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Conventions

We shall apply a convention often used in theoretical particle physics, where factors
of the speed of light (c) and Planck’s constant ( h̄) are not written explicitly. We shall,
however, keep track of the factors of Newton’s constant (G).

In our notation for the coordinates describing space-time, lowercase Greek letters
will range over all the coordinates (for example, µ ! " 0 1 2 3) while lowercase
English letters will only label the spatial dimensions, (as in i j k 1 2 3). Any
time that the same index appears as both an upper and a lower index in some factor, we
shall be implicitly summing over all the appropriate values for that index. For example,

xµxµ x0x
0 x1x

1 x2x
2 x3x

3 (1)

We shall often write spatial vectors as x when the spatial dimensions are flat. In that
case, the scalar product is the usual one,

k x #i jk
ix j k1x1 k2x2 k3x3 (2)

Many different conventions are used in different treatments of the theory of relativ-
ity. Here we shall use the convention, so that the Minkowski, or flat space,
metric would be

ds2 dt2 dx dx (3)
We shall also apply a few abbreviationswhen writing derivatives. A derivative with

respect to all the space-time coordinates will be denoted by

$µ
$
$ xµ

(4)

In these noteswe shall define the time coordinate in two different ways; derivatives with
respect to the ordinary time will be represented with a dot (˙), for example,

ȧ
da
dt

(5)

while a derivative with respect to the conformal time (which we shall explain later) will
be noted by a prime ( ), as in

a
da
d%

(6)

Finally, &µ is the covariant derivative. When written with a vector sign, however, &
represents an ordinary vector derivative in flat space; that is,

&
$
$ x1

$
$ x2

$
$ x3

(7)
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In special relativity, the speed at which a signal propagates and the rate
at which the size of the visible part of the universe grows are equal. Both
propagate at the speed of light. In a universe governed by general relativity,
however, this simple equality no longer holds. For example, it is possible for
space to expand in such a way that the light of a sufficiently distant object will
never reach us. As its light propagates toward us through space, space itself can
be expanding so that the distance that the light must still traverse is growing
ever larger. Depending on exactly how the universe is expanding, there can
be a maximal distance beyond which a signal cannot outrun our expanding
separation from it. This maximal distance is called an observer’s horizon. Like
a black hole’s horizon, as long as the universe continues to expand in the same
way, whatever passes beyond this horizon can no longer be seen by us, and
the size of the visible part of the universe remains nearly fixed. But unlike
a black hole’s horizon, each observer has a slightly different horizon—each
observer sits at the center of a spherical region of the universe whose edge is
the horizon. And also unlike the case of a black hole, if the expansion of the
universe changes dramatically, this horizon starts to grow, and what was until
then hidden behind the horizon slowly starts to become visible again.

Because in such a universe we can send signals beyond the horizon (we just
cannot receive any response to them once they have crossed the horizon) the re-
gion of the universe that can be influenced by a particular observer grows larger
and larger even though, paradoxically, the “visible” universe hardly seems to
grow at all. Putting the universe into this peculiar state is the essential idea
behind the theory of inflation.

A universe composed entirely of matter and radiation behaves in exactly
the opposite way. Whenever the light from some distant object reaches us,
thereafter it remains always visible to us and it never slips beyond the horizon.
Over time, we see ever more and more of the universe. However, despite seem-
ing so sensible, such a universe has one disturbing property, especially if the
universe had a beginning. If we can look sufficiently far back in time (which
for a finite signal speed just means looking far away in space), we shall see
parts of the universe which could not have been in causal contact at those ear-
lier times, when the light that we are seeing today was first emitted. A signal
can propagate only so far since the beginning, and today we can view far more
of the universe than was visible at those times.

The idea of inflation is to combine these two phases, to first have the uni-
verse pass through an inflationary phase which is then followed by a more con-
ventional radiation and matter-dominated phase. Structures can then be hidden
behind the horizon during the inflationary expansion to allow more of the uni-
verse to have been causally connected at earlier times than would otherwise
have been the case. The elegance of this picture is that the peculiarities of one
phase help to resolve a paradox of the other.
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I. The background

To begin, we need to describe the expansion of the universe. In these notes,
we shall not consider the most general expansion possible, but rather one that
is suggested by the universe as we observe it, with a few further assumptions
along the way to simplify the analysis. Observations of the early universe,
especially those of the relic cosmic microwave background radiation, show
great spatial uniformity. So as a first approximation, let us imagine that the
universe expands uniformly with time, without any spatial dependence at all.
Such a universe is described by the metric,

ds2 gµ! dxµdx! dt2 a2 t dx dx (8)

