
Omni Graph Mining:

Graph Mining using RDBMS

The motivations
• Huge amount of Graph Data is stored in RDBMS.

• Not all graph data is in billion scale.

• Query engine has been extremely optimized.

 (Automatic management of index, Disk I/O optimization,
 well implemented operations such as join, sorting)

• People love SQL!
– Readily available and heavily used in enterprises

– sets standard from its popularity and easiness to learn.

 We think that there would be “sweet spot” where RBDMS can
outperform other frameworks such as Map Reduce and
GraphChi.

Target Algorithms
We implemented six algorithms using SQL and plpgsql (Procedural

Programming Language by PostgreSQL)

Algorithms Description

Eigen values Finds the eigenvalue decomposition of the graph’s
adjacency matrix.

Diameter Measures the distance of the furthest-apart in the
graph

Connected Components Partitions the graph into groups of nodes mutually
connected via their edges

PageRank Measures the relative importance of nodes via the
nodes that link to it.

FastBP Find an efficient way to solve inference problems
based on local message passing

Degree Distribution Find the number of in- and out- edges among nodes of
the graph.

Common Matrix Operations (SQL)
• Many algorithms distilled into core set of matrix operations

• Matrix operations are easily expressed in SQL

• SQL execute sparse matrix efficiently via optimized joins, etc.

 y = y + ax (saxpy vector update)
UPDATE y

 SET y.val=y.val+a*x.val

 FROM x

 WHERE y.i = x.i;

A*y matrix-vector multiplication (SMVM)
SELECT A.row,

SUM(A.weight*y.value)

 FROM A, y

 WHERE A= y.node

 GROUP BY A.row;

Sum(|y|)^1/p (vector LP norm)
SELECT (sum((y.val)^p)^1/p

 FROM y;

A * B matrix-matrix multiplication (SMMM)
SELECT A.i, B.j,

SUM(A.val*B.val)

 FROM A, B

 WHERE A.j = B.i

 GROUP BY A.i, B.j;

PageRank and Eigensolver
- PageRank: Update is performed by SMVM

- Eigensolver: Uses Saxpy, Smvm, Smmm, dotProduct, etc…

BUILD column normalized adjacency matrix: A
INSERT INTO product(node, val) SELECT A.dest, SUM(A.weight * pagerank.val)
 FROM A, pagerank WHERE A.src = pagerank.node GROUP BY A.dst;
UPDATE pagerank_new SET val = d*product.val + (1-d)/|V|
IF L1(pagerank_new – pagerank) < delta EXIT

E: Edge list (Pair of Src, Dst), V: Vertex list and d: damping factor Input

SQL

1. Until convergence or max iteration:
1. Generate a new basis vector
2. Orthogonalize against previous two
3. Update tridiagonal matrix using scalar components of these vectors
4. Selectively orthogonalize against all previous vectors

2. Perform eigen decomposition on tridiagonal matrix for eigenvalues and Q
3. Compute eigenvectors using Q and the basis vectors

A: Adjacency matrix(i, j, val), b: random vector, m: num steps, e error thresh Input

Summ

Degree Dist. and Diameter in SQL
- Degree: Update is performed by Scan & Aggregate of SQL

- Diameter: Radius of each vertex is updated by Join and user

defined function and aggregate. (HADI based)

Input) E: Edge list (Pair of Src, Dst) and V: Vertex list

Update V set incnt = (select count(*) from E where E.dst = V.id);
Update V set outcnt = (select count(*) from E where E.src = V.id);
Update V set sum = V.incnt + V.outcnt;

Insert into New V select E.src, BIT-OR(FMB1), …. , BIT-OR(FMB32)
From E, V
Where E.dst = V.id
Group By E.src;

*BIT-OR: User defined BIT-OR aggregate
*FMB: Flajolet-Martin Bit string to estimate the size of set
* Iterate until all bit string are stabilized. In next iteration, New V is used as V.

Input

SQL

SQL

Other Frameworks
- Pegasus: Peta-Scale Graph Mining framework with MR

Pegasus considers graph mining algorithms as a sequence of matrix
multiplication

- GIM-V library performs matrix multiplication in Hadoop

- Graph mining algorithms are implemented using GIM-V Library.

 For small data, MR framework could be a overkill.

- GraphChi: A Disk based Graph Mining framework on single
machine
- In preprocessing stage, edge and vertex lists are partitioned and

sorted.

- In computation stage, compute a sub-graph at a time. All information
for processing a sub-graph are loaded into main memory by the
limited number of bulk disk I/O.

GraphChi eliminates almost all random disk access.

Experimental Results
Page Rank Eigen value

Degree Distribution Connected Comp

16Million

RBDMS Tuning
- Tuning of RDBMS is critical to improve the performance of

SQL implementation.

- Disabling consistency and atomicity related options is helpful
to improve the performance.

Disable fsync
Disable synchronous commit
Set shared buffer to 2GB

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

of edges

8

72

330

1466

4

16

85

638

1

10

100

1000

10000

1M 4M 16M 64M

No Tuning Tunning: NoSync, 2GB Buffer

Conclusion & Future Work
- Discussion about “Sweet Spot”

- SQL-single machine outperforms Hadoop 64 machines for up to 16
million edges data set.

- GraphChi-single machine is more than 10 times faster than the SQL for
test cases.

- Future Works

- More tuning on RDBMS that compromises consistency
constraints for better performance

- Pre-sorting of input data could improve memory access
locality of join operation.

- Smart management of index structures.
Updating or insert operation on indexed table could incur
extra overhead.

