The Universe in Six or Seven Numbers

What we assume

Our basic picture for how the universe evolves over large distances or
through large stretches of time can be summarized in six numbers —or seven,
if we do not make any assumptions about its overall spatial geometry. At first
it might seem impressive that so much can be described so succinctly; but this
simplicity actually reflects our ignorance of many of the details of our universe
and we should be quite glad to add to this list.

Our best explanation for the mutual influence between gravity and the other
ingredients of the universe is provided by general relativity. In this theory
we describe the behavior of space-time through a metric ds> = guvdxtdx’,
whose dynamics at each point are determined by the energy and momentum of
whatever else happens to be there. At large distances and at early times, the
universe appears to be extremely smooth, with hardly any spatial variation at
any particular time, the only change being a uniform expansion of space. This
geometry can be described through the following metric,

ds* = dr* — d*(t)dw}. (1)

The spatial part of this metric depends on whether the overall geometry of the
universe is hyperbolic (k = —1), flat (k = 0), or spherical (k = 1). For each of
these cases we have in turn,

dw?, = dy?+sinh®xd6?*+ sinh® xsin® 0 d¢>
doj = dx*+dy*+d7* =di-d¥
dwj = dx*+sin® xd6?+sin® xsin® 0d¢>. )

To all appearances, the universe seems to be spatially flat, so often the k =0
form for the metric is assumed from the beginning,

ds* = dr* — a*(t) dx - dX. (3)

The universe also appears to have been always expanding, so the scale factor
a(t) was smaller in the past. If we denote the time today by 7, then we can
normalize our coordinates so that a(z,) = 1, and as a consequence, a(t) < 1 for
all earlier stages of the universe.

The evolution of this scale factor is influenced by what the universe con-
tains. We shall treat these ingredients as approximately uniform fluids, whose
total energy density is p(¢). One of the components of the Einstein equa-
tion, called the Friedmann equation, determines how the scale factor evolves



in terms of the total density, and the curvature, if we do not impose k = 0 from

the start, ,
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We have written the density as depending on a(t) since any particular compo-
nent is diluted as the universe expands. For example, if the density of matter
in the universe today is p,,, then it would have been more closely packed at an
earlier time, since the volume it occupied would have been smaller by a factor
of a*(t). The density of radiation will be similarly enhanced by this decrease
in volume; moreover, since light is stretched by the expansion of the universe,
its wavelength must also have been shorter in the past. The energy of a photon
is inversely proportional to its wavelength, E,, = h/A(t), so it is enhanced by a
factor of 1/a(t), E,(t) = E,(t,)/a(t), compared with its value today. Account-
ing for the change in the volume too, the energy density of radiation thus scales
as 1/a*(t).

Finally, we ought to include a third fluid which does not scale as either
matter or radiation. It has been added to the cosmological picture only re-
cently, to account for the apparent acceleration in the expansion of the universe
which seems to have begun about five billion years ago. Since we know little
about this substance, we shall not completely fix how it scales by including a
parameter w, ¢ which is to be determined by observations,
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where p, is the density of this stuff today. To be still yet more general, we
have not even assumed that the scaling is fixed over time, but instead we have
allowed it to vary, w g(a(t)). The only requirement on w_ is that it should
produce an accelerating scale factor today, which occurs whenever w g(a) <
—4. For the special case where w_; = —1, the energy density of this fluid
remains constant over time.

Putting all of these ingredients together, the Friedmann equation becomes
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The expansion rate is often called the Hubble scale and is defined by
a
H(a)=-. 7
(=1 @

If we denote the value of the Hubble scale today by H,, then we can redefine
each of the densities as a fractional contribution to the total density of the



universe today,
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Even though the effect of the curvature is not produced by an actual fluid, we
can also describe its fractional effect on the evolution by defining
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Before writing the final form of the Friedmann equation in terms of these
new parameters, we should divide the matter into two contributions—one for
the ordinary atoms, or baryonic matter €2, and the other for the dark matter,
Q.. The subscript refers to the fact that the dark matter is assumed to be cold,
that is, nonrelativistic. Although both have the same effect on the expansion
of the universe, they can be readily distinguished from each other and mea-
sured separately. The expansion of the universe is then given by the following
equation,
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Not all of these parameters are independent; if we evaluate this equation today,
t =t,, then we have the following sum rule,

Q+Q 49 +Q,+Q,=1. (11)

One of the favored current models assumes that the new fluid responsible
for the accelerated expansion is simply a constant vacuum energy, which as we
saw corresponds to setting w & = —1. Sometimes it is further assumed that the
universe is in fact spatially flat, so that Q, = 0. In this case, we need only to
measure four numbers to understand the expansion of the universe —at least its
spatially independent part—over all the past that we can observe,

{Hp, 2, Q0,9 1 (12)

if we relax the assumption of spatial flatness, then we can add Q, to this list.