The scale factor a t encodes how space inherently stretches or contracts over
time. We can also write this metric in an alternate form by defining a conformal
time coordinate through

% t
dt
a t

(9)

in terms of which the metric becomes even simpler—theflat space (Minkowski)
metric multiplied by an overall time-dependent factor,

ds2 a2 % dt2 dx dx (10)

The conformal time has an important physical significance. Let us restore
an explicit factor of the speed of light c for the moment. If we consider a null
path where ds2 0 and look at the radial propagation r t of this signal,

ds2 0 c2 dt2 a2 t dr2 (11)

we then find that
r t c

t2

t1

dt
a t

(12)

Up to the constant factor c, this distance is exactly the same as the conformal
time % . So we see that the conformal time actually describes the maximal
causal distance between t1 and t2, since we derived r t by assuming that the
local speed of the signal was always equal to c.

The action that determines the evolution of the universe can be divided into
two parts. One depends solely on the metric,

Sg
1

16'G
d4x gR (13)
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while the other, S( , contains any non-gravitational ingredients of our theory.
The energy-momentum tensor corresponds to the variation of this second piece
with respect to the metric,

Tµ!
2
g
#S(
#gµ!

(14)

Varying the total action Sg S( yields Einstein’s equation,

Rµ! 1
2gµ!R 8'GTµ! (15)

In general, this expression can contain up to ten separate equations; but for very
simple backgrounds—those with much symmetry—most of these components
either vanish or are redundant. For example, in the coordinates that we have
introduced above, only the time (tt) and the space (i j) components contain any
unique information,

Rtt 3
ä
a

Ri j aä 2ȧ2 #i j R 6
ä
a

6
ȧ2

a2
(16)

To complete the picture, we must include some material to provide the energy-
momentum that drives the expansion, described by the time-evolution of a t .

Inflation corresponds to the very general idea that the universe underwent
a stage of accelerated expansion, when ä 0, during some early epoch. There
are in practice many ways to implement this basic idea. Here we shall look
only at the simplest, where the accelerated expansion is produced by a single
scalar field ( with the appropriate properties. We start with a general action
with a kinetic term and a potentialV ( ,

S( d4x g 1
2g

µ!$µ($!( V ( (17)

Because the background space-time is approximately spatially uniform, the
field should also be more or less independent of the position, ( ( t . For a
general metric the energy-momentum tensor is

Tµ! $µ($!(
1
2gµ!g

")$"($)( gµ!V ( ; (18)

but in our case the only nonvanishing components are

Ttt 1
2 (̇

2 V ( Ti j a2#i j
1
2 (̇

2 V ( (19)

We have one further equation, the equation of motion obtained by varying this
action with respect to ( itself,

&2(
#V
#(

0; (20)
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in our spatially independent case,

(̈ 3
ȧ
a
(̇

#V
#(

0 (21)

So far we have not specified the potential at all. But if inflation is to produce
a period of accelerated expansion, this potential must satisfy a few conditions.
The time (tt) and space (i j) components of Einstein’s equation read

3
ȧ2

a2
8'G

1
2
(̇ 2 V

2
ä
a

ȧ2

a2
8'G

1
2
(̇ 2 V (22)

Using the first of these equations to eliminate the ȧ2 a2 term in the second, we
find

ä
a

8'G
3

V (̇ 2 (23)

Since a 0, an accelerating universe requires a kinetic energy that is small in
comparison with the potential energy,V (̇ 2. However, by itself this condition
is not sufficient, since it is not enough to have inflation last only for a short
while. We need to maintain the inflationary era long enough that a tiny causally
connected patch of the early universe grows to something of the order of the
size of the visible universe today. The problem is that if we merely start with
(̇ 0 at some point, then if the field can convert its potential energy into kinetic
energy quickly enough, the V (̇ 2 condition will be violated before enough
inflation has occurred.

(

V(()

(

V(()

As an analogy, consider a marble, whose position is given by ( , rolling
on a slope, whose height is given by V ( . If the slope is very steep, as in
the figure on the left, it will speed up too quickly as it rolls down the slope.
Something much more level, as in the figure to the right, would be better. If
it starts with (̇ 0 at some time, it will only very gradually pick up its speed
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as it rolls along. Because of this analogy, many inflationary models are said to
have a “slowly rolling” phase during which most of the actual inflation occurs.

The ideal case is a universe with a perfectly constant, positive potential,
V ( V0 0. Such a universe is called de Sitter space. In de Sitter space,
the universe expands at a constant rate too,

H t
ȧ
a

8'G
3

V0 (24)

Solving for the behavior of the scale factor a t , we see that space expands
very rapidly in de Sitter space, in fact at an exponential rate, a t * eHt .

