
Algorithms for computing Nash equilibria of large
sequential games

Javier Peña

joint work with
Samid Hoda, Andrew Gilpin, and Tuomas Sandholm at

Carnegie Mellon University

FoCM 2008
Hong Kong

Sequential games

Games that involve turn-taking, chance moves, and imperfect
information.

Example (simplified poker)

Card deck with two Js and two Qs

I Opening: players bet $1 each

I One card is dealt to each player

I Player 1 can check or raise

I If Player 1 checks then Player 2 can check or raise
I If Player 2 checks there is a showdown (higher card wins)
I If Player 2 raises then Player 1 can fold, or call (showdown)

I If Player 1 raises then Player 2 can fold, or call (showdown)

Game tree for simplified poker

2

1 1 11

2

2

2

2

1111

2 2

00

0

00 1

0−1 −1 2 −1−2−1

1 1 2−2−1

2

(Q,Q)(J,J)

(Q,J)

k r
k k k

r r r

f c c c cf f f

k

r r r rk k k

f f f fc c c c

1/6

1/3

1/6

1/3

(J,Q)

1 1

Nash equilibrium

Simultaneous choice of strategies for all players so that no player
has incentive to deviate.

Nash equilibrium formulation (two-person, zero-sum games)

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

I Q1,Q2: sets of strategies of players 1 and 2 respectively

I A: player 1’s payoff matrix

I Games in normal form: Q1,Q2 are simplexes.

I Sequential games in extensive form: Q1,Q2 are complexes.

Complexes

Definition

I Any standard simplex ∆m := {x ∈ Rm
+ :
∑m

i=1 xi = 1} is a
complex

I If P ⊆ [0, 1]p,Q ⊆ [0, 1]q are complexes and i ∈ {1, . . . , p}
then

P i Q := {(x , y) ∈ Rp+q : x ∈ P, y ∈ xi · Q}

is a complex.

A complex is like a tree whose nodes are simplexes.

Example (simplified poker)

Player 1’s sequences:

S1 =
{
∅, kJ , rJ , kQ , rQ , kJ f J , kJcJ , kQ f Q , kQcQ

}
Set of realization plans: Q1 = {x : Ex = e, x ≥ 0} , for

E =


1
−1 1 1
−1 1 1

−1 1 1
−1 1 1

 , e =


1
0
0
0
0



Example (simplified poker, continued)

Player 2’s sequences:

S2 =
{
∅, kJ , rJ , kQ , rQ , f J , cJ , f Q , cQ

}
Set of realization plans: Q2 = {y : Fy = f , y ≥ 0} , for

F =


1
−1 1 1
−1 1 1
−1 1 1
−1 1 1

 , f =


1
0
0
0
0



Example (simplified poker, continued)

Player 1’s Payoff matrix

A =



0 −1/6
1/6 0 1/6 −1/3

1/3 0
1/3 2/3 1/6 0

−1/6 −1/3
0 −2/3
−1/3 −1/6
2/3 0



Computation of Nash equilibrium

Nash equilibrium

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

Can formulate as the primal-dual pair of linear programs.
However, interesting games lead to enormous instances.

Poker

I Texas Hold’em (with limits): Game tree has ∼ 1018 nodes.

I Rhode Island Hold’em: simplification of Texas Hold’em.
Created for AI research (Shi & Littman 2001).
Game tree has ∼ 109 nodes.

I These problems are too large for general-purpose linear
programming solvers.

A first-order approach to computing Nash equilibrium

Nesterov’s smoothing technique

Key ingredient: prox-functions for Q1,Q2.

Definition
Assume Q ⊆ Rn is a convex compact set. A function d : Q → R is
a prox-function if it satisfies the following properties

I d is strongly convex in Q, i.e., there exists σ > 0 such that for
all x , y ∈ Q, and α ∈ [0, 1]

d(αx +(1−α)y) ≤ αd(x)+(1−α)d(y)− 1

2
σα(1−α)‖x−y‖2.

I min {d(x) : x ∈ Q} = 0.

Assume
d1, d2 are prox-functions for the sets Q1,Q2 respectively.

Nesterov’s smoothing technique

Theorem (Nesterov)

Algorithm that computes x̄ ∈ Q1, ȳ ∈ Q2 such that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in ⌊
4‖A‖
ε

√
D1D2

σ1σ2

⌋
gradient-type iterations.

Main work per iteration: three matrix-vector products involving A,
and three subproblems of the form

max
u∈Qi

{〈g , u〉 − di (u)} . (1)

Here Di = max {di (u) : u ∈ Qi}.

“Nice” prox-functions

To get a viable algorithm

Prox-functions d1, d2 for Q1,Q2 should be so that the subproblems
(1) can be solved easily.

Definition
Assume Q ⊆ [0, 1]n is convex and compact. A prox-function
function d : Q → R is nice if for any s ∈ Rn the subproblem

max {〈s, x〉 − d(x) : x ∈ Q}

is easy, e.g., it has a closed-form solution.

Challenge

Nice prox-functions are known only for a few simple sets.

Example

For Q := ∆m, the entropy function

d(x) = ln m +
m∑

i=1

xi ln xi ,

is a nice prox-function for ∆m. In this case, the subproblem

max {〈s, x〉 − d(x) : x ∈ ∆m}

has the closed-form solution

xi =
esi∑m
j=1 esj

, i = 1, . . . ,m.

—
The Euclidean distance function d(x) = 1

2

∑m
i=1 (xi − 1/m)2 is also a

nice prox-function for ∆m.

Nice prox-functions for complexes

Theorem (GHP 2007)

Any family of nice prox-functions for simplexes yields a family of
nice prox-functions for complexes.

