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Condition

From Oxford English Dictionary:

condition: the state of something, esp. with regard to
its appearance, quality, or working order

From Webster's Dictionary:
condition: state of fitness
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Preamble: condition numbers of square matrices
Condition number of A € R"™*":
K(A) = [|All - [IA7H].
Key parameter for problem
Ax = b.

@ Regularity of the solution:

1]
I~

165]]

@ Problem geometry:
k(A) = aspect ratio of {Ax: ||x|| < 1}.
o Radius of well-posedness (radius of regularity):

Al

HA) = Jist(A Sing)”



Radius Theorem 1

Theorem (Eckart & Young, 1936)
Assume A € R""\ Sing. Then

dist(A, Sing) = L _ max{J : 0Brn C ABgn}.

1A

Sing : set of n x n singular matrices.
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Connection with algorithms

Assume A is symmetric and positive definite and let x be the
solution to Ax = b, i.e., the solution to

1 1
min ( ZxTAx —b'x | < min | Z|x||3 — b"x
2 x 2

X

o After k iterations, steepest-descent method yields xj such that

Xk = Xlla (H(A) — 1>k_

||X0—)_<HA - /ﬁ:(A)-F].

@ After k iterations, conjugate gradient yields x, such that

I —%la _ (VrA-1)"
% =Xla =\ V(A +1)



Theme

@ Extend the concept of condition number to linear
optimization, conic optimization, and beyond.

@ We will emphasize the interplay between condition, problem
geometry, radius of regularity, and algorithms.
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Condition numbers in optimization

Condition number of an optimization problem of the form

min ¢'x

Ax=0>b
x >0,

or more generally
min c¢'x

Ax=0>b
x €K,

for some closed convex cone K (e.g., second-order, semidefinite).

Data defining a problem instance
The triple d := (A, b, ¢).
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Condition numbers in optimization

Definition (Renegar)
Assume the instance d := (A, b, ¢) is given. Define

) 2l
"~ inf{]|Ad|| : d + Ad is infeasible or unbounded}"

Remarks
@ Condition number in terms of a radius of well-posedness.

@ This concept can be better understood by concentrating on
the primal and dual constraints.
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Condition numbers in optimization

Concentrate on the feasibility problems
Ax=b, xe K

and
c— ATy e K*.

For convenience, consider the problems in homogenized form
Ax =0, xe K

and

ATy € K*.

For these homogeneous problems the data space is R™*".
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From equations to constraints

Notice:
Given A € R"™" we have A ¢ Sing & AR" = R".

Equivalently, A € Sing < Ax = b has a solution for all b € R".

How do we extend this to constraint systems?

Assume K C R" is a closed convex cone (e.g., K =R’ ) and
m < n.

Define
P:={AeR™": AK =R™},
D:={AcR™": ATR™ 4 K* = R"}.
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Well-posed and ill-posed matrices

Notice

e Ac P < Ax = b,x € K has a solution for all b € R™.

e Ac D c— ATy € K* has a solution for all ¢ € R".

Furthermore,
@ If m=nand K =R" then

P =D = set of n X n non-singular matrices.

@ If m < n then both P, D are open and PND = ().
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Well-posed and ill-posed matrices

Definition
lll-posed instances ¥ := R™*"\ (P UD).

Definition (Renegar)
Condition number of A € R™*"\ ¥

_ Al
¢4 = dist(A, T)’
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Well-posed and ill-posed matrices

Definition
lll-posed instances ¥ := R™*"\ (P UD).

Definition (Renegar)
Condition number of A € R™*"\ ¥

_ Al
¢4 = dist(A, T)’

Recover former C(A, b, ) — max{C (A —b)).C ([ AT} ) }
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Radius Theorem 2

Theorem (Renegar, 1995)
(a) If A€ P then

dist(A, ¥) = max{5 : 6Bgm C A(Bgn N K)}.
(b) IfA €D then

dist(A, X) = max{6 : 0Brn C ATBgm + K*}.
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Radius Theorem 2

Theorem (Renegar, 1995)
(a) If A€ P then

dist(A, ¥) = max{5 : 6Bgm C A(Bgn N K)}.

(b) IfA €D then

dist(A, X) = max{6 : 0Brn C ATBgm + K*}.

Recall Eckart & Young Radius Theorem:

dist(A, Sing) = = max{d : 6Bg» C ABRn}.

1
A=
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Radius Theorem 3

Suppose we are only allowed to perturb a block of A: Assume
k<m, £ <nand put

A::{[Ig 8] :Beﬂwf}.

Theorem (P. 1998)
Assume A € P. Then

dista(A, L) = max{d : 6B« x {0} C{Ax: x € K,x10 € Bpe}}

Renegar’s Radius Theorem (a,b) can be recovered.
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Good condition implies good geometry
Assume A € D. Consider the cone F := {y : ATy € K*}.

Consequence of Renegar's Theorem: If C(A) small then F is thick.