Actually, this ideal is too much of a good thing. For subtle reasons ex-
plained later, de Sitter space cannot produce the primordial perturbations to
the background space-time that are needed as an initial input for a more con-
ventional evolution of the universe. How far a particular model differs from
this ideal is encoded by two dimensionless “slow-roll” parameters, + and # ,
defined by

+
d
dt
1
H

#
1
H
(̈
(̇

(25)

The slow-roll conditions assume + 1 and # 1. The first condition implies
that the expansion rate is not changing much (in de Sitter space it does not
change at all, as we have seen) while the second implies that the field is not
accelerating too quickly, which would otherwise allow the kinetic energy to
grow too large before enough inflation had occurred.

Although de Sitter space is ultimately not suitable for describing our uni-
verse, it is still a good approximation to models that can produce the needed
primordial perturbations. Just what these primordial perturbations are, and how
they are generated in inflation, will be explained next.

II. A baby version: fluctuations in de Sitter space
So far we have been describing the universe as though it were always per-

fectly spatially uniform. Certainly, this is a very poor approximation today.
Yet, even if it was a better approximation at earlier times, the universe could
never have been perfectly uniform. Even at the very earliest of times there
must have been some tiny fluctuations in the shape of space-time and in the
distribution of the material—the matter and radiation—spread throughout the
universe. Over time, as matter was attracted to the regions where the pull of
gravity was slightly stronger and away from the places where it was a tiny bit
weaker, more and more dense regions would form, which in turn could exert a
still stronger pull on the matter surrounding it. With enough time, these regions
would become sufficiently dense to be able to collapse into stars and galaxies.
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So, beginning with only just a tiny amount of spatial variation in an otherwise
highly uniform universe, we could arrive at the universe as it appears to us
today.

If we correctly understand the behavior of gravity as well as the contents of
the universe, we can reverse this picture and trace the growth of these structures
backward in time. We could then ask how large the original, or primordial,
perturbationswould need to have been to produce the properties of the universe
today. If we do so, we find that a spatial variation of about one part in one
hundred thousand, relative to the uniform part, would have been enough. We
could also try to infer the size of these perturbations by what would have been
needed to generate the acoustic oscillations observed in the cosmic microwave
background radiation, and the answer is of the same size.

In inflation, the mechanism for generating these primordial perturbations
relies on the quantum properties of the field. A quantum field is always fluc-
tuating. Just as for a quantum harmonic oscillator, a quantum field satisfies a
Heisenberg uncertainty relation. Having a perfectly uniform field at any partic-
ular time would require knowing its spatial properties to an infinite precision,
which would mean in turn that we could know nothing about its momentum,
which is its time derivative. One important difference between a simple har-
monic oscillator and a quantum field is that the latter depends on the space-
time location where it is evaluated. So in terms of creation and annihilation
operators, a quantum field at first sight looks like an infinite set of harmonic
oscillators, one for each value of the momentum, k,

a a† 1 a
k
a†
k

2' 3 # 3 k k (26)

In the last section, we treated the field ( as though it were purely classi-
cal. That is still a good approximation for the early universe, as far as we can
observe its properties, so let us add a small quantum mechanical piece to the
uniform behavior analyzed before,

( t x ( % x (0 % , % x (27)

In this expression, the term (0 % is still a classical field and is identical with
what we called simply ( t in the previous section; , % x is a quantum field.
Notice that we have now switched to the conformal time; we do so since some
of the equations that we shall encounter appear a little simpler in this coor-
dinate. In general relativity it is not consistent to add a spatially dependent
piece in the field without also doing so in the metric—since the field itself is
the source for the gravitational field, and any of its spatial dependence must
necessarily spill over to the curvature of space-time. However, because the
metric gµ! is a tensor and depends on how we have chosen our coordinates,
the treatment of a small spatial variation of the metric is far more complicated.
Therefore we shall not perturb the metric at all in this section.
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We shall make one further assumption before deriving what inflation pre-
dicts for the initial spatial dependence of the universe. We shall work in the de
Sitter limit. The potential V ( is then a constant V0 as is the expansion rate,
H % , defined by

H
ȧ
a

a
a2

(28)

Since H is a constant, we can use this equation to solve for the conformal time
dependence of the scale factor a % ,

H
1
a2

da
d%

da
a2

H d% (29)

to find
a %

1
H%

(30)

In these coordinates, % does not range over the entire real line, but only from
- (the far past) to 0 (the far future). So % will always be negative.
Because the potential is constant, the #V #( term in the equation of mo-

tion for ( vanishes, and the equation becomes just &2( 0. This equation
holds for both its classical and its quantum parts separately,

