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The Problem

Nash equilibrium (two-person, zero-sum games)

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy .

Q1,Q2: sets of strategies of players 1 and 2 respectively

A: player 1’s payoff matrix

Games in normal form: Q1,Q2 are simplices.

Games in sequential form: Q1,Q2 are treeplexes.

For simplicity, assume A ∈ Rm×n, Q1 = ∆m, Q2 = ∆n.



Algorithms to compute Nash equilibria

Definition

Given ε > 0, a point (x , y) ∈ ∆m ×∆n is an ε-equilibrium if

max ATx −min Ay ≤ ε.

Here max ATx = max
j=1,...,n

(ATx)j . Likewise for min Ay .

Algorithms to compute ε-equilibria

Interior-point methods: O(log(1/ε)) iteration complexity

Subgradient methods: O(1/ε2) iteration complexity

(Accelerated) first-order methods: O(1/ε) iteration complexity



Main result

Tradeoff

One first-order iteration is far simpler than one interior-point
iteration.

Main Theorem (Gilpin, P, Sandholm 2009)

First-order algorithm to compute an ε-equilibrium with
O(κ(A) log(1/ε)) iteration complexity.

Same dependence on ε as interior-point methods.

Same simplicity per iteration as first-order methods.

Dependence on a condition measure κ(A) of A.



Some Notation

Let F : ∆m ×∆n → R be defined by

F (x , y) := max ATx −min Ay .

Note: F (w) = max
u∈∆m×∆n

uTMw for M :=

[
0 −A

AT 0

]
.

Note: w = (x , y) is an ε-equilibrium iff F (x , y) ≤ ε.

Let

S := Argmin{F (u) : u ∈ ∆m ×∆n}
= {w ∈ ∆m ×∆n : F (w) = 0}.

Formulate equilibrium problem as

min
w∈∆m×∆n

F (w).



Nesterov’s Smoothing Algorithm for min
w∈∆m×∆n

F (w)

For µ > 0 let

Fµ(w) := max
u∈∆m×∆n

{
uTMw − µ

2
‖u − ū‖2

}
.

smoothing(A,w0, ε)
Let µ = ε

4 and z0 = w0

For k = 0, 1, . . .

uk = 2
k+2 zk + k

k+2 wk

wk+1 =

argmin

{
〈∇Fµ(uk),w − uk〉+

‖A‖2

2µ
‖w − uk‖2 : w ∈ ∆m ×∆n

}
If F (wk+1) < ε return wk+1

zk+1 =

argmin
{∑k

i=0
i+1

2 〈∇Fµ(ui ), z − ui 〉+ ‖A‖2

2µ ‖z − w0‖2 : z ∈ ∆m ×∆n

}



Nesterov’s Smoothing Algorithm for min
w∈∆m×∆n

F (w)

Theorem (Lan, Lu, Monteiro 2006 & Nesterov 2004)

Algorithm smoothing finishes in at most

4 · ‖A‖ · dist(w0,S)

ε

first-order iterations.

Here dist(w , S) := min{‖w − u‖ : u ∈ S}.



Iterated Smoothing Algorithm

Let γ > 1 be fixed.

iterated(A, x0, y0, γ, ε)

(1) Let ε0 = F (x0, y0)

(2) For i = 0, 1, . . .

εi+1 = εi
γ

(xi+1, yi+1) = smoothing(A, xi , yi , εi+1)

If F (xi+1, yi+1) < ε, return (xi+1, yi+1)



Main Theorem

Condition Measure δ(A)

δ(A) := sup

{
δ : dist((x , y), S) ≤ F (x , y)

δ
∀ (x , y) ∈ ∆m ×∆n

}
.

Main Theorem (Gilpin, P, Sandholm 2009)

Algorithm iterated finishes after at most

4 · γ · ‖A‖ · log(2‖A‖/ε)
log(γ) · δ(A)

first-order iterations.



Proof of Main Theorem

Claim 1

Each call to smoothing in Algorithm iterated halts in at most

4 · ‖A‖ · γ
δ(A)

first-order iterations.

Proof.

For i = 0, 1, . . . we have dist((xi , yi ),S) ≤ F (xi ,yi )
δ(A) ≤

εi
δ(A) = γ·εi+1

δ(A) .

Next, apply Lan et al./Nesterov’s Theorem: i-th call to
smoothing will halt after

4 · ‖A‖ · dist((xi , yi ),S)

εi+1
≤ 4 · ‖A‖ · γ

δ(A)
.

first-order iterations.
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Proof of Main Theorem

Claim 2

Algorithm iterated halts in at most

log(2‖A‖/ε)
log(γ)

outer iterations.

