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Sequential games

Games that involve turn-taking, chance moves, and imperfect
information.

Example (simplified poker)

Card deck with two Js and two Qs

I Opening: players bet $1 each

I One card is dealt to each player

I Player 1 can check or raise

I If Player 1 checks then Player 2 can check or raise
I If Player 2 checks there is a showdown (higher card wins)
I If Player 2 raises then Player 1 can fold, or call (showdown)

I If Player 1 raises then Player 2 can fold, or call (showdown)



Game tree for simplified poker
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Nash equilibrium

Simultaneous choice of strategies for all players so that no player
has incentive to deviate.

Nash equilibrium formulation (two-person, zero-sum games)

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

I Q1,Q2: sets of strategies of players 1 and 2 respectively

I A: player 1’s payoff matrix

I Games in normal form: Q1,Q2 are simplexes.

I Sequential games in extensive form: Q1,Q2 are complexes.



Complexes

Definition

I Any standard simplex ∆m := {x ∈ Rm
+ :
∑m

i=1 xi = 1} is a
complex

I If P ⊆ [0, 1]p,Q ⊆ [0, 1]q are complexes and i ∈ {1, . . . , p}
then

P i Q := {(x , y) ∈ Rp+q : x ∈ P, y ∈ xi · Q}

is a complex.

A complex is like a tree whose nodes are simplexes.



Example (simplified poker)

Player 1’s sequences:

S1 =
{
∅, kJ , rJ , kQ , rQ , kJ f J , kJcJ , kQ f Q , kQcQ

}
Set of realization plans: Q1 = {x : Ex = e, x ≥ 0} , for

E =


1
−1 1 1
−1 1 1

−1 1 1
−1 1 1

 , e =


1
0
0
0
0





Example (simplified poker, continued)

Player 2’s sequences:

S2 =
{
∅, kJ , rJ , kQ , rQ , f J , cJ , f Q , cQ

}
Set of realization plans: Q2 = {y : Fy = f , y ≥ 0} , for

F =


1
−1 1 1
−1 1 1
−1 1 1
−1 1 1

 , f =


1
0
0
0
0





Example (simplified poker, continued)

Player 1’s Payoff matrix

A =



0 −1/6
1/6 0 1/6 −1/3

1/3 0
1/3 2/3 1/6 0

−1/6 −1/3
0 −2/3
−1/3 −1/6
2/3 0





Computation of Nash equilibrium

Nash equilibrium

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

Can formulate as the primal-dual pair of linear programs.
However, interesting games lead to enormous instances.

Poker

I Texas Hold’em (with limits): Game tree has ∼ 1018 nodes.

I Rhode Island Hold’em: simplification of Texas Hold’em.
Created for AI research (Shi & Littman 2001).
Game tree has ∼ 109 nodes.

I These problems are too large for general-purpose linear
programming solvers.



A first-order approach to computing Nash equilibrium

Nesterov’s smoothing technique

Key ingredient: prox-functions for Q1,Q2.

Definition
Assume Q ⊆ Rn is a convex compact set. A function d : Q → R is
a prox-function if it satisfies the following properties

I d is strongly convex in Q, i.e., there exists σ > 0 such that for
all x , y ∈ Q, and α ∈ [0, 1]

d(αx +(1−α)y) ≤ αd(x)+(1−α)d(y)− 1

2
σα(1−α)‖x−y‖2.

I min {d(x) : x ∈ Q} = 0.

Assume
d1, d2 are prox-functions for the sets Q1,Q2 respectively.



Nesterov’s smoothing technique

Theorem (Nesterov)

Algorithm that computes x̄ ∈ Q1, ȳ ∈ Q2 such that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in ⌊
4‖A‖
ε

√
D1D2

σ1σ2

⌋
gradient-type iterations.

Main work per iteration: three matrix-vector products involving A,
and three subproblems of the form

max
u∈Qi

{〈g , u〉 − di (u)} . (1)

Here Di = max {di (u) : u ∈ Qi}.



“Nice” prox-functions

To get a viable algorithm

Prox-functions d1, d2 for Q1,Q2 should be so that the subproblems
(1) can be solved easily.

Definition
Assume Q ⊆ [0, 1]n is convex and compact. A prox-function
function d : Q → R is nice if for any s ∈ Rn the subproblem

max {〈s, x〉 − d(x) : x ∈ Q}

is easy, e.g., it has a closed-form solution.

Challenge

Nice prox-functions are known only for a few simple sets.



Example

For Q := ∆m, the entropy function

d(x) = ln m +
m∑

i=1

xi ln xi ,

is a nice prox-function for ∆m. In this case, the subproblem

max {〈s, x〉 − d(x) : x ∈ ∆m}

has the closed-form solution

xi =
esi∑m
j=1 esj

, i = 1, . . . ,m.

—
The Euclidean distance function d(x) = 1

2

∑m
i=1 (xi − 1/m)2 is also a

nice prox-function for ∆m.



Nice prox-functions for complexes

Theorem (GHP 2007)

Any family of nice prox-functions for simplexes yields a family of
nice prox-functions for complexes.

Idea of the proof.