&2(0 0 and &2, 0 (31)

We have already studied the classical part, so let us look at the quantum part.
In conformally flat coordinates, this equation becomes more generally,

, 2aH, & &, 0 (32)

while substituting the form of a % appropriate for de Sitter space, we find,

,
2
%
, & &, 0 (33)

At this stage we still have a differential equation that depends on all four
coordinates. We can reduce it to an equation of a single variable by Fourier ex-
panding the field in plane waves for the spatial part, eik x. , % x is a quantum
field—that is, an operator—and not a classical function. So when we Fourier
expand the field, we include a creation (a†

k
) or an annihilation operator (a

k
)

associated with creating or annihilating one of these plane-waves,

, % x
d3k
2' 3 ,k % eik xa

k
,k % e ik xa†

k
(34)
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where k k is the magnitude of the spatial momentum.
As we mentioned, aside from the additional label for the momentum, the

operators a
k
and a†

k
resemble the creation and annihilation operators that occur

when we quantize a harmonic oscillator. Here the meaning of having a separate
oscillator for each value of the momentum becomes a little clearer. Note that
only operators associated with the same momenta do not commute with each
other,

a
k
a†
k

2' 3 # 3 k k (35)

while
a
k
a
k

0 a†
k
a†
k

(36)

There is also a ground state 0 . It is annihilated by a
k
, for any momentum k,

a
k
0 0 (37)

and similarly its dual 0 is annihilated by a †
k
, which is the dual of a

k
,

0 a†
k

a
k
0 † 0 (38)

The ground state is normalized to satisfy 0 0 1.
There remains only the time-dependent part of the eigenmode expansion

,k % to explain. Once we have solved for this function, we shall completely
understand what inflation predicts for the spatial variation—at least in this sim-
plified example, which is actually not so very different from the result of a more
careful analysis. Inserting the Fourier expansion for the field , % x into its
equation of motion yields a differential equation for the eigenmodes,

,k
2
%
,k k2,k 0 (39)

The general solution of this equation is given by

,k % Ak i k% e ik% Bk i k% eik% (40)

To specify the solution completely still requires two further conditions to fix
the constants of integration, Ak and Bk .

Since the field , % x is a quantummechanical object, it satisfies a relation
very similar to the Heisenberg relation for the position ( X̂) and momentum (P̂)
operators for a harmonic oscillator, X̂ P̂ i, except that here too we must
account for the spatial dependence of the field,

X̂ P̂ i , % x ' % y i# 3 x y (41)
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This equation describes the canonical commutation relation between , and its
conjugate momentum ', defined in the usual way that should be familiar from
Hamiltonian dynamics,

'
#
#,

a2, (42)

Here we have used the Lagrangian implied by the action S( ,

1
2a
2( 2 1

2a
2&( &( (43)

The # -function just means that fields commute except when they are evaluated
at the same point.

This commutation relation will provide our first condition on the modes
,k % which in turn will allow us to fix one of the constants of integration. To
find this condition, substitute the Fourier expansion for , and for ',

' % x a2 % , % x a2 %
d3k
2' 3 ,k % eik xa

k
,k % e ik xa†

k
(44)

into the commutator and apply the properties of the creation and annihilation
operators. In the end, we arrive at the following condition,

a2 ,k,k ,k,k i (45)

For our general solution for the modes, this condition becomes,

AkAk BkBk
H2

2k3
(46)

At first this result might seem only a minor technical point, but it is actually
quite important. It sets the overall size of ,k % and consequently the am-
plitude of the spatial fluctuations, which for the space-time fluctuations of the
next section is what is measured experimentally.

Applying this condition eliminates one of the constants and only one more
remains, which we shall now write as fk,

,k %
1

1 fk fk

H
2k3

i k% e ik% fk i k% eik% (47)

The second condition which we shall use to fix f k is more of an assumption
about what we think should be true of the state during inflation. The reason-
ing that underlies this assumption is safe enough for the setting that we are
using throughout this section—that of a quantum field in a classical space-time
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background—but it becomes a little more doubtful in a fully consistent treat-
ment where the space-time has quantum fluctuations too. Such a setting can
be dangerously close to the regime of quantum gravity, where we do not have
an adequate theoretical understanding for how nature behaves. However, in a
classical background, only the field has quantum properties, and these we more
or less understand.

The curvature of de Sitter space is

R 12H2 (48)

and because H is constant, this value for the scalar curvature means that the
curvature in de Sitter space is everywhere the same. We can use this property
to apply what we know about quantum fields in flat space to fix the remaining
constant of integration f k for this field in an expanding space-time.