Theorem (Freund & Vera 1999)
If A€ D then

CK*

TF = ||r}r)Ha:x1 {r:B(y,r) CF} > CA)

ck= : positive constant that depends on the cone K* only.

(Similar geometric condition when A € P.)

Natural question

Does good geometry imply good condition? Not always.
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Best-conditioned solutions

Consider special case K = R.. Given A € R™*", write

A=la1 a -+ anl.

Goffin 1980, Cheung & Cucker 2001
Assume a; #0, i =1,...,n. Consider

-

3.

p(A) ;= max min J—y
IylI=1=1n |3

Notice
e Ac D < p(A) >0.
e Ac P & p(A) <O.
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Radius Theorem 4

Geometric interpretation
Assume A € D and let F := {y : ATy > 0}. In this case

p(A) =T7F = mex {r:B(y,r) S F}.

The point y where p(A) is attained is the “best-conditioned”
solution to
ATy > 0.

Theorem (Cheung & Cucker, 2001)
Assume a; #0, i=1,...,n. Then
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Good geometry implies good (tweaked) condition

Goffin-Cheung-Cucker condition number

1
A=

Renegar's C(A) versus Goffin-Cheung-Cucker's € (A):

@ |p(A)] : kind of a column-wise scaled distance to X.
e ©(A) = C(A) if columns of A have all norm one.
e % (A) < nC(A) but €(A) could be arbitrarily smaller.

e %(A) filters out poor conditioning due to bad scaling of the
columns of A.
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Good condition implies good behavior of algorithms
Assume K C R" is a regular cone, A € R™*" and consider the
pair of homogeneous problems

Ax =0, x € int(K) (1)
and

ATy € int(K*). (2)

Homogeneous feasibility problem

Determine which of (1) and (2) is feasible and find a solution.
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Good condition implies good behavior of algorithms
Assume K C R" is a regular cone, A € R™*" and consider the
pair of homogeneous problems

Ax =0, x € int(K) (1)
and

ATy € int(K*). (2)

Homogeneous feasibility problem

Determine which of (1) and (2) is feasible and find a solution.

To find e-solution to conic optimization problem, consider

Te — c'x + by > 0

TC - Aly € K*

— 7b + Ax = 0
T > 0

x € K

Condition: C(d)/e.
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Condition-based analyses of various algorithms

e Interior-point methods (Renegar, Filipowski, Vera, P)

e Ellipsoid method (Freund & Vera)

@ Perceptron method (Belloni, Dunagan, Freund, Vempala,...)
@ Von Neumann method (Epelman & Freund)

The above analyses show that a solution to (1) or (2) is found after
O(n? log(C(A))),

or

O(nC(A))

iterations, provided A & ¥
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The Perceptron Algorithm

Find a solution to
ATy >0.

(Assume Ac D and K =R'..)

Perceptron Algorithm (Rosenblatt, 1957)
e y:=0
o while ATy %0
y =y+ ”‘:ﬁ, where ajTy <0
end while

Theorem (Block-Novikoff 1962)
If A € D, then the Perceptron Algorithm terminates after at most

1
~ p(A)?

€ (A)?

iterations.
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Some Extensions of the Perceptron Algorithm

Theorem (Dunagan & Vempala 2004)

If A € D then a randomized re-scaled version of the Perceptron
Algorithm terminates in O (n - log (¢ (A))) iterations with high
probability.

Theorem (Soheili & P 2011)
If A € D then a smooth version of the Perceptron Algorithm

terminates in O (\/Iog(n) . %(A)) iterations while retaining the
algorithm'’s original simplicity.
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Other condition-based analyses

Theorem (Renegar 1995, P & Renegar 2000)

If A is well-posed and K, K* have barrier functions, then an
interior-point algorithm determines which of (1), (2) is feasible and
finds such a solution in at most O(v/9log(¥) - C(A))) iterations.

Here 9 : parameter of barrier functions for K, K*.

Theorem (Freund & Vera 1999)

If A€ D and K* has a separation oracle, then the ellipsoid method
finds a solution to (2) in at most

O(n*log(1/7)) = O(n” log(C(A)/ck-))

iterations.
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Does good algorithmic behavior imply good geometry?

Consider the feasibility problem
xeF (3)
where F is a cone with a separation oracle.

Theorem (Freund & Vera 2009)

Let 7 € (0,1) be given. For any separation-based algorithm there
exists a cone F with width T such that the algorithm needs at least

[logo(1/7)]

iterations to solve (3).
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What about ill-posed instances?

Limitation of previous results

They all assume A ¢ ¥. However, in some interesting cases the
feasibility problem is canonically ill-posed.

Example
Homogenization of optimality conditions for linear optimization:

— c'™x 4+ by > 0

TC — ATy > 0

— 1b 4+ Ax =0
T >0

x >0

25 /40



Stratified condition numbers
Can we refine or define condition for instances in ¥7

Motivation
@ When K = R"”, ¥ = rank-deficient matrices.

@ The set of ill-posed instances ¥ can be written as
=Y, 1UX,oU---UX1UXg

2, = matrices with rank at most r.
e Given Ac X, \ X1,

diSt):l.(A, Z,'_]_) = U;(A).

oi(A): i-th (smallest positive) singular value of A.