Idea of the proof.

Assume dm is a nice prox-function for ∆m.
Define a prox-function dQ for each complex Q inductively as
follows

I If Q = ∆m, let dQ := dm

I If R = P i Q, let

dR(x , y) := dP(x) + d̄Q(xi , y)

where the function d̄Q is defined as

d̄Q(xi , y) =

{
xi · dQ

(
y
xi

)
if xi > 0,

0 if xi = 0.

Example.

Consider Q = {x : Ex = e, x ≥ 0} , for

E =


1
−1 1 1
−1 1 1

−1 1 1
−1 1 1

 , e =


1
0
0
0
0


Entropy prox-function for simplexes yields

d(x) = x2 log x2 + x3 log x3 + log 2

+ x4 log x4 + x5 log x5 + log 2

+ x2

(
x6

x2
log

x6

x2
+

x7

x2
log

x7

x2
+ log 2

)
+ x4

(
x8

x4
log

x8

x4
+

x9

x4
log

x9

x4
+ log 2

)

To compute x̄ := argmax{〈s, x〉 − dQ(x)}:

Backward pass:

s̃i := si , i = 3, 5, 6, 7, 8, 9
s̃4 := s4 + log(e s̃8 + e s̃9)
s̃2 := s2 + log(e s̃6 + e s̃7)
s̃1 := s1 + log(e s̃2 + e s̃3) + log(e s̃4 + e s̃5)

Forward pass:

x̄i = e s̃i

e s̃2+e s̃3
, i = 2, 3

x̄i = e s̃i

e s̃4+e s̃5
, i = 4, 5

x̄i = e s̃2

e s̃2+e s̃3
· e s̃i

e s̃6+e s̃7
, i = 6, 7

x̄i = e s̃4

e s̃4+e s̃5
· e s̃i

e s̃8+e s̃9
, i = 8, 9

Complexity results (for uniform games)

Theorem (GHP 2007)

First-order smoothing algorithm that finds (x̄ , ȳ) ∈ Q1 × Q2 such
that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in b(4n1n2/ε)‖A‖c iterations.
ni : number of sequences of Player i for i = 1, 2

Theorem (HPS 2008)

First-order smoothing algorithm that finds (x̄ , ȳ) ∈ Q1 × Q2 such
that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in b4n1n2 log(‖A‖/ε)κ(A,Q1,Q2)c iterations.
κ(A,Q1,Q2): “condition number” of instance (A,Q1,Q2)

Application to poker

Poker

I Central problem in artificial intelligence

I Unlike chess or checkers, it is a game of imperfect information

I Bluffing and other deceptive strategies are necessary to be a
good player.

I The development of automatic poker players is a milestone
comparable to the development of a chess computer player in
the nineties.

Game-theoretic approach to designing poker players

Texas Hold’em with limits

I Main version of poker used in academic research

I Game tree has about 1018 nodes.

I Use a sophisticated abstraction technique to create smaller
games that approximate the original game

I Compute approximate Nash equilibria for the abstractions

I Recover approximate Nash equilibria for the original game

I Main current limitation of this approach: size of the
abstractions that can be handled

Computational experience

Instances

I Two lossy abstractions of Texas Hold’em

I Lossless abstraction of Rhode Island Hold’em

Problem sizes

Name Rows Columns Nonzeros

AbsTex2 160,421 160,421 8,684,668
RI 1,237,238 1,237,238 50,428,638

AbsTex3 162,216,751 162,216,766 1,737,852,626,167

Implementation

Main work per iteration

I (Most expensive) matrix-vector products x 7→ ATx , y 7→ Ay

I Subproblems max
u∈Qi

{〈g , u〉 − di (u)} .

Peculiar structure in poker instances

I Payoff matrix in poker games admits a concise representation.
For example, for a three-round game

A =

A1

A2

A3


where Ai = Fi ⊗ Bi , i = 1, 2 and A3 = F3 ⊗ B3 + S ⊗W

I Do not need to form A explicitly.

I Instead have subroutines that compute x 7→ ATx , y 7→ Ay .

Fractal-like structure in the payoff matrix

Matrix A for AbsTex2 (a three-round abstraction)

nnz = 8,684,668

25k × 25k and 1k × 1k upper-left blocks of A

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 2280

More about the AbsTex2 instance

Matrix E

Matrix F

nnz = 226073

More about the AbsTex2 instance

Upper-left blocks of E

0 50 100 150 200 250

0

20

40

60

80

100

nz = 348

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

nz = 138

More about the AbsTex2 instance

Path of the iterates’ gap

max
x∈Q1

〈x ,Ayk〉 − min
y∈Q2

〈xk ,Ay〉

100 101 102 103 104
100

101

102

103

104

Do we get useful strategies?

I AAAI Poker Competition July 2007

I 17 teams competed Texas Hold’em with limits

I 14 teams competed Texas Hold’em with no limits
I GS3 & Tartanian players (based on our algorithm)

I limit: 3rd place (out of 17)
I no-limit: 2nd place (out of 14)

I Unlike other players, GS3 and Tartanian do not use
poker-specific expert knowledge

Concluding remarks

I Nash equilibrium computation of two-person, zero-sum
sequential games is amenable to smoothing techniques.

I Crux: construction of nice prox-function for complexes.

I Complexity results: 4n1n2‖A‖
ε or 4n1n2 log

(
‖A‖

ε

)
κ(A,Q1,Q2)

simple iterations to find ε-equilibrium

I Promising computational results: have computed
near-equilibria for games with T ∼ 1012.

I Numerical work has been instrumental in the design of
competitive poker players.

	Sequential games
	Nash equilibrium
	A first-order approach to computing Nash equilibrium
	Application to poker