So far we have been speaking of the universe as though it only varied with
time, which is certainly not true today and which, even if the amount of in-
homogeneity grew over time, could not have been entirely true even at very
early times. Therefore we should include a tiny spatially dependent piece in
the metric. Restricting to the flat universe, k = 0, and introducing a conformal
time 1 by allowing time to expand along with space, dn = a ™! (t)dt, then we
can write the metric as

Suv = @ () Ny + 8g,un (1 (1), 3), (13)



where 1, is the Minkowski metric. Nominally, it would seem that we have
greatly enlarged the number of parameters that we must first specify to under-
stand the evolution of the universe. Since g ,(,X) is a symmetric tensor,
it contains ten independent functions. The background is still invariant under
spatial translations and rotations, so we can classify these ten functions by how
they transform under these symmetries. Four transform as scalar functions,
four more as the components of two divergenceless 3-vectors, and two as the
components of a traceless, divergenceless spin-two tensor. However, not all of
these functions have a physical meaning; some are only the artifacts of how we
have chosen our coordinates.

The most important components are the scalar perturbations. They cor-
respond to regions where the overall gravitational pull is slightly stronger or
slightly weaker than at others. The matter in the universe will be attracted to
the former; over time, as more and more matter accumulates in a region, stars
or galaxies or clusters of galaxies can form there. Among the four scalar com-
ponents of 8g ., only two are independent under small changes of coordinates
and so correspond to real physical effects. Of these two, one can usually be re-
moved by one of the equations of motion—one of components of the Einstein
equations—leaving a single scalar function. We shall can it Z(t,X) to suggest
a small spatially dependent variation in the scalar curvature.

Since Z(t,X) is rather small empirically in the early universe, a useful
method from describing it is to break it up into moments, !

(Z(t,%)2(t,%,) - Z(t,X)). (14)

If we could measure all of these moments, then we could completely recon-
struct Z(¢,X). But since #(t,X) is very small, most of these moments, those
with many factors of % (t,X), will be impossible to measure with any precision,
so we can approximate the scalar perturbation by measuring just the lowest-
order moments. The mean fluctuation is assumed to vanish, {(Z(t,X)) = 0,
since any nonvanishing result could always be cancelled by adding a spatially
constant function, which presumably we should have already included in the
scale factor, a(t). Therefore, the first nonvanishing moment is the two-point
function, which we write in terms of its Fourier transform,
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The function A%(k) is called the power spectrum. 1t is typically assumed that
this function scales as some power of the spatial momentum, k, so that once we

!'The notation (-+-) refers to spatially averaging the function, or in the case of a quantum op-
erator, taking the expectation value in a state. In the former case we have in the n = 2 case,
(Z(,3)2(1,5)) = [ d>FR(t,% +7) (1,5 +7), for example.



have chosen some particular value k, at which to normalize it, it can be written
as
dng
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Thus, in this model we have reduced the general function Z(t,X) to just three

numbers. The number ny = ny(k,) is called the tilt of the power spectrum and

its derivative ddl':fk is called the running index. In practice the running index is

quite small and so far only the tilt has been observed unambiguously. There-
fore, in this model we need measure only two more numbers to understand
how the scalar perturbations behave,

{8% (ko) nslko) | a7
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What we see

Gathering the numbers needed to describe the smooth part of the universe
together with those needed to describe the small spatial variations, we arrive at
a list of six or seven numbers that specify the basic picture,

{HOaQbaQCaQA’ [Qk]’Azﬁ(kO)’nS(kO)} (18)

In the various cosmological experiments that we shall mention here, not all of
these parameters are measured directly. For example, the fractional amounts
of baryonic matter and cold dark matter are measured in a form that depends
in part on the Hubble scale. And even the Hubble scale is not itself measured
directly in these experiments. A different sixth independent parameter, the
optical depth, is used instead.?

The observations that we shall use to constrain these numbers come from
three distinct sources:

1. The WMAP satellite, which has been carefully measuring the cosmic
microwave background radiation for five years,

2. Observations of the baryon acoustic oscillations [BAO] in the distribu-
tion of distant galaxies made by the Sloan Digital Sky Survey and 2dF
Galaxy Redshift Survey, and

3. Precise observations of the dimming of distant supernovae [SN] per-
formed by three groups, the Hubble Space Telescope and the SNLS and
ESSENCE surveys.

2The optical depth, T, tells the fraction (¢ ~7) of light that has been absorbed or scattered be-
tween us and the time when the universe was reionization by its first stars. Its measured value is
7=0.084+0.016.