Proof.

After N outer iterations, we get (xN , yN) ∈ ∆m ×∆n with

F (xN , yN) < εN =
ε0

γN
=

F (x0, y0)

γN
≤ 2‖A‖

γN
.

Thus, F (xN , yN) < ε for N = log(2‖A‖/ε)
log(γ) .
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What if δ(A) is tiny?

Proposition (Gilpin, P, Sandholm, 2010)

Algorithm iterated finishes in at most

16 · γ2 · ‖A‖
(γ − 1) · ε

first-order iterations.

Proof.

1. The i-th call to smoothing halts in at most 16·‖A‖·γ i+1

ε0

first-order iterations.

2. Algorithm iterated halts in at most N outer iterations,
where N is such that ε0/γ

N = εN ≤ ε < εN−1 = ε0/γ
N−1.
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Similar result for sequential games

Definition

A simplex is a treeplex.

If Q1, . . . ,Qk treeplexes then

{(u0, u1, . . . , uk) : u0 ∈ ∆k , u
i ∈ u0

i · Qi , i = 1, . . . , k}

is a treeplex.

If Q1, . . . ,Qk treeplexes then Q1 × · · · × Qk is a treeplex.

Nash equilibrium for sequential games

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy ,

where Q1,Q2 treeplexes.



Similar result for sequential games

Modify Algorithm iterated in a straightforward way.

Theorem

2
√

2D · γ · ‖A‖ · log(2‖A‖/ε)
log(γ) · δ(A)

first-order iterations.

Caveats

Dependence on D := max
{
‖u−ū‖2

2 : u ∈ Q1 × Q2

}
.

Need to compute the projection

min

{
〈g , u〉+

‖u‖2

2
: u ∈ Q1 × Q2

}
easily at each first-order iteration.
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Numerical experiments

Randomly generated matrix games
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Numerical experiments

Two benchmark instances of sequential games
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What do we know about δ(A)?

Recall

δ(A) = sup

{
δ : dist((x , y),S) ≤ F (x , y)

δ
∀ (x , y) ∈ ∆m ×∆n

}
,

where

S = Argmin{F (x , y) : (x , y) ∈ ∆m ×∆n} = F−1(0) ∩∆m ×∆n.

Consider κ(A) = 1/δ(A). Notice

κ(A) = inf {κ : dist((x , y),S) ≤ κ · F (x , y) ∀ (x , y) ∈ ∆m ×∆n} .

Based on convenience, we will use δ(A) or κ(A) = 1/δ(A).



Metric Regularity

Definition

A set-valued mapping G : Rn ⇒ Rm is metrically regular around
(x̄ , z̄) ∈ gph(G ) if there exists µ such that

dist
(
x ,G−1(z)

)
≤ µ · dist

(
z ,G (x)

)
(1)

for (x , z) in a neighborhood of (x̄ , z̄).

Regularity modulus of G at x̄ for z̄

reg G (x̄ , z̄) := infimum of µ satisfying (1).



Connection between κ(A) and metric regularity

Define Φ : Rm+n ⇒ R as

Φ(w) :=


[
F (w),∞) if w ∈ ∆m ×∆n,

∅ otherwise.

Theorem (Mordukhovich, P, Roshchina, 2010)

(a) Assume ∆m ×∆n \ S 6= ∅. Then

κ(A) = max
w∈∆m×∆n\S

reg Φ
(
w ,F (w)

)
(b) Assume w ∈ ∆m ×∆n \ S. Then

reg Φ
(
w ,F (w)

)
=

1

dist
(
0, ∂F (w) + N∆m×∆n(w)

)
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Proof of part (a)

Key technical lemma:

Lemma

Assume ∆m ×∆n \ S 6= ∅. Then there exists w̄ ∈ ∆m ×∆n \ S
such that

κ(A) =
dist(w̄ , S)

F (w̄)
.

Part (a) reduces to showing that

κ(A) = reg Φ
(
w̄ ,F (w̄)

)
= max

w∈∆m×∆n\S
reg Φ

(
w ,F (w)

)
.

�
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Proof of part (b)

Rely on some tools from variational analysis.

Definition

Given G : Rn ⇒ Rm, the coderivative of G at (x̄ , z̄) ∈ gphG is the
mapping D∗G (x̄ , z̄) : Rm ⇒ Rn defined by

D∗G (x̄ , z̄)(v) := {u : (u, v) ∈ NgphG (x̄ , z̄)}.