At very small distances, the fact that this space is curved should not be
much apparent. By a small distance, we mean here an interval that is small in
comparison with the natural scale defined by the curvature, R. R contains two
derivatives, so it scales as a squared inverse-length. Thus the natural lengths
where the curvature of de Sitter space becomes very apparent are those that are
at least an appreciable factor of 1 H. If we analyze the field mode by mode,
,k % , the wavelength associated with a particular mode function is

"
2'
k

(49)

which means that the small-wavelength modes, compared with radius of cur-
vature of de Sitter space, " 1 H, are consequently those for which

k H (50)

Actually, it is not enough to look only at small wavelengths. The scale
factor affects the time coordinate as well. So for the moment, let us return
once more to the ordinary time coordinate t. If we normalize the scale factor
so that a t eHt , then we can go between the two coordinate systems by just
equating a % with a t ,

%
e Ht

H
(51)

Substituting this expression into , k % t yields,

,k t
H

1 fk fk
i

k
H
e Ht ei kH e Ht

2k3
fk i

k
H
e Ht e i kH e

Ht

2k3
;

(52)
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its more complicated form helps to explain why we have been using % rather
than t for most of this section.

Just as we should only look at short distances—that is, short wavelengths—
to be able to ignore the effects of the curvature, we should similarly only look
over short time intervals as well. Let us therefore look at times only near to
t 0, so that Ht 1 and we can expand the exponential, e Ht 1 Ht
. Of course, there is nothing special about t 0; we could just have easily

chosen another value t t0 by translating our coordinates to t t t 0 and then
expanding near t0 instead, H t t0 1. But if we expand near t 0 and use
also k H, the largest time-dependent terms are

,k t
1

1 fk fk
eik H e ikt

2k
fke

ik H eikt

2k
(53)

We now must make use of one of the properties of quantum field theory in
flat space. In flat space, the positive energy eigenmodes for a massless scalar
field are

e ikt

2k
(54)

To understand why these are the positive energy modes, recall that in our
Fourier expansion for the field, ,k t is accompanied by the factor eik x, so
their product in this limit should be a plane-wave in flat space,

,k t e
ik x e ikteik x e i k0x0 k x e ikµxµ ; (55)

remember that in special relativity, the 0th component of the momentum is the
energy, E. When a field is massless m 0, as it is here since the potential
V ( is constant (and not 12m

2( 2), the energy is just equal to the magnitude of
its three-momentum,

k0 E k 2 m2 k (56)

If we assume that over small distances and time intervals, where de Sitter space
looks much like flat space, the field’s behavior should similarlymatch with that
of a field in flat space, then the modes ,k t should approach

lim
Ht 0
k H -

,k t
e ikt

2k
(57)

up to an arbitrary phase. This condition fixes the remaining constant of inte-
gration to be fk 0. We now know everything about the quantum part of the
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field in this simple setting,

,k %
H
2k3

i k% e ik% (58)

where we have returned to the conformal time.
One problem, which might have already been apparent, is that while in-

flation treats the spatial variations of the field quantum mechanically, when-
ever we measure some real feature of our universe—the patterns in the cosmic
microwave background radiation or how galaxies are distributed—we are al-
ways measuring entirely classical quantities. We shall therefore need to convert
, % x into something classical. One way to obtain classical functions is to
take the expectation values of quantum operators. We could take the expecta-
tion value of the field in the ground state, but it vanishes

0 , % x 0
d3k
2' 3 ,k % eik x 0 a

k
0 ,k % e ik x 0 a†

k
0 0 (59)

since a
k
0 0 and 0 a†

k
0. Actually, this result ought not to be too surpris-

ing; , % x describes the fluctuations about the spatially constant part ( 0 % ;
so, on average, these fluctuations should be zero.

Let us go to the next simplest expectation value, that of two fields at differ-
ent places,

0 , % x , % y 0 (60)
If 0 , 0 is the functional analogue of the mean of a distribution, 0 ,, 0
is like its variance. It is often called the two-point correlation function and
we shall see that it does not vanish. It provides the simplest description of the
spatial fluctuations produced by inflation.