Assume dm is a nice prox-function for ∆m.
Define a prox-function dQ for each complex Q inductively as
follows

I If Q = ∆m, let dQ := dm

I If R = P i Q, let

dR(x , y) := dP(x) + d̄Q(xi , y)

where the function d̄Q is defined as

d̄Q(xi , y) =

{
xi · dQ

(
y
xi

)
if xi > 0,

0 if xi = 0.



Example.

Consider Q = {x : Ex = e, x ≥ 0} , for

E =


1
−1 1 1
−1 1 1

−1 1 1
−1 1 1

 , e =


1
0
0
0
0


Entropy prox-function for simplexes yields

d(x) = x2 log x2 + x3 log x3 + log 2

+ x4 log x4 + x5 log x5 + log 2

+ x2

(
x6

x2
log

x6

x2
+

x7

x2
log

x7

x2
+ log 2

)
+ x4

(
x8

x4
log

x8

x4
+

x9

x4
log

x9

x4
+ log 2

)



To compute x̄ := argmax{〈s, x〉 − dQ(x)}:

Backward pass:

s̃i := si , i = 3, 5, 6, 7, 8, 9
s̃4 := s4 + log(e s̃8 + e s̃9)
s̃2 := s2 + log(e s̃6 + e s̃7)
s̃1 := s1 + log(e s̃2 + e s̃3) + log(e s̃4 + e s̃5)

Forward pass:

x̄i = e s̃i

e s̃2+e s̃3
, i = 2, 3

x̄i = e s̃i

e s̃4+e s̃5
, i = 4, 5

x̄i = e s̃2

e s̃2+e s̃3
· e s̃i

e s̃6+e s̃7
, i = 6, 7

x̄i = e s̃4

e s̃4+e s̃5
· e s̃i

e s̃8+e s̃9
, i = 8, 9



Complexity results (for uniform games)

Theorem (GHP 2007)

First-order smoothing algorithm that finds (x̄ , ȳ) ∈ Q1 × Q2 such
that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in b(4n1n2/ε)‖A‖c iterations.
ni : number of sequences of Player i for i = 1, 2

Theorem (HPS 2008)

First-order smoothing algorithm that finds (x̄ , ȳ) ∈ Q1 × Q2 such
that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in b4n1n2 log(‖A‖/ε)κ(A,Q1,Q2)c iterations.
κ(A,Q1,Q2): “condition number” of instance (A,Q1,Q2)



Application to poker

Poker

I Central problem in artificial intelligence

I Unlike chess or checkers, it is a game of imperfect information

I Bluffing and other deceptive strategies are necessary to be a
good player.

I The development of automatic poker players is a milestone
comparable to the development of a chess computer player in
the nineties.



Game-theoretic approach to designing poker players

Texas Hold’em with limits

I Main version of poker used in academic research

I Game tree has about 1018 nodes.

I Use a sophisticated abstraction technique to create smaller
games that approximate the original game

I Compute approximate Nash equilibria for the abstractions

I Recover approximate Nash equilibria for the original game

I Main current limitation of this approach: size of the
abstractions that can be handled



Computational experience

Instances

I Two lossy abstractions of Texas Hold’em

I Lossless abstraction of Rhode Island Hold’em

Problem sizes

Name Rows Columns Nonzeros

AbsTex2 160,421 160,421 8,684,668
RI 1,237,238 1,237,238 50,428,638

AbsTex3 162,216,751 162,216,766 1,737,852,626,167



Implementation

Main work per iteration

I (Most expensive) matrix-vector products x 7→ ATx , y 7→ Ay

I Subproblems max
u∈Qi

{〈g , u〉 − di (u)} .

Peculiar structure in poker instances

I Payoff matrix in poker games admits a concise representation.
For example, for a three-round game

A =

A1

A2

A3


where Ai = Fi ⊗ Bi , i = 1, 2 and A3 = F3 ⊗ B3 + S ⊗W

I Do not need to form A explicitly.

I Instead have subroutines that compute x 7→ ATx , y 7→ Ay .



Fractal-like structure in the payoff matrix

Matrix A for AbsTex2 (a three-round abstraction)

nnz = 8,684,668



25k × 25k and 1k × 1k upper-left blocks of A
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More about the AbsTex2 instance

Matrix E

Matrix F

nnz = 226073



More about the AbsTex2 instance

Upper-left blocks of E
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More about the AbsTex2 instance

Path of the iterates’ gap

max
x∈Q1

〈x ,Ayk〉 − min
y∈Q2

〈xk ,Ay〉
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Do we get useful strategies?

I AAAI Poker Competition July 2007

I 17 teams competed Texas Hold’em with limits

I 14 teams competed Texas Hold’em with no limits
I GS3 & Tartanian players (based on our algorithm)

I limit: 3rd place (out of 17)
I no-limit: 2nd place (out of 14)

I Unlike other players, GS3 and Tartanian do not use
poker-specific expert knowledge



Concluding remarks

I Nash equilibrium computation of two-person, zero-sum
sequential games is amenable to smoothing techniques.

I Crux: construction of nice prox-function for complexes.

I Complexity results: 4n1n2‖A‖
ε or 4n1n2 log

(
‖A‖

ε

)
κ(A,Q1,Q2)

simple iterations to find ε-equilibrium

I Promising computational results: have computed
near-equilibria for games with T ∼ 1012.

I Numerical work has been instrumental in the design of
competitive poker players.
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