Theorem (Mordukhovich, 1984)

Suppose G : Rn ⇒ Rm has closed graph around (x̄ , z̄) ∈ gphG .
Then G is metrically regular around (x̄ , z̄) iff

ker D∗G (x̄ , z̄) = {0}.

In this case
reg G (x̄ , z̄) = ‖D∗G (x̄ , z̄)−1‖.



Proof of part (b)

Proposition (Dontchev, Lewis, Rockafellar, 2003)

Assume M : Rn ⇒ Rm is positively homogeneous. Then

‖M−1‖ = sup
‖v‖=1

1

dist(0,Mv)
.

To prove (b), apply the above results to Φ:

reg Φ(w ,F (w)) = ‖D∗Φ(w ,F (w))−1‖

= sup
|v |=1

1

dist (0,D∗Φ(w ,F (w))(v))

=
1

dist(0,D∗Φ(w ,F (w))(1))
.

To finish, compute

D∗Φ(w ,F (w))(1) = ∂F (w) + N∆m×∆n(w).

�
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Characterization of δ(A)

A bit more notation

Let A =
[
a1 · · · an

]
=

−bT
1

...
−bT

m

 .
For p ∈ Z+, let 1p :=

[
1 . . . 1

]T ∈ Rp.

Given (x , y) ∈ ∆m ×∆n, let

I (x) :=
{
ı̄ ∈ {1, . . . , n} : aT

ı̄ x = max
i∈{1,...,n}

aT
i x
}
,

K (y) :=
{

k̄ ∈ {1, . . . ,m} : bT
k̄

y = max
k∈{1,...,m}

bT
k y
}
,

J(x , y) :=
{

j ∈ {1, . . . ,m} : xj = 0
}⋃{

j = m + p : yp = 0
}
.



Characterization of δ(A)

Theorem (Mordukhovich, P, Roshchina, 2010)

Assume ∆m ×∆n \ S 6= ∅. Then

δ(A) =

min
(x,y)∈∆m×∆n\S

[
dist
(

0, conv
{

(ai , bk) : i ∈ I (x), k ∈ K (y)
}

+span{1m} × span{1n} − coco
{

ej : j ∈ J(x , y)
})]

.

—————————————————————
Recall previous theorem:

(a) If ∆m ×∆n \ S 6= ∅ then κ(A) = max
w∈(∆m×∆n)\S

reg Φ
(
w ,F (w)

)
.

(b) If w ∈ ∆m ×∆n \ S then

reg Φ
(
w ,F (w)

)
=

1

dist
(
0, ∂F (w) + N∆m×∆n (w)

) .



Characterization of δ(A)

Theorem (Mordukhovich, P, Roshchina, 2010)

Assume ∆m ×∆n \ S 6= ∅. Then

δ(A) =

min
(x,y)∈∆m×∆n\S

[
dist
(

0, conv
{

(ai , bk) : i ∈ I (x), k ∈ K (y)
}

+span{1m} × span{1n} − coco
{

ej : j ∈ J(x , y)
})]

.

—————————————————————
Recall previous theorem:

(a) If ∆m ×∆n \ S 6= ∅ then κ(A) = max
w∈(∆m×∆n)\S

reg Φ
(
w ,F (w)

)
.

(b) If w ∈ ∆m ×∆n \ S then

reg Φ
(
w ,F (w)

)
=

1

dist
(
0, ∂F (w) + N∆m×∆n (w)

) .



Characterization of δ(A)

Proof.

Put w := (x , y). From previous theorem we get

δ(A) = min
w∈(∆m×∆n)\S

1

reg Φ
(
w ,F (w)

)
= min

w∈(∆m×∆n)\S
dist
(
0, ∂F (w) + N∆m×∆n(w)

)
.

To finish, use elementary non-smooth calculus to compute

∂F (x , y) = conv
{

(ai , bk) : i ∈ I (x), k ∈ K (y)
}
,

and

N∆m×∆n(w) = span{1m} × span{1n} − coco
{

ej : j ∈ J(x , y)
}
.



Concluding remarks

Algorithm that finds ε-solution to

max
x∈∆m

min
y∈∆n

xTAy = min
y∈∆n

max
x∈∆m

xTAy

in O(κ(A) · log(1/ε)) first-order iterations

Connection between condition measure κ(A) and metric
regularity.

Similar results for more general equilibrium of sequential
games

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy .

In this case Q1,Q2 are treeplexes.



Current & future work

Reliance on Euclidean distance function and on saddle-point
problem over polytopes. Do similar results hold for other
prox-functions and/or other problems?

Classes of well-conditioned problems.

Average case analysis of κ(A).

Connection with other measures of conditioning.
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