If we substitute the Fourier-expanded form for the fields into this expec-
tation value, and use the properties of the creation and annihilation operators
when they act on the ground state, we find that this two-point function is

0 , % x , % y 0
d3k
2' 3

d3p
2' 3 ,k % eik x,p % e ip y 0 a

k
a†
k
0

d3k
2' 3

d3p
2' 3 e

ik x ip y,k % ,p % 2' 3# 3 k p

d3k
2' 3 e

ik x y ,k % ,k % (61)

When experiments measure the properties of how galaxies are distributed
in the universe or the pattern of temperature fluctuations in the microwave
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background radiation, the results are often described in terms of the Fourier
transform (or in terms of their spherical analogue, spherical harmonics). The
Fourier transform of the two-point function is sometimes normalized in a con-
venient form, called the power spectrum of the distribution that we are mea-
suring. Here we shall define the power spectrum with some of the factors of
the momentum extracted,

0 , % x , % y 0
d3k
2' 3 e

ik x y 2'2

k3
P,k % (62)

but other conventions are often used as well. From our derivation of the two-
point function, we can immediately see what inflation predicts for the power
spectrum of the primordial perturbations,

P,k %
k3

2'2
,k % ,k %

k3

2'2
H2

2k3
1 k2%2

H2

4'2
1 k2%2 (63)

using what we derived for ,k % .
We have one final fact to include if we are to select which values of k% are

the important ones for cosmological measurements. Remember from the very
beginning, inflation is essentially a mechanism for hiding information behind
a horizon. Or equivalently, inflation makes the size of a causally connected
part of the universe much larger than that part of it that can be observed. In de
Sitter space, the distance from an observer to this horizon is 1 H, so anything
that inflation has stretched larger than this size remains hidden until inflation
ends. Thereafter, we return to a phase where radiation and then matter govern
how the universe evolves. In this more conventional phase, the range of what
we can see begins to grow faster than the rate at which the causally connected
region grows. All the perturbations that were hidden behind the horizon during
inflation are revealed as soon as the size of the horizon catches up to the phys-
ical wavelength of a particular fluctuation. So smaller wavelength fluctuations
re-emerge first, while larger ones only enter later.

The physical wavelength of a fluctuation is stretched along with the expan-
sion of the universe. So the physical size of a particular Fourier mode ,k %
should include a factor of the scale factor, a % " , since a % tells by how
much space stretches in any of its directions over time. Similarly, the physical
momentum scales as k a % . If inflation is meant the hide fluctuations beyond
the horizon, the relevant wavelengths for cosmological experiments are those
whose wavelengths are much larger than the horizon by the end of inflation,
a % " 1 H, or

k
a %

H (64)
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Using a % 1 H% , we learn that the momenta appropriate for observations
are those for which

k
a %

H k% 1 (65)

The power spectrum in this regime is very nearly constant,

P,k %
H2

4'2
(66)

Although we mentioned from the early stages of this section that this ex-
ample is only an idealization of what is meant to happen in an inflationary
model, we have learned at least one important property of the initial spatial
fluctuations produced by such a model. The power spectrum, at the cosmo-
logically important scales k, is entirely featureless; that is, since k corresponds
to roughly the inverse size of a particular fluctuation, primordial fluctuations
should exist on all scales that we can observe, and with the same amplitude.

Unfortunately, to obtain the full predictions for these primordial perturba-
tions, we shall need to analyze the response of the gravitational background
to the fluctuations in the field. What we have found here are only the quan-
tum fluctuations of some scalar field, but not the distortions of space-time it-
self. This is an important distinction; everything feels the influence of gravity,
so fluctuations of space-time will directly influence how matter and radiation
will behave. The calculation of the true primordial perturbations is far more
complicated than the example here, although the results for both have much in
common. But if we wish to know the amplitude of these perturbations, we shall
need to leave a purely de Sitter universe and consider one where the potential
for the field ( is no longer perfectly flat.

III. A short sketch of the true primordial perturbations

This final section summarizes, in an extremely abbreviated form, the true
calculation for the power spectrum of the primordial perturbations predicted
by inflation. The reason that we have not included the full details is that the
general set of scalar perturbations—those that eventually lead to the density
perturbations inmatter—can be represented in the metric as four functions, and
expanding the full action out to quadratic order in these perturbations becomes
quite tedious. Moreover, some of these functions are redundant, correspond-
ing to particular ways for choosing the perturbed coordinates about the simple
background that we have been considering. One of the tenets of general rel-
ativity is that how we choose our coordinates does not contain any genuine
physical information. In a complete calculation, this property becomes appar-
ent in the fact that some of these functions have no dynamical effect—they
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appear in the action only as total derivatives. To reach this point, however,
requires quite a bit of labor.

The reason that we do mention the true calculation at all—and did not
simply conclude with the last section—is that without a proper treatment, we
would miss some of the important predictions of inflation. One of these is
for the amplitude of the power spectrum. The experimental result, as we men-
tioned earlier, is that there should be fluctuations in an otherwise uniform back-
ground at the level of one part in one hundred thousand. So far we have been
calculating the fluctuations of a scalar field in an expanding background, but
we have not yet connected these fluctuations with the actual fluctuations of the
space-time background itself. We shall do so now.