26
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Stratified condition numbers

Consider again the special case K = R”, and the two associated
homogeneous feasibility problems

Ax =0, x>0 and ATyEO.

How can we stratify 7
Answer: Use a “canonical” partition Z(A) = {B, N} of {1,...,n}.
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Canonical partition

Proposition (Goldman-Tucker)

Assume A € R™*". Then there exists a unique partition
BUN ={1,...,n} such that for some x € R", y € R™

Agxg =0, xg >0, ALy =0, Aly > 0.

Observe
e Ac D& B=1
e Ac P N =0 and rank(A) = m.
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Stratified distance to ill-posedness
Assume A € R™*" and Z(A) = {B, N}. Define

L = ker(AL) CR™, and Lt =range(Ag) C R™.

If N #£ (), define
-
a.
pn(A) == max min J—y
yeL jeN |[|aj]|
Iyll=1
If B # (0, define
-
a:
pe(A) = max min J—y
yers j€B |[ajl|
llyll=1
Observe

) N#@=>pN(A)>0.
e B# 0= pg(A)<O.
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Radius Theorem 5

Theorem (Cheung, Cucker & P., 2008)
For A € R™*"

aj — aj
pn(A) = min  max 7” j — 3]
p(A2oA) JEN |4
Ag=Ag
and -
3 — a;
’PB(A)’ — min max H J JH
p(Ay2oa) €8 ajll
Ay=Ay

ker(AL)DL
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Extended condition number

Definition

_ 1 1
oA = "‘ax{pN(A>’ |pB(A>|}

Observations
0o AZY = G(A) =F(A).

o Z(A) < oo for all A€ R™*",

o pn(A) relative thickness of {y : ALy =0, A}y > 0}.

o |pg(A)| similar for {x : Agxg = 0,xg > 0}.
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Condition-based complexity for ill-posed problems

Given A € R™*" consider the pair of homogeneous feasibility
problems
Ax=0,x>0 and ATy >0.

Theorem (Soheili & P., 2010)

Interior-point algorithm that finds 2?(A) = {B, N} as well as xg
and y such that

Agxg =0, xg >0 and ALy =0, Ay >0

in at most O(y/n - log(n - €(A))) iterations.
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Related central open problem in optimization

Smale’s 9th problem

Is there a polynomial-time algorithm over the real
numbers which decides the feasibility of the linear sys-
tem of inequalities Ax > b?
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Nice Theory. Practical Relevance?

Freund, Ordofiez & Toh, 2007
Empirical study of SDP problems in the SDPLIB suite.

Approach
e Estimate condition number C(A, b, ¢) of each instance
(A, b, c)
e Estimate also a certain geometric measure G(A, b, ¢) (in the
spirit of 7r)

@ Run SDPT3 with default settings.

@ Determine if there is an empirical relationship between number
of iterations and the measures C(A, b, ¢) and G(A, b, c).
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Number of IPM versus log(C(A, b, c))
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Number of IPM versus log(G(A, b, c))
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Condition of more general problems

Assume m < n and let ¥ = rank-deficient matrices (i.e., K = R").

Regularity of full-rank matrices
Given A € R™*" we have A € ¥ < 6Brm C ABgrm for some 6 > 0.

Equivalently, A € ¥ < there exists § > 0 such that for all y € R™
and all x € R”

1

dist(x, A"}(y)) < = - dist(y, Ax).

|
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Metric regularity
Assume F : R" = R™, ie., x — F(x) CR™ for each x € R".

A generalized equation is a problem of the form

Find x such that b € F(x).

Definition
Assume F : R" = R™ and y € F(x). F is metrically regular at x
for y if there exists k > 0 such that

d(x, F7(y)) < & - d(y, F(x)) (4)
for all (x,y) in a neighborhood of (X,¥). In this case define

reg F(x|y) :=inf{x : (4) holds}.
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Radius Theorem 6

Theorem (Dontchev, Lewis, Rockafellar, 2003)

Assume F : R" = R™, y € F(X) and graph(F) locally closed at
(x,¥). Then

inf{||B]| : F + B is not metricall lar} = ————.
inf{||B|| : F + B is not metrically regular} 2 FZ17)

Interesting connections with fundamental results in analysis:
Banach Open Mapping Principle, Lusternik-Graves Theorem,
Robinson-Ursescu Theorem.
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Summary and conclusions

@ Extend concept of condition from linear equations to linear
(and conic) optimization

Similar interplay between condition, geometry, and algorithms
Similar theorems concerning radius of well-posedness

Other related work (current & future):

o "Structured” condition numbers (Doyle, Lewis, P., Packard,

Rump, Rohn, Tits,...)

o Probabilistic analysis of condition numbers (Burgisser, Cucker,
Hauser, Spielman, Teng,...
Geometric measures (Epelman, Freund, Vera,...)
Preconditioning (Epelman)
Condition of ill-posed problems
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