theorem (Dontchev, Lewis, Rockafellar, 2003)

Assume F : Rn ⇒ Rm, ȳ ∈ F (x̄) and graph(F ) locally closed at
(x̄ , ȳ). Then

inf{‖B‖ : F + B is not metrically regular} =
1

reg F (x̄ | ȳ)
.

Interesting connections with fundamental results in analysis:
Banach Open Mapping Principle, Lusternik-Graves Theorem,
Robinson-Ursescu Theorem.
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Summary and conclusions

Extend concept of condition from linear equations to linear
(and conic) optimization

Similar interplay between condition, geometry, and algorithms

Similar theorems concerning radius of well-posedness

Other related work (current & future):

“Structured” condition numbers (Doyle, Lewis, P., Packard,
Rump, Rohn, Tits,...)
Probabilistic analysis of condition numbers (Burgisser, Cucker,
Hauser, Spielman, Teng,...
Geometric measures (Epelman, Freund, Vera,...)
Preconditioning (Epelman)
Condition of ill-posed problems
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