Let us start by including some quantum fluctuations in the metric. We
shall not write them in the most general form; but instead, we shall choose our
coordinates so that the fluctuating part of the metric is still diagonal,

g%% % x a2 % 1 2. % x
g% i % x 0

gi j % x a2 % #i j 1 2/ % x (67)

As before, we shall also include a small quantum part of the field, except that
this time we shall call it #( rather than , (which we shall reserve for something
closely related, and which becomes #( in the de Sitter limit),

( % x (0 % #( % x (68)

All that we need to do, then, is to substitute these expressions for the metric
and the field into the complete action for the theory,

S d4x g
1

16'G
R

1
2
gµ!$µ($!( V ( (69)

Since the fluctuations are small, terms that contain more powers of the
fluctuations—either., / or #(—will have less of an influence on predictions
than terms with fewer powers. The terms with no factors of these fields ob-
viously will not tell us anything about how they behave; instead, such terms
govern the behavior of the background—a % and ( 0 % . If we look at the
terms with just one factor of these fields, these too will not be of much use
since all these terms vanish upon substituting in the equations of motion of the
background. Therefore, to be able to understand the fluctuations, and thus to
be able to refine our prediction from the last section, we shall need to expand
the action S to quadratic order in the perturbations. We shall neglect terms be-
yond this order, not because they are ultimately unimportant, but rather because
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their influence on the two-point function—which is, after all, itself a quadratic
quantity in the fields—is negligible compared with the current experimental
precisions.

Despite many complicated intermediate steps, the final expression for the
quadratic terms is remarkably simple. After applying a constraint that emerges
in the course of the calculation (to eliminate .) and neglecting terms that can
be written as total spatial or time derivatives, all of the dynamically influential
terms in the action can be written succinctly in terms of a linear combination
of two of the fields,

, #(
(0
aH

/ (70)

as
S 2 , d4xa2 1

2,
2 1

2&, &, 1
2a
2m2,2 (71)

This action essentially describes a free, massive scalar field in an expanding
background, although the mass m is not a constant. In terms of the slow-roll
parameters, the exact expression for this mass is

m2 % H2 3 # + # aH3 + # ; (72)

for the rest of this section, however, we shall assume that the universe is ex-
panding in a slowly rolling phase of inflation. There, the parameters + and #
are small and approximately constant, so it is sufficient to retain only

m2 % 3H2 + # (73)

in the expression for the mass.
The reason that de Sitter space is only an unrealistic idealization now be-

comes apparent when we look at the relative amounts of the two fields that
compose ,. In the de Sitter limit, the spatially constant part of the field, ( 0,is
also constant in time; so (0 0. Thus, in de Sitter space , #( , and our con-
nection with the fluctuations with the space-time are lost. As a consequence, it
would have done us no good at all to have included fluctuations of the metric
in the last section. It is important always to have the field roll at least a little
bit, (0 0.

We have chosen , so that—from the perspective of the quantum theory—it
is a “canonically normalized” field, meaning that its kinetic term in the action
has the standard normalization. This choice lets us immediately apply all the
results of quantum field theory. For example, we can use the canonical com-
mutation relation between , and its conjugate momentum, as before, to fix the
normalization of the allowed solutions for , k % . However, this normalization
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is not the appropriate one when comparing with experiments. Instead we shall
rescale the field so it is the term / that has no prefactor,

0 /
aH
(0

#(
aH
(0

, (74)

The reason for doing so is that /, being a fluctuation of space-time, is some-
thing whose influence we can directly measure. / is related to the fluctuations
in the curvature of a three-dimensional slice of the universe at a particular time.
For example, the three-dimensional metric along such a slice would be

g 3i j % x a2 % 1 2/ % x #i j (75)

and its three-dimensional scalar curvature (which is completely different from
the full space-time curvature R) is

R 3 4
a2
& &/ (76)

where we have kept only the leading term in powers of /. In Fourier space,
the proportionality is even more explicit since the right side of this equation
becomes

4
a2
k2/k % (77)

Thus, the correct way to calculate the power spectrum is first to find the
appropriate solution to the equations of motion for , as before, but in the end
to evaluate the power spectrum of the field 0 ,

0 0 % x 0 % y 0
d3k
2' 3 e

ik x y 2'2

k3
P0k % (78)

Since , and 0 are so closely related, all that is needed is to calculate the power
spectrum of , as before and then rescale by the necessary factor as the final
step,

P0k %
aH
(0

2
P,k % (79)

This rescaling factor perhaps does not convey very much, so let us rewrite it
in a more illuminating form. If we differentiate both sides of the time (tt)
component of the background Einstein equation,

3H2 8'G 1
2 (̇

2
0 V 6HḢ 8'G (̈0

#V
#(0

(̇0 (80)
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and then use the definition for + on the left side and the equation of motion for
(0 on the right, we find

6H3+ 8'G 3H (̇0 (̇0
4'G
+

H2

(̇ 20

aH
(0

2
(81)

and thus the power spectrum of 0 % x can also be written as

P0k %
4'G
+

P,k % (82)

Here G is just the Newton constant and the slow-roll parameter + is a small
number.