Combining the measurements of these experiments, we arrive at the following
limits on these six parameters,

Parameter WMAP+BAO+SN (68% CL) Class
H, 70.1 &£ 1.3km/s/Mpc derived
Q, 4.62+£0.15% derived
Q. 233+ 1.3% derived
Q, 721+ 1.5% primary

AL (k) (245775990 % 107° primary
ns(ky) 0.960 70014 primary

where AZ,(k,) and ny(k,) are evaluated at k, = 2 Gpc~!. These values were
fit for a universe without any global spatial curvature, €2, = 0. If we relax this
requirement, we obtain the following bounds on its fractional effect

—0.0175 < , < 0.0085 95%CL. 19)

Writing the bounds on these numbers separately as above disguises some of
the degeneracies among them. For example, if we look at the tilt of the power
spectrum 7, simultaneously with the baryon fraction, normalized in terms of
the Hubble scale,

H
100km/s/Mpc’
we observe that the difference between the measured value of n; and 1 is not
quite as dramatic as the limits in the table suggest.
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Finally we ought to mention one more derived quantity, the age of the uni-
verse, which is not independent of the others, since we can determine it by
simply evolving the Friedmann equation from the time when a(¢) = 0 until
today, f,,.

Parameter WMAP+BAO+SN (68% CL) Class
1y 13.73 £0.12Gyr derived




And what comes next

As we mentioned at the beginning, the small number of quantities that have
been measured so far reflects our ignorance of many of the finer details of our
universe. While introducing the standard cosmological picture, we met a few
other parameters that have not been detected yet. For example, there are the
running index, which tell how the power spectrum might additionally change
with scales, and the function w_g(a) associated with the mysterious ingredi-
ent responsible for the current acceleration in the expansion of the universe.
As indicated, this function w g(a) might not be constant over time, and it is
sometimes hoped that both its current value and its first derivative might be
measured in the relatively near future,’

—a

Wege(a) = wy + wit (1)
although there very well may be much better ways of modeling how w g(a)
changes over time. Some of the current observational constraints on these
parameters are shown in the following figures
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The spatial dependence of the metric is still modeled very crudely. Each
of the moments tells us a little more about the true form of the scalar per-
turbations, Z(t,X). With precise enough measurements we might eventually
observe the three-point function as well,

(Z(1,X)2(1,5)%(1,2)), (22)

which would reveal whether the scalar perturbations contain any non-Gaussian
structures.

3The expansion corresponds to a Taylor series in the redshift z, defined by 1+ z= %



So far we have only concentrated on the scalar part of the perturbations,
since it is the most easily measured and it is the most important for under-
standing the growth of the structures in the universe. However, the spatially
dependent part of the metric, g, (¢,X) can contain spin-two tensor fluctua-
tions as well, o

8guv(t,X) dxtdx = a*(t) h;(t,%) dx'dx’. (23)

where i and j run only over the spatial dimensions (i, j = 1,2, 3). These pertur-
bations /; j(t,)'c') are gravity waves. To remove any vector or scalar components
from h;; we require that it satisfy

dh';=0 and K, =0, (24)
which leaves only two independent degrees of freedom in 4;;. We can then
define a power spectrum for the tensor perturbations just as we did earlier for
the scalar ones,

i, d37€’ it (=% 27[2
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and hope that its power spectrum can be reasonably approximated by a simple
power law too

) ) k "r(ko)
Ay, (k) = Ay (ko) (k_) . (26)
0
In principle we could have included a running index here as well, but since
the tensor perturbations have not been observed yet, the tilt n, should be quite
sufficient for now. The bounds on the amplitude A?(k,) are often not stated
directly, but are instead described as a bound on the scalar to tensor ratio, r,
defined by
A (ko)
A% (ko)

For the WMAP experiment, for example, k; =2 Gpc™" is chosen.

So with enough time, and the aid of new experiments, we might be able to
add several more numbers to this minimal list needed to describe our universe.
We have mentioned a few these parameters in the course of introducing those
that have already been measured, such as

dng /
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together with the numbers needed to describe the non-Gaussianities in the
scalar spatial variations of the metric, Z(t,X) —though even this list is hardly
exhaustive. The current bounds on some of these numbers, derived from the
same three sets of experiments, are

r
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Parameter Assumption WMAP+BAO+SN

Running index no gravity waves —0.0728 < dn s/dInk < 0.0087
Wegp constant w g 1.1l <w< —0.86
evolving w g —1.38 <w, < -0.86
Gravity waves no running index r<0.20
Neutrino mass >my, < 0.61eV
Neutrino species Nz =44+ 1.5(68%)

Before concluding, we shall mention one last constraint that these cosmo-
logical measurements have placed the neutrino masses. Although we have
treated all of the more familiar ingredients of our universe as being either non-
relativistic matter or radiation, some particles do not readily fall into either
category, at least during the earlier stages of the universe. For neutrinos to
have had a relatively negligible effect on the pattens in the cosmic microwave
background radiation, they need to have been still relativistic. This require-
ment constrains how heavy they can be. The mass differences between pairs of
neutrinos has already been determined by other experiments. Combining them
with the results of the cosmological experiments limits the total mass of all the
different types of neutrinos to be no more than 0.61 eV. The total number of
light neutrino species also affects when the era of matter-radiation occurred and
is thereby fixed by cosmological observations to be N 4 = 4.4+ 1.5, agreeing
with the value N ¢ ~ 3.04 found in accelerator experiments.

All of the data and figures are taken from the five-year WMAP results provided in E. Komatsu
et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological
Interpretation,” astro-ph/0803.0547.