The calculation of the power spectrum of , now follows exactly the same
steps as in the de Sitter example of the previous section. The equation of
motion implied by the action S 2 , for the Fourier modes ,k % is

,k 2aH,k k2 a2m2 ,k 0 (83)

where the modes ,k % are defined by the same operator expansion as before,

, % x
d3k
2' 3 ,k % eik xa

k
,k % e ik xa†

k
(84)

In the slowly rolling limit, aH 1 + % , so the equation of motion be-
comes approximately

,k
2 1 +

%
,k k2,k

3 + #
%2

,k 0 (85)

To put this differential equation into one of the standard forms, let us define a
dimensionless variable z k% and rescale the field by ,k % z

3
2 +Z! z .

Then the equation of motion becomes

d2Z!
dz2

1
z
dZ!
dz

1
!2

z2
Z! 0 (86)

where the index ! in the slowly rolling limit is

!
9
4

6+ 3#
1 2 3

2
2+ # (87)
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Again, these details might appear to be merely technical; however, the fact that
this index is not exactly equal to 3

2 is directly responsible for the fact that—for
a slowly rollingmodel—the power spectrum does slightly depend on the scale,
which seems to agree with what can be inferred from observations.

The differential equation for Z! z is, in fact, Bessel’s equation, so Z! z
must be a linear combination of Bessel functions. Applying the canonical com-
mutation relation and choosing the modes to match the flat space ground state
modes over short intervals as before provides two constraints to fix the two
constants of integration. Applying both of these conditions yields

,k %
'
2

H % 3 2

1 +
H 1
! k% (88)

H 1
! k% corresponds to a particular linear combination of Bessel functions
called a Hankel function. Thus, the power spectrum for , % x is

P,k %
k3

2'2
,k % ,k %

H2

8'
k% 3

1 + 2 H
1
! k% 2 (89)

A power spectrum expressed in terms of Hankel functions might not seem
at first to be especially illuminating. However, as we explained in the last sec-
tion, the physically important scales k for cosmological observations are those
for which k% 0, which, combined with the smallness of the parameters
+ and # hidden in the index of the Hankel function, allows us to write the
expression for the power spectrum of these modes in a far simpler form,

P,k %
H2

4'2
k% 4+ 2# (90)

Before converting this result into an inflationary prediction for the power spec-
trum of the rescaled field 0 % x , let us first define an amplitude, 120 k0 , and
a tilt, ns, by writing the power spectrum in the following “standard” form,

P0 % 120 k0
k
k0

ns 1
(91)

which is obviously strongly influenced by the expectations of inflation. Here
we have defined the amplitude with respect to a particular reference scale k0.

1

From our calculations, we find

P0k %
4'G
+

H2

4'2
k% 4+ 2# (92)

1For the WMAP experiment, for example, k0 was chosen to be 2 Gpc 1.
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so we learn that the amplitude and the tilt are

120 k0
4'G
+

H2

4'2
and ns 1 4+ 2# (93)

if we neglect the higher-order corrections of the slowly rolling limit.
The case where ns 1 would be a power spectrum like the one in the

last section which has equal power at all scales. Since + and # are small and
positive, the spectrum is still nearly independent of the scale at which it is
evaluated, but it should show a slight tendency for the fluctuations at large
scales to have larger amplitudes than those at smaller scales.

To conclude, let us rewrite the amplitude once more by introducing a natu-
ral mass scale for gravity. In the system of units that we have been implicitly
using, where c and h̄ are neglected, the Newton constant can be expressed as a
mass scale,

M2
pl

1
8'G

(94)

called the (reduced) Planck mass. In terms of this scale, the inflationary model
that we have been studying predicts the following amplitude for the primordial
fluctuations,

120 k0
1
8'2

1
+
H2

M2
pl

(95)

This form is useful since it expresses the amplitude in terms of a dimensionless
ratio between the expansion rate during the inflationary era, H, and the natural
interaction strength of gravity,Mpl.
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